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Significance and Impact of the Study
In this study, Recombinase Polymerase Amplification (RPA) is presented as a fast, and highly 

selective method for the detection Escherichia coli DNA from diverse environmental strains. A novel RPA 

assay was compared with an existing, high performance qPCR, and demonstrated an equivalent inclusivity 

and specificity for the target species, with a significantly reduced analysis time. The RPA could be used to 

amplify and detect E. coli DNA in fewer than 3 minutes. The speed, selectivity and isothermal, low 

temperature requirements of the RPA technique make it well-suited for on-site water quality testing. 
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Abstract
The bacterium Escherichia coli is commonly associated with the presence of faecal contamination in 

environmental samples, and is therefore subject to statutory surveillance. This is normally done using a 

culture-based methodology, which can be slow and laborious. Nucleic acid amplification for the detection of 

E. coli DNA sequences is a significantly more rapid approach, suited for applications in the field such as a 

point of sample analysis, and to provide an early warning of contamination. An existing, high integrity qPCR 

method to detect the E. coli ybbW gene, which requires almost an hour to detect low quantities of the 

target, was compared with a novel, isothermal RPA method, targeting the same sequence but achieving 

the result within a few minutes. The RPA technique demonstrated equivalent inclusivity and selectivity, and 

was able to detect DNA extracted from 100% of 99 E. coli strains, and exclude 100% of 30 non-target 

bacterial species. The limit of detection of the RPA assay was at least 100 target sequence copies. The 

high speed, and simple, isothermal amplification chemistry may indicate that RPA is a more suitable 

methodology for on-site E. coli monitoring than an existing qPCR technique.

Keywords: Escherichia coli, qPCR, RPA, Water Testing, Isothermal
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Introduction

Water-borne pathogens remain a common and frequent cause of severe human and animal 

disease, worldwide ((WHO) 2019). The situation may be exacerbated by the increasing demands on global 

water resources, which must be met with new and efficient methods for the analysis of water microbiology 

to control public health risks. Escherichia coli (E. coli) is normally a commensal organism in the mammalian 

intestine, but it enters water resources in faeces, where it is considered as probable evidence of faecal 

contamination and the possible occurrence of enteric pathogens (Edberg et al. 2000; Odonkor & Ampofo 

2013). It is, therefore, subject to statutory surveillance, for which the detection and enumeration of viable E. 

coli cells is normally done by recovering the organism from water samples and culturing them on selective 

and differential growth medium (SCA 2016). This requires a suitably equipped testing laboratory, meaning 

that samples are often transported off-site, and long incubation periods of more than 18 hours are 

necessary before the results can be interpreted. Therefore, culture-based monitoring can be logistically and 

economically costly, and the delay means an increase in public health risk, especially during short-lived, 

stochastic contamination events.

Molecular biological methods, which use nucleic acid amplification to detect and count specific E. 

coli DNA or RNA sequences, could be used to address these limitations.  They are culture-independent 

and generate relatively fast results; a typical DNA or RNA extraction and target sequence amplification and 

detection can be completed within a few hours (Mendes Silva & Domingues 2015). They are also relatively 

simple to automate (versus cell culture), and there are already portable DNA ‘testers’ enabling the analysis 

of samples on-site (Marx 2015). Other advantages include a greater inclusivity of diverse environmental 

strains, a very high selectivity for the target species, and the ability to re-test samples retrospectively for 

many years, once the genetic material has been isolated and suitably stored. Accordingly, nucleic acid 

amplification could complement existing culture-based laboratory analysis as a highly specific, advanced 

early warning system, suited to field use, and as a tool for the study of faecal indicator distribution and fate 

within water systems. 

The ‘gold standard’ in nucleic acid amplification is the polymerase chain reaction (PCR) in which a 

DNA target sequence is almost exponentially copied by precisely controlling the reaction temperature. In 

‘cycles’, a high temperature (>90oC) is applied to destabilise the DNA duplex and then a lower temperature 

is applied to promote the annealing and extension of oligonucleotide primers on a single-stranded target 

sequence by a heat-stable DNA polymerase. Sensitive and specific PCR-based detection of E. coli has 

been demonstrated by amplifying, for example, fragments of the genes uidA (Frahm & Obst 2003; Silkie et 

al. 2008), tuf (Maheux et al. 2011), ybbW (Walker et al. 2017; McQuillan & Wilson 2019) and clpB 

(McQuillan & Wilson 2019), and this has been demonstrated to have a better inclusivity and selectivity than 

culture (Walker et al. 2017). However, there are limitations. PCR requires precisely controlled, high 

temperatures which typically demand a stable and powerful energy source; an obstacle to the use of 

portable or deployable, battery operated field instruments. High temperatures cause other problems 

including the formation of bubbles and high pressure within reaction vessels, both of which are common A
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issues affecting ‘microfluidic’ PCR devices. Additionally, the time taken to convert or ‘ramp’ between 

temperatures using conventional PCR machines means that a typical, full analysis can, presently, take 

more than an hour using modern instrumentation. 

Isothermal nucleic acid amplification chemistries have become a popular alternative to PCR, in part 

because they do not require thermal cycling, and typically occur at lower temperatures (typically between 

30oC and 65oC) (Zanoli & Spoto 2012). For example, an isothermal Nucleic Acid Sequence Based 

Amplification (NASBA) method for the direct amplification of E. coli mRNA requires a single ‘primer 

annealing’ step at 65oC followed by continuous amplification of the target sequence at 41oC (Min & 

Baeumner 2002; Heijnen & Medema 2009). Another employs the Loop Mediated Amplification or LAMP 

technique for the amplification of E. coli DNA at a continuous 66oC (Hill et al. 2008). Other E. coli detection 

assays based on Multiple Displacement Amplification (MDA) (Marcy et al. 2007) and Helicase Dependent 

Amplification (HDA) (Mahalanabis et al. 2010) have similarly uncomplicated thermal requirements (versus 

PCR). However, although these methods obviate the need to continuously change the reaction 

temperature, they can still take in excess of an hour to generate a positive result, particularly when 

amplifying from low quantities of genetic material. 

An emerging, isothermal amplification method is Recombinase Polymerase Amplification or RPA. 

RPA was introduced in 2006, and has seen a significant increase in research applications (based upon the 

quantity of publications featuring the RPA technique), which may be due to its reported high speed and 

sensitivity. A recent, comprehensive review of the RPA technique highlights how RPA has been used to 

amplify DNA and RNA (by prior reverse transcription) from an array of bacterial, viral and metazoan target 

sequences, with examples of single cell sensitivity, and a positive result within a few minutes (Li et al. 

2019). E. coil-specific RPA has so far been limited to the detection of O157:H7 (Choi et al. 2016; Hu et al. 

2020) using target DNA sequences that are not representative of general E. coli populations and, to the 

best of our knowledge, no such RPA method has been described that could be applied to faecal indicator 

E. coli testing. 

This study was carried out to evaluate the RPA method for the selective, inclusive and rapid 

detection of general E. coli populations, towards a faster (versus existing PCR and isothermal assays) test 

for faecal indicator bacteria in environmental samples. An E. coli-specific RPA assay was developed to 

amplify a fragment of the ybbW gene, which was selected based on earlier work, and which identified this 

locus as highly conserved and specific to the target species (Walker et al. 2017). The assay included a 

target-specific, fluorometric ‘exo’ probe, for real-time detection of the amplified target. The selectivity, 

linearity and speed of the RPA method was evaluated using E. coli DNA extracted from a suite of 

laboratory and environmental strains.
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Results and Discussion

In this study, a novel method for the detection and quantification of E. coli DNA was developed 

using Recombinase Polymerase Amplification (RPA) and commercially available RPA reagents, available 

from TwistDx Ltd. The objective was to demonstrate RPA as a ‘faster’ alternative to an existing qPCR-

based method, with equivalent performance in inclusivity of diverse E. coli environmental strains and 

selectivity for the target species. RPA primers and probe sequences were designed to anneal with a 

fragment of the E. coli ybbW gene coding sequence, a genetic locus which has already been determined to 

be both highly conserved within natural E. coli populations, and highly specific to this species (Walker et al. 

2017; McQuillan & Wilson 2019). Multiple sequence alignment of ybbW gene sequences from diverse E. 

coli strains was employed to scrutinise the target sequence for potential oligonucleotide (primers and 

probe) annealing sites, as described in the materials and methods. Candidate primer sequences were 

screened for RPA activity using a specialised, target-specific fluorometric ‘exo’ probe together with a 

TwistAmp® Liquid exo Kit; a set of reagent solutions provided for the amplification and real-time 

measurement of target sequences using the proprietary TwistAmp® exo probe technology. Primers, which 

could be used to generate a detectable fluorescence within the shortest time, and the strongest 

fluorescence signal at the reaction end-point, were selected for further study. The primer and exo probe 

sequences used are given in Table 1.

TwistAmp Kit DNA Inactivation

TwistAmp® RPA kits contain small amounts of E. coli DNA due to manufacturing methods. The 

presence and quantity of E. coli DNA in individual reagent solutions provided in the TwistAmp® Liquid exo 

kit was estimated using qPCR to amplify the ybbW target sequence, where present, from a sample of each 

provided solution. Positive amplification was observed for the ‘Core Reaction Mix’ (CRM) solution only; all 

other kit solutions contained undetectable levels of the target sequence. Amplification of the ybbW target 

sequence from the CRM in tandem with a series of ybbW sequence copy number standards was used to 

estimate that there were approximately 104 copies of the target sequence per microlitre of the CRM which, 

according to the reaction preparation method, would contribute approximately 12,500 copies to each 

reaction. The results were consistent between 3 different tests. To inactivate the DNA within the CRM, the 

reagent was exposed to 254 nm Ultraviolet (UV) radiation just prior to incorporation with the reaction 

mixtures; this was sufficient to eliminate detectable amplification from negative controls, without inactivating 

the CRM. However, UV radiation led to a modest reduction in the amplification efficiency (time until earliest 

detection) of the RPA reaction mixtures (See Supporting Information, Figure S1).

Inclusivity and Selectivity 

The novel RPA assay was evaluated for both inclusivity and selectivity against a panel of genomic 

DNA samples, extracted from diverse E. coli strains and a range of non-E. coli bacterial species. For 

comparison, an existing ybbW-specific qPCR method, first described by Walker et al (Walker et al. 2017) 

and later refined (McQuillan & Wilson 2019), was tested in parallel. The results are shown in Table 2. The A
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RPA method was able to detect 100% of 76 E. coli strains, including 72 strains belonging to the E. coli 

Collection of Reference (ECOR) strains, representing E. coli recovered from a range of different hosts and 

geographic locations (Patel et al. 2018). A total of 3 laboratory strains belonging to the K-12 lineage and a 

Type strain (NCTC 9001) were also detected by the RPA method, as well as 23 strains which had been 

isolated on selective and differential medium from contaminated dock water. In contrast, 100% of 30 non-E. 

coli species could not be detected (no detectable sequence amplification) by the RPA method, and these 

included closely related species including 5 additional members of the Escherichia genus and 3 members 

of the Shigella genus. The same selectivity results were obtained using the qPCR method, for which our 

results were in agreement with those reported in earlier work (Walker et al. 2017; McQuillan & Wilson 

2019), further confirming the ybbW target sequence as highly inclusive of genetic diversity in E. coli, and 

highly selective for this species.

Sensitivity, Speed and Linearity

The sensitivity, speed and linearity of the novel RPA assay was evaluated in tandem with the 

existing qPCR. This was done by using each method to amplify the target sequence from E. coli DNA copy 

number standards, prepared to contain between 107 copies and 1 copy of the E. coli genome. The RPA 

assay was found to respond to target sequence concentration over the range of 107 – 100 copies, with a 

simple linear regression finding a goodness of fit (R-squared) to be 0.96. This is shown in Figure 1A
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The linearity of the response was weaker than that observed for the qPCR method (R-squared = 

0.99), shown in Figure 1B. The RPA method could be used to detect at least 100 copies of the E. coli 

genome, whereas the qPCR method could detect as few as 10 copies. However, UV irradiation of the 

TwistAmp® CRM reagent was necessary to inactivate unwanted E. coli DNA residue prior to RPA, and this 

procedure was found to reduce the RPA amplification rate. It cannot, therefore, be stated with any certainty 

that the Limit of Detection (LoD) of the assay is 100 copies. If alternative manufacturing processes were 

employed to prepare DNA-free RPA reagents, it is likely that the overall sensitivity and speed of the RPA 

method for E. coli would be improved. RPA detection of non-E. coli DNA sequences has, in many cases, 

been reported to demonstrate sensitivity to a single target sequence copy (Kalsi et al. 2015) or single cell 

(colony forming unit) (Ng et al. 2015; Kim & Lee 2016; Mondal et al. 2016; Ng et al. 2016), and it is 

reasonable to indicate that similar sensitivity could be achieved if the UV pre-treatment step could be 

avoided. Other, non-radiative, methods to eliminate DNA from the CRM reagent were considered in this 

work (data not shown), specifically endonuclease digestion, which may fragment the DNA contamination, 

and render it inactive in the amplification reaction. However, the subsequent elimination of the DNase 

activity using thermal denaturation also inactivated the CRM, even when using heat-labile enzymes which 

could be inactivated at 50oC. 

Although the RPA method, in this case, was less sensitive than the qPCR, it was also significantly 

more rapid. For example, the selectivity testing, as described above, typically gave a positive result for E. 

coli DNA within 2 or 3 minutes, albeit from a generous amount (approximately 1 ng per reaction) of DNA 

template. In comparison, the same DNA samples were amplified by qPCR, and at least 18 cycles 

(approximately 25m 30s) expired before a positive result could be interpreted. Using the DNA copy number 

standards, the RPA could be used to generate a positive result within 2 minutes (107 copies), taking no 

longer than 13 minutes (100 copies). Conversely, the qPCR technique required approximately 21.3 minutes 

(15 cycles) and 56.3 minutes (40 cycles) to generate a positive result from the same stock DNA samples. 

Using a modern thermocycling instrument such as the Roche LightCycler 96 (as used in this study), each 

PCR cycle requires 42 seconds to heat and cool the reaction. RPA is completed at a constant 37oC without 

thermal cycling, such that the amplification occurred continuously throughout the incubation, and this 

contributed to the faster analysis time. Other, isothermal amplification techniques also obviate the thermal 

cycling requirement, however may not occur as rapidly as RPA. For example, E. coli detection using 

isothermal NASBA required approximately 45 minutes to detect 100 copies of the target sequence (Walker 

et al. 2017), and isothermal LAMP can be used to positively detect E. coli in around 60 minutes (Hill et al. 

2008).  Therefore, our results suggest superior amplification reaction kinetics for the RPA technique, 

however a direct comparison was not made during the course of this study.

The overall purpose of this study was to evaluate whether RPA could be used as a faster, 

isothermal alternative to qPCR for the detection and enumeration of faecal indicator E. coli. The RPA 

method had a short analysis time, requiring under 13 minutes to return a positive result from a sample 

containing 100 target sequence copies; the qPCR returned the same result in over 56 minutes. The speed 

of analysis for both methods is also dependent on, where required, the extraction and purification of DNA. A
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Whilst many advances in molecular reagents have improved the efficiency of ‘direct’ analysis from crude 

sample preparations with little or no DNA purification, most applications will still require some form of 

sample processing. Nonetheless, even where a full DNA extraction is necessary, the whole procedure can 

still be completed within a fraction of the time required for culture. One other issue with molecular methods 

is the problem of discriminating live from dead cells using DNA, which can persist after cell inactivation, and 

this will also limit the application of molecular E. coli testing. One way to overcome this challenge is to 

measure mRNA, a more labile nucleic acid that degrades quickly after cell death. The RPA assay 

described in this work could easily be altered to target ybbW mRNA using Reverse Transcription RPA, 

however uncertain gene expression levels may compromise the quantitative nature of the assay or may 

exclude metabolically inactive cells. The use of DNA-binding dyes such a Propidium Monoazide (PMA) to 

inactivate DNA in dead cells prior to measurement could also be used to address this issue, based upon 

the integrity of the bacterial cell wall to discriminate living and dead cells (Nocker & Camper 2009).

The RPA assay demonstrated a sensitivity of 100 target sequence copies, which would normally 

correspond to 100 cells. It is likely that this would be improved without modification to the method, subject 

to the provision of DNA-free RPA reagents, but it was not possible to explore this within the scope of this 

work. Therefore, the current LOD for the method would limit its application to relatively high-level 

contamination events, for example sewerage overflows/leaks, or for the monitoring of wastewater 

discharge where higher levels of E. coli are expected. The routine surveillance of drinking and bathing 

water, for example, where the required sensitivity is a little as a single CFU per 100mL of water, would 

require the use of more sensitive, culture-based methods. RPA detection of the target sequence over a 

wide concentration range generated an approximately linear response, indicating its application as a 

quantitative assay, albeit the correlation was weaker than for the qPCR. The use of novel, RPA primer and 

probe sequences to detect ybbW had no discernible impact on the inclusivity or selectivity of the assay in 

comparison to the existing qPCR. The high speed of the analysis, coupled with the isothermal amplification 

reaction, would make this RPA assay better suited for use in fieldable, point of sample testing and, 

although the molecular methods in general are unlikely to replace culture-based techniques, their unique 

advantages have the potential to complement this approach for numerous E. coli surveillance applications. 
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Materials and Methods

Oligonucleotides

Oligonucleotide sequences used in this study are given in Table 1. All oligonucleotides were 

synthesised by LGC Biosearch Technologies (Denmark), and purified by High Pressure Liquid 

Chromatography (HPLC). Oligonucleotides were delivered as dry, lyophilised residue which was hydrated 

in nuclease free water at a concentration of 10M, and stored at -20oC, in the dark. 

Quantitative Polymerase Chain Reaction

Quantitative PCR (qPCR) was carried out to determine the extent of E. coli contamination in 

commercially available RPA reagents and to compare the selectivity of qPCR and RPA oligonucleotide sets 

(Table 1) against a panel of bacterial DNA samples. All qPCR reactions were prepared using the GoTaq® 

G2 PCR System (Promega, UK). Each reaction contained GoTaq® Colourless PCR Buffer at the 

manufacturers recommended concentration, 1 mmol l-1 of MgCl2, 0.5 mmol l-1 each of dATP, dTTP, dCTP 

and dGTP, 400 nmol l-1  of primers ybbWf and ybbWr, 200 nmol l-1 of hydrolysis probe ybbWHP, 1U of 

GoTaq®  G2 polymerase, and 1μL of template DNA; the final volume was 20μL. The reactions were 

prepared in 0.2mL nuclease-free polycarbonate tubes with optically clear lids (Roche Diagnostics Ltd, UK). 

The reactions were completed using a LightCycler 96 real-time PCR instrument (Roche Molecular Systems 

Incorporated, UK), with an initial denaturation step of 95oC for 2 minutes followed by 40 cycles of 95oC for 

15 seconds and 60oC for 45 seconds. The presence of E. coli contamination in RPA reagents was 

determined by preparing qPCR reactions to contain 1L of each reagent, and no additional DNA template. 

Enzyme-containing reagents were heated to 95oC for 5 minutes to inactivate the enzymes before testing, 

eliminating potential interference with the qPCR reactions. The number of ybbW sequences in each RPA 

reagent solution was estimated by comparing the Ct values of each reaction with those obtained from 

qPCR reactions containing 1 L of a genomic DNA standard (10 to 107 copies of an E. coli genome). 

Standards were prepared from an E. coli type strain (National Collection of Type Cultures Strain 9001), 

exactly according to the method of Walker et al (Walker et al. 2017). All qPCR reactions were carried out in 

quadruplicate. The RPA reagent testing was repeated 3 times, using the reagents provided in 3 different 

TwistAmp® RPA kits (TwistDx Ltd, UK). 
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Assay Design
A novel RPA assay for the detection of the E. coli ybbW gene sequence was designed using 

Geneious Version R11 (Biomatters Ltd, New Zealand). Multiple sequence alignment of E. coli ybbW gene 

coding sequences from different E. coli isolates was completed using sequence information available from 

the National Centre for Biotechnology Information (NCBI) Genbank database. The alignment was used to 

identify suitable primer and probe annealing sites. Primer and probe sequences were selected with the aid 

of Primer 3 (Untergasser et al. 2012), and subject to a selectivity search using the Primer-BLAST algorithm 

(Ye et al.). In total, 5 forward primer, 5 reverse primer, and 2 exo probe sequences were selected for study.

Recombinase Polymerase Amplification

RPA reactions were carried out using commercially available RPA reagent kits, provided in the 

TwistAmp® Liquid exo Kit, available from TwistDX Ltd (UK). The reactions were carried out according to the 

manufacturer’s recommended protocol, and contained 400nM of each primer and 150nM of exo probe, 

400µM of each dNTP; the final volume was 25L. The final volume included 1µL of DNA template, which 

was either 1ng of a bacterial DNA sample (for selectivity testing), or a DNA copy number standard of 

between 107 and 10 copies. The reactions were incubated at 37oC for 20 minutes. Real-time RPA 

reactions, incorporating a fluorescent exo probe (Table 1) were carried out using a LightCycler 96 real time 

PCR instrument, and real-time amplification curves were generated by measuring the fluorescence 

emission of Fluorescein Isothiocyanate (FITC) at 30 second intervals. 

Inactivation of E. coli DNA in RPA Reagents

RPA reaction mixtures were prepared as above, however, before the Core Reaction Mix (CRM) 

reagent was added to the reaction mixtures it was irradiated with UV light in order to degrade and inactivate 

any DNA contamination, which could cause a false-positive amplification. To do this, 10 L of the CRM was 

dispensed into the cap of a 0.2 mL polycarbonate PCR tube, ensuring that it formed a discreet droplet in 

the centre of the cavity, and was not in contact with the walls. This was placed into a UV Crosslinker 

(Model UVP® C-1000, Fisher Scientific, UK) at a distance of precisely 15 mm from the UV source, and 

irradiated with 254nm UV light for 102 seconds. The irradiated CRM was used immediately to prepare 

complete RPA reaction mixtures.  
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Selectivity Testing

The specificity and inclusivity of the RPA and qPCR methods described in this work was evaluated 

using a panel of genomic DNA samples isolated from different E. coli strains and non-E. coli bacteria. 

Genomic DNA was extracted from 1mL of a broth culture of each strain in its optimal culture medium and 

incubation temperature (as per the recommendation of the relevant culture collection). The ‘streak’ plating 

method was used to confirm that each culture was pure. All culture media were purchased from Oxoid (UK) 

Ltd. DNA was extracted using the GeneElute™ Bacterial Genomic DNA Isolation Kit (Sigma, UK), 

according to the manufacturer’s recommendation, and stored at -20oC. The panel included the E. coli 

Collection of Reference Strains (ECOR), laboratory strains of the K-12 lineage, a Type strain from the 

National Collection of Type Cultures (NCTC), and 30 non-E. coli strains purchased from various national 

and international culture collections (Table 2). Additionally, 23 strains of putative E. coli were recovered 

from the Empress Dock, Southampton between September and November 2019, and also tested. In this 

case, 100 mL of Dock Water was filtered onto a 0.45 micron pore size, 45mm diameter cellulose nitrate 

membrane disc (Fisher Scientific, UK), which was placed directly onto TBX medium (Oxoid Ltd, UK), and 

then incubated for 4 h at 30 °C, followed by 18-24 h at 44 °C. E. coli were identified as blue/green colonies. 

These were picked with a sterile bacteriological loop, and used to inoculate 5mL of Luria Broth culture, 

which was incubated at 37oC overnight. Then, 1mL of the culture was used to prepare a DNA extract, using 

the method described above. 
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Table 1. Oligonucleotides used in this study.

Name Type Sequence (5’ - 3')

ybbWPCRf qPCR forward primer TGATTGGCAAAATCTGGCCG

ybbWPCRr qPCR reverse primer GAAATCGCCCAAATCGCCAT

ybbWHP qPCR Hydrolysis 

probe

[FITC]-CCGCCG[ZEN]AAAACGATATAGATGCACGG-

[IABkFQ]

ybbWRPAf RPA forward primer TGCTTGATTCTGATTGGCAAAATCTGGCCG

ybbWRPAr RPA reverse primer GCCATACCGCCGAAAACGATATAGATGCACGGGTT

ybbWRPAexo RPA exo probe GTTTTAAATAAATTCACTGCCATTCTTAACCCG[FITCdT)

G[THF]A[BHQ1dT]CTATATCGTTTTCG

 FITC = Fluorescein Isothiocyanate; ZEN = ZEN internal fluorescence quencher; IABkFQ = Iowa Black Fluorescence Quencher; THF 

= Tetrahydrofuran; BHQ1 Black Hole Fluorescence Quencher-1.
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Table 2. Selectivity and inclusivity of the RPA and qPCR assays.

Species Culture Collection ybbW RPA ybbW qPCR

E. coli Laboratory and Environmental Isolates (99)

E. coli ECOR Collection (Strains 1-72) STEC + (72) + (72)

23 Putative* E. coli Environmental Isolates n/a + (23) + (23)

E. coli (Type Strain) NCTC 9001 + +

E. coli K12 (MG1655) See note + +

E. coli K12 (W3110) See note + +

E. coli K12 (DH5) See note + +

Non E. coli Bacteria (30)

Escherichia fergusoni NCTC 12128 - -

Salmonella typhimurium NCTC 1023 - -

Vibrio cholerae NCTC 8041 - -

Shigella sonnei DSM 5570 - -

Shigella flexneri DSM 4782 - -

Escherichia albertii DSM 17582 - -

Shigella boydii DSM 7532 - -

Citrobacter freundii DSM 30039 - -

Escherichia vulneris DSM 4564 - -

Escherichia hermanii DSM 4560 - -

Salmonella bongorii DSM 13772 - -

Escherichia blattae DSM 4481 - -

Citrobacter koseri DSM 4595 - -

Pseudomonas aeroginosa DSM 50071 - -

Salmonella enterica (nottingham) NCTC 7832 - -

Aeromonas caviae NCTC 10852 - -

Klebsiella pneumoniae DSM 30104 - -

Pantoea agglomerans NCTC 9381 - -

Enterobacter aerongenes NCTC 10006 - -

Listeria monocytes NCTC 11994 - -A
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Enterococcus faecalis NCTC 775 - -

Enterococcus faecium NCTC 7171 - -

Lkluyvera cryocrescens DSM 4588 - -

Lelliottia amnigena DSM 4486 - -

Enterobacter cloacae DSM 26481 - -

Cronobacter sakazakii DSM 4485 - -

Klebsiella oxytoca DSM 5175 - -

Aeromonas hydrophila DSM 30187 - -

Rahnella aquatilis DSM 4594 - -

Providencia alcalifaciens DSM 30120 - -

Note: some strains were selected from an in-house culture collection of laboratory E. coli
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Figure 1. Time to Positivity Results for Amplification of the ybbW Target Sequence using RPA 
(Panel A) or qPCR (Panel B).

Figure 1. The ybbW target sequence was amplified using either the novel RPA method (A) or 

an existing qPCR method (B), which targeted the same genetic region in E. coli. The error 

bars, where visible, represent the standard error of the mean from quadruplicate reactions. A
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Supporting Information Legends

Figure S1. RPA fluorescence curves obtained when amplifying from the same DNA sample, with (dashed 

line) or without (solid line) the Ultra Violet (UV) pre-treatment to remove contaminating DNA from the Core 

Reaction Mix (CRM). Exposure of the CRM to UV radiation led to a modest reduction in the amplification 

efficiency, as indicated by an increase in the time taken for the fluorescence to develop. In this case, the 

DNA template was the ‘positive control DNA’ provided in the TwistAmp® exo Kit, which was amplified using 

the TwistAmp® ‘positive control’ primer and probe mix. 
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