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ABSTRACT: A low-cost [$30 (U.S. dollars)] consumer grade GPS receiver with a sideways-mounted antenna has been

applied to measure tidal water levels at a mesotidal coastal site using an interferometric reflectometry approach. The proof-

of-concept system was installed approximately 16m above mean sea level in close proximity to a conventional bubbler tide

gauge that provided validation data. The received signal-to-noise ratios (SNR) for the satellites in view were recorded for

several months during two successive years and the observed frequencies of the interferometric oscillations used to

calculate the difference in elevation between the receiver and the water surface. Comparisons with concurrent and

historic in situ tide gauge data at the site initially helped to identify a calibration issue with the in situ gauge. The GPS-

based measurements were shown to be in excellent agreement with the corrected in situ gauge, exhibiting a root-mean-

square difference of 5.7 cm over a tidal range exceeding 3m at spring tides and a daily averaged RMS of 1.7 cm. The SNR

data from the low-cost GPS receivers are shown to provide significantly higher-quality data for this purpose compared

with high-end geodetic grade receivers at similar sites. This low-cost, widely available technology has the potential to be

applied globally for monitoring water levels in a wide variety of circumstances and applications that would otherwise be

cost or situation prohibitive. It could also be applied as an independent cross check and quality control measure for

conventional water-level gauges.
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1. Introduction
The measurement of water levels over sustained periods of

time can be a logistically and financially significant commit-

ment for any organization. Conventional water-level mea-

surements either require equipment to be in the water, such as

pressure- and bubbler-based systems, or directly over the water

such as radar gauges. In-water gauges are prone to corrosion

and are often sited in busy port locations where all types of

gauge are susceptible to direct physical damage. If sited in in-

secure but populated locations the risk of theft and vandalism

must be considered by operators.

Depending on the intended data application and quality

required of the installation, hardware and installation costs for

even temporary water-level gauges can easily run to mid–tens

of thousands of U.S. dollars when surveys, installation design,

hardware, electrical supply and staff time are all factored in.

Long-term operation of water-level gauges is an even more

significant challenge as consideration must also be given to the

long-term stability/calibration of measurements, monitoring

for possible vertical land movements, quality control of data

and appropriate data archiving provisions [Intergovernmental

Oceanographic Commission (IOC); IOC 2006].

These multiple factors place the resources and capability to

install and maintain such systems within the grasp of only the

largest and most sustainably funded projects and organizations.

Ground based global positioning system (GPS) and Global

Navigation Satellite Systems Interferometric Reflectometry

(GNSS-IR) is a fairly recent technique that allows you to

monitor some aspects of the state of the environment around a

GNSS antenna by understanding the patterns derived from the

interactions of the direct and reflected signals. The signal-to-

noise ratio (SNR) was shown by Axelrad et al. (1996) to be

useful for characterizing multipath signals and amplitudes.

Given a simple geometry of a planar surface below a GNSS

antenna, Georgiadou and Kleusberg (1988) and Elosegui et al.

(1995) showed that the interference patterns had a distinct

frequency that was related to the height of the antenna above
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the surface. The first demonstration of water levels derived

from GPS interferometric reflectometry (GPS-IR) SNR mea-

surements was in Onsala, Sweden (Larson et al. 2013). Since then

there have been many studies covering various aspects such as

precision and accuracy of the retrievals (e.g., Strandberg et al. 2016;

Santamaría-Gómez and Watson 2017; Santamaría-Gómez et al.

2015), tropospheric delay (Williams and Nievinski 2017), and

the use of multiple satellite systems (e.g., Jin et al. 2017;

Löfgren and Haas 2014). Santamaría-Gómez and Watson

(2017) mounted a geodetic-quality antenna sideways and ori-

ented in azimuth to face the sea and found a much clearer

signal lasting to higher elevations than a conventionally

upright-mounted antenna. The results from the sideways-mounted

antenna were found to have a threefold increase in precision

compared to the upright antenna. A 10-yr comparison at

Friday Harbor, Washington, between a GPS-IR analysis and

collocated tide gauge showed daily averages to be in agree-

ment at the 2-cm level (Larson et al. 2017). One thing that is

common to all these studies is the use of a high-end geodetic-

quality antenna and receivers with an associated cost in the

tens of thousands ofU.S. dollars and all but a fewwere installed

for the purpose of positioning/timing and not for GNSS-IR

purposes.

Herewedescribe the recent demonstration of a low-costwater-

level measurement system based on a basic consumer grade GPS

receiver that requires a slightly elevated position close to andwith

clear line of sight to the water. The low-cost nature of such sys-

tems opens up the possibility of using multiple examples of such

gauges for applications as diverse as tide gauges, lake and river

level monitoring, flood plain inundation, snow and ice depth and

possibly even localized progressive subsidence, e.g., around

developing sinkholes. The small physical size of the receiver

antenna lends itself to relatively unobtrusive installation and

thus a reduced risk of vandalism and damage in insecure

environments.

While at present we would not advocate the replacement of

more conventional water-level systems with these low-cost

solutions, the example shown here already demonstrates the

value of such an approach for identifying potential issues with

the data from conventional systems if used in tandem.

2. Instrumentation and deployment
As part of a collaboration with the Royal National

Lifeboat Institution (RNLI) to demonstrate low-cost, real-

time sea level measurements for intertidal public safety we

installed our trial system at the Sligo RNLI station in

Ireland (Fig. 1). Public access to the nearby Coney Island

(Inishmulclohy, which is west and southwest of the island

shown in Fig. 1) is via a causeway (Cummeen Strand) at low

tide and therefore a major source of safety incidents for the

RNLI station. A real-time sea level measurement system

would help to alleviate incidents by providing better in-

formation than the current ‘‘Text the Tide’’ system that

delivers safe crossing times via text message and relies on

tidal predictions from a nearby gauge (not the one recently

installed at the site). This system only operates during

summer months as meteorological influences during winter

cause unacceptable deviations from the harmonically pre-

dicted tides, making the prediction of safe crossing times

for the causeway problematic. Better information on water

FIG. 1. Satellite view of the Sligo test site (solid yellow circle) with Fresnel zones for a reflector height of 16m and

elevation angles of 58 (largest white ellipses), 108, 158, and 208 (smallest ellipses) within the azimuth range 1108–2518.
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levels would also provide the RNLI crew with more insight

into the likely water depths to expect over the sand flats and

sand banks when conducting rescues.

The GPS receiver for the system was initially installed at the

apex of the top-left window (Fig. 2, left) for ease of access to

the logging computer. However, preliminary analysis of the

data recorded from this position showed that although the

receiver was working, it had a limited view of the water which

was far from optimal. The receiver was subsequently moved

to a more elevated position on the adjacent radio mast (Fig. 2,

right). The view of the water from the new position is shown in

Fig. 3. All data presented in this paper are from the position of

the radio mast; the earlier data from the window have not been

included in this study.

The original GPS receiver was a low-cost [$30 (U.S. dollars)]

USB puck unit comprising a Globalsat BU353S4 that uses the

SiRFstar IV receiver with a patch antenna, coupled with two

daisy-chained 15-m USB extender cables needed to link the

receiver at the new location on the mast back to the logging

computer inside the building. These were secured as a tem-

porary measure using PVC tape. We recorded data from

18 June through 1 August 2018 with a gap of 10 days when the

logging PC crashed. This system proved insufficiently robust

for long-term installation in the local environment and com-

munications with the GPS unit failed later that summer.

However, the proof of concept provided data of sufficient

quality to justify a second deployment.

In spring 2019 we replaced the GPS receiver with a Maestro

A2200A SiRFstar IV module allowing us to use a continuous

weatherproof power cable and link the serial receiver output to

an XBee wireless telemetry system for short range transmis-

sion from themast back to the building. The wireless telemetry

enabled the power supply wiring to be decoupled from the

logging and display computer, thus allowing that computer to

be moved around the building at will. The small weatherproof

plastic box containing this system, and with the GPS receiver

and antenna mounted inside the plastic box, was more securely

fixed to the tower’s metal lattice but at a slightly different

height due to the availability of suitable fixing points. This

unavoidably led to an offset in the mean level of our reflector

height estimates between the two years. Project resources were

unfortunately not sufficient to cover a levelling exercise to

independently establish the change in heights of the antennas.

A further 83 days of data from 22 May to 13 August 2019 were

logged using this new system, and the system continues to

operate at the time of writing.

In both cases we recorded the CN0 signal (SNR) at 1-s in-

tervals for all available satellites. The receivers only record

data from the U.S. GPS navigation system and only on the L1

frequency (1575.42MHz). Recent geodetic-quality GNSS re-

ceivers can typically record data from all current GNSS sys-

tems (e.g., GPS, Glonass, Galileo and BeiDou) and multiple

frequencies, significantly increasing the amount of sea level

retrievals available per day. In this study, the receiver’s an-

tenna was mounted sideways and pointing toward the water

surface. In previous work, Santamaría-Gómez and Watson

(2017) mounted a geodetic-quality antenna sideways to in-

crease the range of elevations where a strong SNR interfero-

metric signal is obtained. Our reasoning for mounting the

FIG. 2. Northward view of the RNLI Station at Sligo, Ireland. The

labels indicate the original and final locations of the GPS antennas.

FIG. 3. Panoramic view from the GPS antenna of the water surface. Note the island, hills in the distance that will

limit observations at very low (,58) elevations, and the possible clutter due to the two piers at higher azimuths. The

OTT tide gauge is installed at the end of the far pier.
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antenna horizontally was different; low-cost receivers typically

measure, simultaneously, fewer satellites than a geodetic-

quality receiver can, and we hoped that pointing the antenna

in the direction of the water surface we could maximize the

recording of those in that direction. However, subsequent

analysis of the satellites recorded failed to show any prefer-

ential recording from that direction. The same strengthening

of the signal may also result from mounting the low-cost an-

tenna sideways.

For comparison there is a continuously operating tide gauge

at Sligo (Rosses Point) maintained by Marine Ireland which

consists of anOTTHydrometry compact bubble sensor (CBS).

The tide gauge is mounted on a pier around 60m southwest of

the GPS sensor. Six-min data with occasional gaps are avail-

able from October 2017. Data are also publicly available from

January 2010 to August 2013 as hourly averages.

3. Data analysis and results
There are a variety of methods and experimental arrange-

ments to measure water levels using GPS. Here we focus on

ground based GPS-IR which uses the measured SNR as a

function of satellite elevation as the primary observable (Bilich

et al. 2007; Larson et al. 2013; Löfgren and Haas 2014; Löfgren
et al. 2014). Elevations and azimuths of the GPS satellites are

calculated using the broadcast ephemerides. The interference

between the direct and reflected signal from a flat surface

produces a periodic signal that is related to the elevation angle,

the wavelength of the signal l (for the GPS L1 frequency the

wavelength is 19.04 cm), and reflector height (H, the height of

the reflecting surface below the antenna). In its simplest form

this can be modeled as

SNR(e)5A
d
(e)1A(e) cos

�
4pH

l
sin(e)1f

�
, (1)

whereAd(e) is the direct signal contribution which is a function

of satellite antenna power and the receiving antenna gain

pattern; A(e) is the multipath amplitude, which can be eleva-

tion and time dependent (see Nievinski and Larson 2014), but

for our purpose we can assume to be constant; e is the satellite

elevation angle with respect to the horizon; and f is a phase

constant. Spectral analysis of this signal should yield a peak at a

frequency that is related toH. Although the measurements are

evenly recorded in time (in this case 1Hz) the elevation angles

e are not so we use a Lomb–Scargle periodogram (LSP; or

simply periodogram hereinafter) (Lomb 1976; Scargle 1982)

with an oversampling factor to yield a nominal precision of

1mm. Prior to using the periodogram the direct signal is re-

moved using a low-order polynomial (or equivalent) and

converted to a linear scale (V) from units of dB Hz.

Each satellite pass is split into separate ascending and

descending arcs and we mask out arcs that do not sense the

water based on a range of azimuth and elevation angles. The

remaining arcs allow us to calculate the water level at various

times of the day. Note that the repeat times of the GPS satellite

positions are approximately 4min shorter than 1 day, so this,

coupled with the orbital geometries, leads to uneven sampling

times. The average length of an arc in this experiment is around

45min. Over this time the reflecting surface is likely to be

nonstationary and this will shift the spectral peak by

_H
tane

_e
, (2)

where _e and _H are the time derivatives of e and H. If we are

trying to estimateH, then we also do not know _H. We take the

approach described in Larson et al. (2017) where we initially

ignore _H and then directly solve for this effect during a tidal

analysis assuming that the biggest contributor to the changing

reflector height is the diurnal and semidiurnal tides.

Figure 1 illustrates the reflection mask we employed in this

study. The ellipses shown represent the GPS-IR footprints

(also called Fresnel zones) for a range of elevations and azi-

muths for a nominal height of 16m above sea level. The azi-

muth range shown is from 1108 to 2518 and the elevations are 58,
108, 158, and 208. The outermost semicircle of ellipses represent

the 58 elevation angles and the innermost 208 elevations. Note

there is some overlap with the coast in these ellipses at the

edges of the azimuth range for higher elevations. So to reduce

the contamination of the SNR signal from the land and the

piers to the southwest of the antenna, we used an inner mask

between 1178 and 1208 with an elevation range of 108–208 and
an outer mask with an elevation range of 58–128 to either side.

Any noisy SNR signals due to multipath from non-water-

surface reflections on the edges are likely to be picked up in the

postprocessing quality control.

The propagation delay due to the neutral atmosphere will

also manifest itself in GNSS-IR measurements as a height bias

(Santamaría-Gómez andWatson 2017; Williams and Nievinski

2017). We directly apply a correction during the periodogram

calculation using the VMF1 mapping function (Böhm et al.

2006) together with the Global Temperature and Pressure

(GPT2w) model (Böhm et al. 2014) as described in Williams

and Nievinski (2017) to account for this error.

An example SNR plot of a satellite arc from our site and its

periodogram is shown in Fig. 4 (bottom). Also shown are

equivalent SNR and periodogram plots for the same satellite

arc (PRN 13) on the same day at two sites, BRST in Brest

(Fig. 4, top), France and ACOR, in A Coruña, Spain (Fig. 4,

middle). Both sites have geodetic-quality antennas and re-

ceivers installed, are at a similar height above mean sea level,

have a sizeable tidal range and are not too dissimilar in their

local environment to Sligo. At the time of measurement, a

Trimble Alloy receiver with a Trimble Zephyr 2 base antenna

(TRM57971.00 NONE) was installed at BRST and at ACOR a

Leica GR10 receiver was coupled with a Leica choke ring

antenna (LEIAT50 LEIS). We see that the periodic signal

(indicative of a reflection off a flat, coherent surface) is clearer

at Sligo than both BRST and ACOR and extends over a larger

elevation range. These effects were also noted by Santamaría-
Gómez and Watson (2017) where they mounted a geodetic-

quality receiver sideways at Spring Bay, Tasmania, Australia.

The periodogram (Fig. 4, right) shows that the peak power at

Sligo is over 3 times larger than at BRST or ACOR so, along

with the extended elevation range, could be expected to

produce a more precise estimate of reflector height. Typically,
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we expect zenith-mounted geodetic-quality receivers to be less

sensitive to reflected signals because the antenna gain pattern

and the ground plane are designed to reduce multipath at low

elevation angles. There are probably two main reasons why

we see an extended elevation range and larger peak power,

the orientation of the antenna sideways and pointing toward

the sea or the lack of multipath immunity with such a cheap

antenna or both. We did not test the antenna in a vertical

orientation, as this was a practical field test, to ascertain which

was the major contribution.

In total there were 2930 height estimates from individual

ascending/descending satellite arcs, of which 27 were removed

because the estimated reflector height was below a minimum

set at 14m. We then performed an iterative quality control

whereby we fitted tidal parameters using least squares har-

monic estimation (e.g., Foreman and Henry 1989; Foreman

and Neufeld 1991; Foreman et al. 2009), and adapted to ac-

count for the _H effect [see Larson et al. (2017) for details], and

then fit a piecewise cubic B-spline with 6n knots, where n is the

number of days with measurements. The knots were not evenly

spaced in time, instead they were evenly spaced in measure-

ments. We found that our choice of 6n knots was a good

compromise, after testing, between over and underfitting with

the B-spline for outlier removal. The B-spline was only used as

an internal approach to outlier removal, that is, without the use

of external information such as the bubbler tide gauge. We

removed the B-spline from the tidal residuals and estimated a t

location–scale distribution. Outliers were then removed that

were more than 3 times the scale parameter. A t location–scale

distribution, which is a generalization of Student’s t distribu-

tion to include location and scale parameters, was chosen as it

is useful for modeling a data distribution with heavy tails

(outliers) while approaching the normal distribution as the

shape parameter increases. This whole procedure was repeated

three times. A further 106 outliers were removed at this point

giving a retrieval rate of 95.5%.We end up with a median of 32

and 21 measurements per day for the 2018 and 2019 subsets,

respectively. We do not know why the 2019 data with the

Maestro receiver gave us less data. However, these are still

comparable to the mean observations per day found by

Löfgren et al. (2014) of between 14 and 210 at five GPS sites

around theworld. The finalH time series is shown in Fig. 5. The
_H effect has not been accounted for in this plot but the tro-

pospheric delay has since it is directly applied in the processing.

We see a very obvious tidal effect with a range of around 3–4m.

The residuals after fitting the tidal parameters and accounting

for the _H effect are shown in Fig. 6. We can clearly see residual

long-period variations on the order of 20–40 cm are visible.

After removing the piecewise cubic B-spline we get an internal

estimate for the sample standard deviation of 4.6 cm. A better

comparison is with a collocated tide gauge which we show in

the next section.

4. Comparison with collocated tide gauge
The equivalent residuals from the collocated bubbler gauge

are also shown in Fig. 6 (orange). We see very similar fluctu-

ations in both sets of residuals but also some long-period dif-

ferences between the two. Although the absolute level of the

residual heights is arbitrary, both series have had the tidal

predictions and a mean value removed, we see that in 2018 the

bubbler gauge residuals start off lower than the GPS-derived

residuals but are closer at the end of July and in 2019 the

bubbler gauge residuals are higher than the GPS-derived re-

siduals at the end of the series. There can be several explanations

for this. First, there was a change in the GPS antenna/receiver

between the 2 years and after swapping, the system was in-

stalled slightly higher on the radio mast, so we can expect an

offset between the 2 years. In fact we calculate this offset to be

20.46 0.2 cmwhich if corrected (in Fig. 8) would bring the 2018

and 2019 GPS residuals down and up, respectively, by

FIG. 4. (left) Example of SNR vs elevation angle for PRN 13 on DOY 169 during 2019 at three sites: BRST

(top) Brest, France (BRST); (middle) A Coruña, Spain (ACOR); and (bottom) Sligo, Ireland (SLIG). (right)

Periodograms for these records. Note the difference in scale on the y axes of the right panels.
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approximately 10 cm, enhancing the fit. Second, we only have

117 days (and 2733 observations) of GPS derived heights

spread over just over one year in order to estimate the tidal

parameters compared to 622 days (;150 000 observations) of

bubbler gauge measurements over 2 years. The tidal parame-

ters from the GPS derived observations are likely not well

constrained particularly for some of the longer period har-

monics, which would lead to the differences seen.

Another useful way to compare tide gauge data is to use a

Van deCasteele diagram (MartínMíguez et al. 2008, 2012) as it
can highlight issues such as time keeping errors and scale

problems among others (Pérez et al. 2014). The Van de

Casteele plots the difference between the GPS and bubbler

gauge–derived heights on the x axis and the sea level heights

along the y axis. In this case the _H effect and the offset has been

removed in the GPS derived heights prior to differencing with

the bubbler gauge measurements. The bubbler gauge mea-

surements have been interpolated onto the times of the GPS

measurements. The results are shown in Fig. 7 (left). A wide

limit of21 to 1mwas chosen in the x axis so as not to make the

results look better but to compare with similar Van de Casteele

diagrams in Löfgren et al. (2014) (cf. their Fig. 9). Since the

GPS derived heights refer to the antenna phase center and the

bubbler gaugemeasurements to a chart datum an offset in the x

direction is entirely arbitrary and therefore of no importance

here. The slope indicates a scaling issue, i.e., that either the

range of the GPS derived heights is too small or that the range

of the bubbler gauge heights is too large. We estimate this

scaling factor to be 0.9721 6 0.001, that is, Hgps 5 0.9721Htg,

where Hgps and Htg are the GPS and tide gauge heights. The

middle plot of Fig. 7 shows the results after correcting the

scaling issue. We have a root-mean-square error (RMSE) of

5.7 cm. Williams and Nievinski (2017) showed that the tropo-

spheric delay could produce a similar scaling error of a similar

size but we have already accounted for that in our processing.

So either there is another scaling issue in the GPS heights, our

tropospheric correction is wrong or there is an issue in the tide

gauge data. There is some evidence to suggest that it is the tide

gauge data that have a scaling issue. As mentioned above we

also have an earlier dataset from the same location. We cannot

compare the two datasets directly as they do not overlap in

time but we can compare the tidal predictions (Fig. 7, right).

We see a similar scaling issue. Again this could be a problem in

either of the sets but if we look at the estimated amplitudes of

FIG. 5. Time series of estimated reflector heights for (top) 2018 and (bottom) 2019. The _H

effect has not been removed at this point.

FIG. 6. Time series of residual heights for (top) 2018 and (bottom) 2019 after tides have

been removed. Also shown are the residuals from the collocated tide gauge (orange). Tides

for both series have been estimated separately. The _H effect has been removed at this point.
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the main tidal constituent here, M2, the amplitudes are 123.7,

120.4, and 119.5 cm for the modern tide gauge, historical tide

gauge and GPS heights, respectively (with respective phases of

160.08, 159.98, and 160.18). The historical tide gauge amplitude

is much closer to the GPS result than the modern gauge. If we

scale the modern M2 amplitude by 0.9721 we get 120.2 cm. It is

possible that the tidal amplitudes can change with time

(Woodworth 2010; Müller et al. 2011; Haigh et al. 2020) but if

we split up the (albeit limited) tide gauge data into smaller

sections (yearly for historical, two sections for the modern)

the variation in the amplitudes are on the order of a

few mm compared to the 3.3-cm difference in amplitude be-

tween the two sections. Furthermore, the scale factor of 0.9721

is close to what you would get if the tide gauge was mistakenly

set up to calculate height from pressure using a freshwater

(;1000 kgm23) instead of seawater density (around 1023–

1028 kgm23) (see online supplemental material for further

verification). The GPS-IR and bubbler gauge residuals are

plotted again in Fig. 8. This time we use the tidal predictions

from the historical bubbler gauge measurements, scale the

modern bubbler gauge measurements and remove the offset

between the 2018 and 2019 subsets.We see amuch improved fit

over Fig. 6. We find the daily averages between the two data-

sets to be in agreement at the 1.7-cm RMSE level, slightly

lower or equivalent to the 10-yr comparison by Larson

et al. (2017).

5. Discussion and conclusions
The results shown above, together with the comparison with

the collocated tide gauge, show that the low-cost antenna is

capable of measuring water levels leaving the question of how

the results from a low-cost receiver compares to results from

geodetic-quality receivers. It is potentially difficult to quantify

this as there are many factors that go into the accuracy of the

measurements at a particular site, for instance, the local envi-

ronment, the equipment used (antenna, receiver, and firm-

ware), the settings applied (frequency of measurements and

the resolution of the SNR values recorded), and the method

used to estimate the water level. The local environment is most

likely the major contributor to accuracy and includes such

things as height of the instrument above the water, local mul-

tipath signals other than the water (harbor vs urban vs non-

urban settings), sea state (a harbor could act as a stilling well

compared to open ocean), and sky/water view (distant topog-

raphy blocking low elevation angles and location of antenna

away from water’s edge limiting high elevation angles). Tidal

range may also be a contributing factor, as suggested by

Löfgren et al. (2014), primarily as a result of the application of

FIG. 7. (left) Van de Casteele diagram of the differences between theGPS andOTTCBS tide gauge as a function of the water level. The

offset is arbitrary as the two datasets are not referenced to a common height. There is an obvious scaling error as a function of water level.

The orange line is a fit to this scaling error. (center) Scaling-corrected Van de Casteele diagram. (right) Van De Casteele diagram of the

differences between the predictions based on the historical (2010–13) and themodern (2017–present) tide gauge records. A similar scaling

problem can be seen. The _H effect has been removed at this point.
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the _H effect (which is accounted for) but possibly second-order

effects such as the interaction of the _H effect with the tropo-

spheric delay. Löfgren et al. (2014) looked at five sites from

around the world and found RMSEs of between 6.2 cm at

Onsala (GTGU), Sweden, which has limited tides and rural

setting to 43.2 cm at Brest (BRST), France which has a tidal

range of over 4m and a very cluttered local environment.

Santamaría-Gómez et al. (2015) studied eight different sites in

Europe and Australia with RMSEs a mean of about 11 cm but

with no real evidence for a dependence on tidal range.

However, the reflector heights were not estimated using the

periodogram but using a Kalman filter approach to separate

sections of a pass that have a strong reflection signal.

Santamaría-Gómez and Watson (2017) compared results

from a geodetic-quality receiver and antenna in a normal up-

right position to a collocated geodetic-quality antenna pointed

sideways toward the water at Spring Bay, Australia (SPBY).

They found an RMS of 3 cm for the sideways antenna com-

pared to 10 cm for the traditional setup. They attributed this

mainly to improved spectral resolution due to an increased

range of elevations where SNR oscillations from the water are

dominant, something we also see in this study (Fig. 4). In Fig. 9

we compile RMSEs from published work (Chen et al. 2019; Jin

et al. 2017; Larson et al. 2013, 2017; Lee et al. 2019; Löfgren and
Haas 2014; Löfgren et al. 2014; Peng et al. 2019; Puente and

Valdés 2019; Reinking 2016; Santamaría-Gómez and Watson

2017; Santamaría-Gómez et al. 2015; Song et al. 2019; Zhang

et al. 2019; Strandberg et al. 2019; Sun 2017; Vu et al. 2019;

Wang et al. 2018a; Wang et al. 2018; Wang et al. 2018b,c, 2019)

as a function of tidal range and segregated by the method used

to estimate water levels. Boxplots are used at some sites

where a publication supplied a range of RMSEs either due to

FIG. 8. Time series of residual heights for (a) 2018 and (c) 2019 after predicted tides have

been removed. Also shown are the residuals from the collocated tide gauge (orange). The

predicted tides for both GPS-IR and bubbler time series are based on the full bubbler tide

gauge series (modern and historical) with the scaling error in the modern data accounted for.

The GPS-IR results have had the offset between the 2018 and 2019 data removed prior to

plotting. (b),(d) The difference between the GPS-IR and bubbler tide gauge residual heights

shown in (a) and (c) for (b) 2018 and (d) 2019. The _H effect has been removed at this point.
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analyzing each frequency and satellite system separately (e.g.,

Wang et al. 2019) or to variations in the method such as dif-

ferent elevation ranges (Wang et al. 2018a), presmoothing of

the SNR signal (Zhang et al. 2019; Wang et al. 2018a), for

example. For those studies that simply used the periodogram

on individual satellite passes (red circles and boxplots) we see

an obvious increase in RMSE as a function of tidal range which

is significant at the 3s level. Our results with an RMSE of

5.7 cm at Sligo and tidal range of 2.6m, which also use this

methodology, is significantly below the predicted curve. The

results from Santamaría-Gómez and Watson (2017) and

Santamaría-Gómez et al. (2015) which uses a Kalman filter

approach to estimate individual reflector heights (green

squares) appears to have less of a dependence on tidal range

(as mentioned above) but perhaps a slightly larger intercept

96 1 cm (compared to the periodogram at approximately 7 6
2 cm). Finally, those publications that estimate water levels by

combining multiple satellite passes, generally within a certain

window, (blue triangles) also appear to have a tidal range de-

pendence similar to the periodogram approach but there are

less data to be confident of this. Also note the very low RMSE

blue boxplots for GTGU and SPBY from Strandberg et al.

(2016), which used a Kalman filter/B-spline approach to get

evenly sampled GNSS-IR derived water levels. Although the

technique looks promising and can be applied to the low-cost

antenna dataset it has only been done at sites with very low

tidal ranges. At Spring Bay Santamaría-Gómez and Watson

(2017) achieved an RMSE of around 3 cm with a sideways-

mounted antenna compared to our 5.7 cm. However, the tidal

range at Spring Bay is much smaller than at Sligo so that could

be the main factor in the higher precision. Therefore, we can-

not say at this point whether the precision is also from

mounting the low-cost antenna sideways and oriented toward

the water or the lack of immunity to multipath in the low-cost

antenna is the main cause.

Our result, with a low-cost receiver, is therefore equal to if

not better than a traditional geodetic-quality setup with a

zenith-oriented antenna. Given this demonstration it is easy to

speculate that the same setup can be used for other reflec-

tometry applications traditionally served by geodetic-quality

receivers such as soil-moisture and snow-depth estimation

(Larson 2019). Indeed, given the relatively low cost of the

system one can imagine a whole suite of possible experiments

that would otherwise be prohibitively expensive. The situation is

also only going to improve further. There are already low-cost

chips that are multifrequency and multisystem which will in-

crease dramatically the amount of data available. Of course, the

GPS receiver is not the only equipment required to run the sys-

tem. Power, networking, logging, cabling, and containers are also

required. Our first setup cost on the order of $150 (U.S. dollars),

and the second, with the addition of wireless networking and the

cost of a GPS development kit, took the total to around $500

(U.S. dollars). Neither set ups required renewable power or a

datalogger. However, compared to the cost of a conventional

geodetic receiver or a tide gauge installation this is still low cost.

There are of course also downsides to the low-cost system.

One advantage of a geodetic-quality GNSS-IR tide gauge is

that alongside measuring the water level it is also measuring its

position very accurately. This allows you to estimate any ver-

tical land movement at the gauge and tie the measurements

into a global reference frame such as ITRF2014 (Altamimi

et al. 2016). This means the water-level measurements are es-

sentially absolute rather than relative and more directly com-

parable with satellite altimetry data. Positioning accuracy

with a low-cost system is generally a few orders of magnitude

worse than a geodetic-quality system at around 2–3m mainly

due to the poor multipath suppression, a gain pattern that is

highly irregular (Pesyna et al. 2015) and no access to phase

observations. However, there is much interest in developing

high precision positioning from smartphones and low-cost

hardware, particularly following the release of the Android

Nougat (version 7) operating system for mobile devices which

allowed raw GNSS data logging (Malkos 2016). With this,

precise positioning at subcentimeter accuracy is achievable

(Realini et al. 2017; Geng and Li 2019) particularly if the po-

sitioning is realized through double differencing to a nearby

ContinuouslyOperatingReference Station (CORS). Recently,

Knight et al. (2020) presented some results from a low-cost

GNSS buoy platform. They used a single-frequency GNSS

receiver and obtained an RMSE of 1.4 cm when compared to a

nearby tide gauge. This was accomplished using double dif-

ferencing to a CORS 200m away and adding a ground plane to

FIG. 9. RMSE as a function of tidal range for GNSS-IR results

given in publications. Red dots and boxplots indicate solutions that

used the Lomb–Scargle periodogram as the main means of esti-

mating reflector heights. Blue inverted triangles are results that

used inverse modeling, least squares, or something else to estimate

reflector heights. Green squares indicate that a Kalman filter or

similar was used to produce reflector heights from multiple near-

simultaneous satellite passes and signals. Orange triangles are

where wavelets were used to estimate reflector heights. Boxplots

are where multiple estimates of RMSE were published either for

individual satellites systems and/or signals or when different

strategies were applied. Purple diamond is the result for this ex-

periment. Names at the top are the four-character IDs for the

GNSS sites. Names Suao and Kaoh have been given to the two

GNSS sites, Suao and Kaohsiung, in Taiwan used in Lee

et al. (2019).
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the antenna to suppress multipath. It is therefore possible to

see low-cost positioning methods improve in accuracy suffi-

ciently to tie into a reference frame in the very near future.

At the present time this technology is not sufficiently de-

veloped to replace traditional high-accuracy tide gauge sys-

tems that are capable of resolving water elevations to 1 cm or

better but we have shown here that they can act as a very useful

independent cross check for data quality and may be suitable

for some stand-alone applications where slightly lower accu-

racy and an inherent temporal averaging of results can be

tolerated.
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