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In situ imaging of particles in the ocean are rapidly establishing themselves as powerful
tools to investigate the ocean carbon cycle, including the role of sinking particles for
carbon sequestration via the biological carbon pump. A big challenge when analysing
particles in camera images is determining the size of the particle, which is required to
calculate carbon content, sinking velocity and flux. A key image processing decision
is the algorithm used to decide which part of the image forms the particle and which
is the background. However, this critical analysis step is often unmentioned and its
effect rarely explored. Here we show that final flux estimates can easily vary by an order
of magnitude when selecting different algorithms for a single dataset. We applied a
range of static threshold values and 11 different algorithms (seven threshold and four
edge detection algorithms) to particle profiles collected by the LISST-Holo system in two
contrasting environments. Our results demonstrate that the particle detection method
does not only affect estimated particle size but also particle shape. Uncertainties are
likely exacerbated when different particle detection methods are mixed, e.g., when
datasets from different studies or devices are merged. We conclude that there is a clear
need for more transparent method descriptions and justification for particle detection
algorithms, as well as for a calibration standard that allows intercomparison between
different devices.

Keywords: biological carbon pump, particle flux, image analysis, sinking velocity, particle carbon content,
threshold, particle detection, in situ device

INTRODUCTION

Optical measurements of particles in the ocean are rapidly establishing themselves as powerful
tools to investigate ocean biogeochemical cycles and food webs (Lombard et al., 2019; Giering
et al., 2020). One research area that has greatly benefited from the use of underwater camera and
optical sensors is the ocean carbon cycle – specifically the biological carbon pump. The biological
carbon pump describes the collective processes that transport organic carbon from the surface
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ocean to depth, for example, through sinking particles (Volk
and Hoffert, 1985). Vertical profiles of particle images can
elucidate the processes that determine particle size, type and
distribution. Combined with information on carbon content and
sinking velocity, particle profiles can provide high-resolution
information on carbon fluxes and hence ocean carbon storage
(see review by Giering et al., 2020).

A big challenge when extracting individual particle properties
from camera images is determining what portion of the image is
a particle and how big it is. Particle size is a crucial parameter as it
is used as input for various conversions, in particular, to estimate
particulate organic carbon (POC) content and sinking velocities
(e.g., Alldredge and Gotschalk, 1988; Alldredge, 1998; Iversen
and Ploug, 2010; Laurenceau-Cornec et al., 2015). The shape of
a particle (e.g., how round or solid a particle is) can inform about
the particle’s density, drag and type (e.g., Laurenceau-Cornec
et al., 2015).

A key optical processing decision for particle detection and
sizing is the algorithm used to decide which part of the image
forms the particle and which is the background. A commonly
used technique is to apply an intensity threshold. A threshold
is typically a gray-scale value for transformation of the image
into a black-white (or “particle non-particle”) binary field on
which particle statistics can be calculated. To date, there is no
standard procedure in determining the threshold and a wide
range of algorithms exist, most of which calculate a threshold
value based on the gray values of all pixels in the image (e.g., based
on the histogram of pixel values). Users often apply the default
threshold algorithm that is provided as part of their favorite
image analysis toolbox. As image analysis toolboxes often offer
a range of threshold algorithms, different users may use different
threshold algorithms even when using the same toolbox. As the
threshold choice is often only a simple click in a lengthy sample
and data analysis sequence, it has received little attention and is
often left unmentioned in the method description. For example,
for one of our papers (Giering et al., 2016), Giering photographed
marine snow aggregates collected using the Marine Snow Catcher
and analyzed these using ImageJ. Not knowing better at the
time, she used the default threshold algorithm (a variation of the
IsoData algorithm) without explicitly stating this in the methods.
Durkin et al. (2015) took photos of marine snow particles in gel
traps and also analyzed these in ImageJ, albeit using the threshold
algorithm “Intermodes.” Many other studies also mention the
imaging toolbox but do not explicitly state their algorithm choice
(e.g., for ImageJ: Grossart et al., 2006; Lyons et al., 2007; Zhao
et al., 2017; Flintrop et al., 2018).

To complicate the issue further, with increasing computing
power, more sophisticated algorithms to detect particles are
becoming common, such as edge detection, ridge detection,
and even object detection using machine learning. Edge
detection searches through an image and identifies areas of high
frequencies, i.e., large variances in pixel values, and traces the
outline of an object (Basu, 2002). Ridge detection algorithms
work similarly to edge detection algorithms but, rather than
detecting edges, they have been optimized to find lines. Object
detection algorithms, using supervised learning, use previously
labeled images to learn the visual characteristics of known objects

in order to identify similar objects in new data (Zhao et al.,
2019). For marine snow and zooplankton imaging, edge detection
algorithms such as the Sobel and Canny algorithms have been
proven to be useful (Sosik and Olson, 2007; McDonnell, 2011;
Thompson et al., 2012; Yu et al., 2016; Ohman et al., 2019).

In this study, we explore how the choice of threshold or edge
detection algorithm affects the final estimate of particle size and,
further down the line, carbon content and flux. To do so, we used
vertical particle profiles collected by the LISST-Holo deployed
during the UK COMICS (Controls over Ocean Mesopelagic
Interior Carbon Storage) programme (Sanders et al., 2016). These
deployments supplied us with plenty of imaged particles to run a
series of particle detection experiments. Imaged particles ranged
from ∼0.01–3.5 mm in diameter and thus covered the typical
range of particle sizes that make up the bulk sinking particle
fluxes (e.g., McDonnell and Buesseler, 2010). The choice of device
is secondary and our experiments could (and should) be carried
out on images taken by any camera system.

Our main questions were:

1. How does the choice of algorithm influence particle size
(and hence POC content and flux estimates)?

2. How does the choice of algorithm influence particle shape
and structure?

To address these questions, we first implemented a
sophisticated segmentation routine. This step is common
practice as imaging devices often take images of a water volume
that can contain several particles surrounded by “empty space,”
Segmentation isolates individual particles (hereafter referred
to as “vignettes”), allowing particle-specific analyses whilst
decreasing file sizes. Though our segmentation routine includes
threshold algorithms, we do not explore the effect of thresholding
on segmentation as it is not the purpose of this study. Once
segmented, we analyzed each vignette using a range of static
threshold values and 11 different algorithms (seven threshold
and four edge detection algorithms). We compared the final
estimates of particle size and shape and evaluated the effect on
final POC estimates.

MATERIALS AND METHODS

Site Description
Vertical profiles of particles were imaged using the LISST-Holo
(Sequoia, US) in two contrasting open ocean sites as part of the
UK COMICS programme (Sanders et al., 2016). The first cruise
investigated the diatom bloom in a highly productive region
downstream of South Georgia in Nov/Dec 2017 (cruise DY086),
the second cruise targeted the low oxygen regions offshore
of Namibia in the Benguela current in May/Jun 2018 (cruise
DY090). We present data from nine profiles in total: six profiles
from the South Georgia sites (cruise DY086) and three profiles
from the Benguela current (cruise DY096).

Particle Imaging
The LISST-Holo (Graham and Nimmo Smith, 2010) was
mounted on the “Red Camera Frame” (a modified lander
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platform) and operated as a stand-alone system with an external
battery pack. For each profile, the Red Camera Frame was
deployed to (∼230 m taking a holographic image with a
volume of 1.86 cm3 every 1.2–2.5 m. The holographic image
records the interference pattern caused when a collimated
light beam (658 nm solid state diode laser) passes through
a water sample. Objects in the water sample cause light to
scatter and results in a unique interference pattern containing
information about the size and position of the object. Using
this interference pattern, objects can be reconstructed using the
supplied software, HoloBatch1, producing in-focus monochrome
images with a resolution of 4.4 µm per pixel and a frame size of
1600× 1200 pixels.

Image Reconstruction
The reconstructed images were processed with slight adjustments
to the default parameters to produce sharper and more detailed
reconstructions at the cost of greater memory requirements
and computation time. These included setting the step size to
0.05 mm to sample the volume at smaller intervals, and setting
the clean stack parameter to 5% in order to remove a portion
of pixels potentially contributing to noise. HoloBatch was run
on a machine with 64 GB RAM and an Intel Xeon E5-2623
v3 CPU (3.00 GHz).

Particle Segmentation
The reconstructed monochrome images generated using the
HoloBatch software were typically composed of multiple

1sequoiasci.com/product/lisst-holo

particles. To perform analysis on each individual particle we
first performed segmentation and produced cropped images
around each detected region. HoloBatch offers the functionality
to extract these vignettes. The detection of particles is performed
during image reconstruction (Graham and Nimmo Smith, 2010;
Davies et al., 2015), which is a highly computational and time-
consuming process. Depending on the parameters, vignettes
may not contain a single particle but rather multiple particles,
or multiple closely connected particles could be regarded as a
single particle. Here we applied our own workflow for generating
vignettes from the reconstructed images in order to have more
control over the segmentation process.

Segmentation was achieved using our purpose-built Python
package, Planktonator2. The workflow involved six key stages
(Figure 1): Otsu thresholding, low pass filtering, thresholding
and flood fill, contour calculation, particle measurement, and
finally particle filtering and extraction. Please note, even though
our segmentation routine included thresholding, we are not
investigating the effect of thresholding on segmentation in
this manuscript and it is therefore not further explored. The
reason for the sophisticated routine was the complex nature
of the imaged particles. Many of the particles were large
phytoplankton chains or colonies made up of clearly identifiable
individual cells (Figure 2). A simple segmentation routine
would separate these large aggregates into artificially small
particles, introducing problems for both sizing and future
classification. We therefore optimized our segmentation routine
for our dataset. Other instruments may apply their own

2pypi.org/project/planktonator/ and github.com/brett-hosking/planktonator

FIGURE 1 | Planktonator segmentation and particle extraction workflow. (a) Input reconstructed images from HoloBatch, (b) Otsu threshold to find the most
prominent pixels, (c) low pass filtering to connect neighboring pixels, (d) fixed threshold and flood fill to define particle regions, (e) contour calculation, (f) application
of contours and particle measurement, (g) particle filtering and extraction.
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FIGURE 2 | Example vignettes from profile DY086-034 near South Georgia
showing most likely (A) Fragilariopsis kerguelensis, (B) fecal pellet, (C)
Thalassiosira sp., (D) compact phytodetritus, (E) loose phytodetritus, (F)
Chaetoceros socialis, (G) Eucampia antarctica, (H) Thalassiothrix sp., and (I)
chain-forming phytoplankton.

segmentation routines or do not require any (e.g., for photos of
individual particles).

We first used Otsu (1979) to convert the monochrome input
image into a binary image by minimizing the intra-class variance
between the background (water) and foreground (particles),
leaving the most prominent pixels with a new pixel intensity
of 0. Otsu is also applied as part of the HoloBatch software
(Graham and Nimmo Smith, 2010; Davies et al., 2015) and is
one of the most commonly referenced thresholding techniques
(Sezgin and Sankur, 2004). In the following step a low pass filter
with a kernel size of 25 and linearly decreasing spatial weights
was applied to produce a blurred non-binary image. This step was
used to connect neighboring pixels while maintaining the overall
particle shape. The proximity of neighboring (particle) pixels
also determines the intensity of pixels in the filtered image; the
intensities of isolated and detached pixels (i.e., noise) are reduced
while the intensities of tightly compacted pixels are maintained.
A threshold was then applied to the filtered image to convert
back to a binary image. A lower threshold reduces the detected
particle area while a higher threshold increases it. We manually
defined this value to be 0.96 (in the range [0,1]) as this produced
satisfactory results after visual inspection. The result is an image
composed of black regions corresponding to particle areas. As it
is possible that a number of these areas contained gaps/holes, we
filled holes using a flood fill operation before proceeding to the
next stage. Contours were calculated from each particle region
using scikit-image3. After obtaining the contour positions we

3scikit-image.org

measured each particle to determine their major length. Only
particles with a minimum major length of 40 pixels (176 µm)
were used for further analyses, as smaller particles typically lacked
sufficient detail to be identified. Note that this size threshold
was only applied during the segmentation process. The final
step was to produce image crops around the detected contours
regions. These crops contain data from the original monochrome
images generated by HoloBatch and therefore have not been
processed by thresholding. The objective of this workflow was
to produce vignettes containing a single marine snow particle,
and parameters were defined carefully through visual inspection.
Nonetheless, without ground truth data, we were unable to verify
the outputs objectively and some vignettes may still contain
multiple particles.

Thresholding
For size measurements, vignettes were analyzed using Python
and scikit-image (see text footnote 3). Vignettes were 8-bit
monochrome PNG files with gray values from 0 (black) to 255
(white). The particle in each vignette was identified using a range
of static threshold values and 11 different algorithms (seven
threshold and four edge detection algorithms). All algorithms
used here are provided in the scikit-image filters and features
modules. All vignettes (n = 6400) and their metadata including
size measurements are provided in the Supplementary Material.
Examples of the code can be found in the Supplementary
Material and at github.com/brett-hosking/supplementary.

The application of a gray-value threshold is straightforward.
A gray value between 0 (black) and 255 (white) is chosen,
any pixel below the threshold is considered particle, and any
pixel at or above the threshold is considered background. The
result is a true-false (binary) image separating the particle and
background (also referred to as a “mask”). Particle measurements
can then be performed on the binary mask. We tested a range
of static thresholds, i.e., we applied the same threshold value
to all vignettes. Static thresholds ranged from 10 to 250 in 10-
unit increments. In addition, we applied seven histogram-based
thresholding algorithms: Otsu, Isodata, Li, Mean, Minimum,
Triangle and Yen. These algorithms find a unique threshold
value for each vignette based on the image properties (the gray-
value histogram). A description and illustration for each of these
algorithms is provided in Table 1.

Edge detection algorithms effectively analyze each pixel and
its neighbors to detect changes in pixel intensity. A gradient
mask is produced that depicts strong gradients as lighter
pixels. Depending on the algorithm, the gradient mask is
thresholded to retain only the strongest gradients (“edges”).
Pixels corresponding to an edge are assigned a “true” value,
whereas pixels that are similar to their neighbors are assigned the
value “false.” The resulting binary image hence traces the edges
of the particle. Using a flood fill operation, all pixels within the
detected edges are filled, producing the final binary mask. We
applied four common edge detection algorithms: Canny, Sobel,
Scharr, and Roberts. A description and illustration for each of
these algorithms is provided in Table 1.

We used Otsu as the reference threshold algorithm as it is, as
described above, used in the HoloBatch software (Graham and
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TABLE 1 | Threshold algorithms.

Type Name Example Description and reference

Threshold (Reference) Otsu Finds threshold that minimizes the intra-class variance Ref: Otsu,
1979

Threshold Isodata Takes an initial threshold and averages the pixels below and above
the threshold. The averages of these two values are calculated.
Threshold is incremented and the process is repeated until the
threshold is larger than the composite average Ref: Ridler and
Calvard, 1978

Threshold Li Implements minimum cross entropy Ref: Li and Tam, 1998

Threshold Mean Uses the mean of gray levels as the threshold Ref: Glasbey, 1993

Threshold Minimum Assumes bimodal histogrammes Ref: Prewitt and Mendelsohn,
1966

Threshold Triangle Uses a geometric method assuming a maximum peak (mode) near
one end of the histogram and searches toward the other end Ref:
Zack et al., 1977

Threshold Yen Uses two criteria: the discrepancy between the thresholded and
original image, and the number of bits required to represent the
thresholded image Ref: Yen et al., 1995

Edge Canny First smoothes the image using Gaussian convolution and then
highlights regions with high first spatial derivatives (edges) using a
2D gradient operator similar to Roberts Ref: Canny, 1986

Edge Roberts Performs 2D spatial gradient measurements by passing two 2 × 2
convolution masks along the image Ref: Roberts, 1963

Edge Scharr Variation of Sobel algorithm Ref: Scharr, 2000

Edge Sobel Performs 2D spatial gradient measurements by performing
convolution between two 3 × 3 kernels and the image Ref: Sobel
and Feldman, 1973

Histograms show the distribution of gray levels from 0 (black) to white (255) for the original image (left). Red line indicates the threshold identified by the algorithm, which
is applied to generate the thresholded image (right).
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Nimmo Smith, 2010; Davies et al., 2015) and our segmentation
routine. Moreover, Otsu is one of the most commonly applied
thresholding techniques (Sezgin and Sankur, 2004), and it
generally produced (subjectively) reasonable results.

Particle Size and Shape
Once the algorithms were applied to the vignette, we calculated
the particle’s size based on the pixel count for the following
parameters: area, equivalent spherical diameter (ESD), convex
area and Feret length (details in Table 2). The shape of the particle
was explored in terms of roundness, i.e., how similar the overall
particle shape is to a circle, and solidity, i.e., how densely packed
the particle is (Table 2). Both parameters range from 0 to 1, with
a value close to 1 suggesting the particle is, respectively, nearly
circular or solid. Please note that roundness was calculated using
the area of the convex hull rather than the particle area. We chose
this metric because many of the large particles were very loosely
packed aggregates or colonies. For these cases, the traditional
roundness metric (ratio of particle area to Feret length) would
suggest that such particles are elongated even though, in reality,
they were often round.

POC Content, Sinking Velocities, and
Fluxes
POC contents of an individual particle (in µg C) was calculated
from the particles volume (Vhull in mm3) using a modification of
the equation by Alldredge (1998):

POC = 0.99 × Vhull
0.52
× S3/2 (1)

where Vhull is calculated from the hull area [Ahull in mm;
Vhull = 4/3 π (Ahull/π)3/2] and S is the solidity of the particle
(Table 2). Hull area was chosen as metric for particle size
as it is closer to the area metric used by Alldredge (1998).
The original equation by Alldredge (1998) overestimated POC
concentrations compared to POC concentrations measured using
in situ pumps (53 µm mesh; data not shown), likely because
many of the particles that we imaged were very loosely packed.
We used the solidity metric (scaled to volume) to account for
this discrepancy (i.e., we allowed particles to be porous), which
produced an acceptable match between calculated and measured
POC concentrations.

Fluxes were calculated by multiplying the POC content of a
particle by its estimated sinking velocity. Sinking velocities (v
in m d−1) were assumed to be a function of the particle’s size
(ESDhull in mm) following power law and solidity (S):

v = 75∗ESDhull
0.24
× S3/2 (2)

The regression was based on in situ data collected during the
COMICS cruises. Briefly, an underwater camera was fitted onto
a neutrally buoyant sediment trap and programmed to take a
fast sequence of images (deployment depth 500 m). Individual
sinking particles (n = 244) were tracked through the images and
a downward sinking velocity calculated. Most sinking particles
were <1 mm in diameter (median 0.20 ± 0.26 mm ESD) similar
to our observations (median 0.33 ± 0.47 mm hull-based ESD
detected by Otsu). The regression fit was not strong (p < 0.01,
R2 = 0.08, n = 244) but generally matched previous observations
(Table 3). Particles at 500 m were more solid than particles
observed in the upper 250 m of the water column, which likely

TABLE 3 | Size-to-sinking velocity conversion parameters in the literature.

Source Application range
(diameter in mm)

a b

Alldredge and Gotschalk (1988) 0.5–25.5 50 0.26

Seebah et al. (2014) 0.5–16 101 0.68

Iversen and Ploug (2010) 0.25–5 56 0.72

76 0.64

176 0.47

Ploug et al. (2010) 1–3.5 170 0.82

Gärdes et al. (2011) 1–5 44 1.31

Laurenceau-Cornec et al. (2015) 1–10 71 0.63

53 0.61

53 0.52

66 0.62

36 0.26

45 0.20

Cavan et al. (2010) 0.1–1.3 138 0.37

Here 0.1–2.3 75 0.24

Sinking velocity (v in m d−1) can be calculated from diameter (ESD in mm) following
equation: v = a × ESDb.

TABLE 2 | Particle size parameters.

Parameter Unit Symbol Equation Definition

Area of a particle px2 Apart * Sum of all pixels below threshold

Equivalent spherical diameter px or mm ESD sqrt(Apar /π) Diameter of a circle with the same area as Apart

Convex area px2 Ahull * Sum of all pixels enclosed by the convex hull. Envelope around particle (Think: rubber band
fitted around the particle).

Feret length px F * Also referred to as maximum length. Maximum extend of particle. Calculated from the
maximum distance between the corner points of the convex hull.

Roundness Unitless R Ahull/(π (F/2)2) Ratio of the convex area and the area of a circle with a diameter of the particle’s maximum
length. The closer the value is to 1, the more similar the particle is to a sphere.

Solidity Unitless S Apart/Ahull Ratio between area of particle and area of convex hull. The closer the value is to 1, the
more solid a particle is.

Asterisks indicates measured values.
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TABLE 4 | Deployment details and simple particle profile statistics.

Cruise Profile Date Location Station Latitude
(N)

Longitude
(E)

RCF
Deployment

Max
deployment
depth (m)

Sampling
rate,
downcast
(images/m)

Sampling
rate,
upcast
(images/m)

Number
of
images
collected

Total
number
of
vignettes

Mean
particle
concentration
(#/mL)

Mean
particle
ESD
(mm)*

Mean
particle
roundness*

Mean
particle
solidity*

DY086 DY086-
034

16/11/2017 South
Georgia:
North

P3A −52
41.40

−40
07.50

RCF001 226 1.19 1.27 558 2707 2.6 ± 3.2 0.11 ±
0.07

0.36 ±
0.18

0.36 ±
0.21

DY086 DY086-
098

20/11/2017 South
Georgia:
North

P3A −52
46.52

−40
20.96

RCF005 228 0.51 0.52 241 1490 3.3 ± 3.8 0.11 ±
0.07

0.38 ±
0.18

0.33 ±
0.21

DY086 DY086-
120

24/11/2017 South
Georgia:
South

P2 −56
24.0

−41
13.0

RCF007 226 0.4 0.51 206 132 0.3 ± 0.6 0.09 ±
0.04

0.38 ±
0.20

0.50 ±
0.23

DY086 DY086-
145

25/11/2017 South
Georgia:
South

P2 −56
38.0

−40
55.0

RCF009 225 0.75 0.87 365 611 0.9 ± 1.3 0.10 ±
0.06

0.36 ±
0.20

0.38 ±
0.23

DY086 DY086-
205

02/12/2017 South
Georgia:
North

P3B −52
41.74

−40
15.17

RCF013 227 0.7 1.01 391 1112 1.5 ± 2.0 0.09 ±
0.04

0.44 ±
0.18

0.40 ±
0.20

DY086 DY086-
330

12/12/2017 South
Georgia:
North

P3C −52
38.8

−40
12.6

RCF025 224 0.58 0.19 174 160 0.5 ± 0.7 0.09 ±
0.12

0.47 ±
0.17

0.50 ±
0.24

DY090 DY090-
047

27/05/2018 Benguela:
South

BS −21
38.56

9 30.64 RCF003 223 0.62 0.52 261 16 0.0 ± 0.1 0.07 ±
0.02

0.50 ±
0.18

0.54 ±
0.26

DY090 DY090-
154

06/06/2018 Benguela:
North

BN1 −18
01.19

11
00.50

RCF009 224 0.66 0.71 307 149 0.3 ± 0.5 0.08 ±
0.03

0.34 ±
0.23

0.57 ±
0.21

DY090 DY090-
444

19/06/2018 Benguela:
North

RS −18
01.19

11
00.49

RCF034 222 0.66 0.62 286 23 0.0 ± 0.2 0.09 ±
0.06

0.48 ±
0.20

0.66 ±
0.20

Means are provided with standard deviation. RCF, Red Camera Frame. *Based on Otsu thresholding.
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reflected differences in excess density with less solid particles
being less dense. We therefore applied the same solidity-based
scaling as in Eq. (1). Calculated sinking velocities ranged from 0.2
to 46 m d−1 with a median of 8± 8 m d−1, which seems plausible
for loosely packed particles of a median size of 0.33 mm in hull-
based ESD. Please note that the absolute POC concentrations and
fluxes presented here are used primarily for illustration purposes
to highlight the effect of different thresholds and threshold
algorithms on final estimates.

To compare particle profiles, mean ESD, POC concentrations,
and POC fluxes were binned in 1-m bins. Variability was often
high between adjacent bins making it difficult to compare the
different algorithms. We therefore smoothed depth profiles by
calculating a running mean and standard deviation (n = 11) for
each depth. Hence, flux at 20 m is the mean of fluxes between
15 and 25 m. The flux attenuation rate (“b parameter”) was
calculated by fitting a power-law to the flux profile below 50 m
(Martin et al., 1987).

RESULTS

Particle Profiles
The LISST-Holo imaged a wide range of particle types (Figure 2).
The number of detected particles and particle concentrations
varied markedly between the different deployments (Table 4),
reflecting ecological differences between the profiles. Particle
abundance was higher near South Georgia (0.5–3.3 particles
mL−1 throughout the sampled water column) compared to
the Benguela (<0.1–0.3 particles mL−1) (Table 4). The highest
number of particles was imaged near South Georgia on the 16
Nov 2017 (profile DY086-034) with a total of 2707 vignettes

(2.6 particles mL−1). This high abundance allows us to explore
changes in particle characteristics with depth. In contrast, in the
profiles in the Benguela, we imaged only a total of 16, 23, and 149
particles, which precludes a meaningful exploration of vertically
resolved fluxes.

All particle profiles showed similar depth trends with higher
particle concentrations in the upper 100 m and typically <2
particles per mL deeper in the water column (illustrated for
profile DY086-034 in Figure 3A). At the northern South Georgia
stations, mean particle size (ESD) decreased with increasing
depth while roundness and solidity increased (Figures 3B–D).
These trends are also apparent at the Southern South Georgia
and Benguela stations, though they are less clear owing to the low
number of observed particles (data not shown).

Static Threshold
By applying a range of thresholds (10–250) and comparing ESD
to that calculated using a threshold of 250, we can clearly see
how important the threshold is for the final particle size and
flux estimates. First of all, low static thresholds failed to “find”
particles in many of the vignettes, i.e., there were no pixels
below the threshold gray value and the size was returned as “0”
(Figure 4A). Even the static threshold value of 220 returned one
empty vignette (out of 6400 vignettes). Estimated ESD increased
rapidly between threshold values 160 and 240 at a rate of 1
percentage-point per unit (relative to the ESD at calculated
for threshold value 250). In other words, choosing 200 rather
than 190 as threshold value resulted in a 10 percent increase
in the ESD estimate (from 45 to 55% 250-threshold-equivalent
ESD). Accordingly, estimates for sinking velocities, particle POC
content and particle-specific POC flux followed the trend in ESD,
with a rapid increase in relative values as the threshold value

FIGURE 3 | Depth profiles of particle statistics from profile DY086-034 near South Georgia based on Otsu, showing (A) number of particles (per mL calculated for
each image), (B) particle ESD (in mm), (C) roundness, and (D) solidity. Black lines show running mean (n = 11) for 1-m binned data. Gray envelopes show the
corresponding standard deviation.
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FIGURE 4 | Effect of changing static threshold on (A) detection efficiency (%
of total particles), (B) particle ESD (px), and (C) particle-specific POC flux (mg
C m−2 d−1). All values were normalized to those calculated with a threshold
of 250. Lines show the median. Blue polygon encompasses upper and lower
quartile. Based on all imaged particles (n = 6400).

increases (Figure 4B). The additive effect of size on flux estimates
resulted in a rapid increase in flux estimates with increasing static
threshold (Figure 4C).

Algorithm Choice
The different threshold algorithms calculated a range of
thresholds, with median estimates ranging from 126 (Minimum)
to 254 (Triangle) (Figure 5). Otsu estimates were generally in
the intermediate range (median 227) and similar to estimates by
IsoData and Li (median 227 and 224; Figure 5). The algorithm
Minimum calculated lower thresholds (median 126), whilst
Mean, Triangle and Yen tended to calculate higher threshold
values (median 250, 254, and 233, respectively, Figure 5).

FIGURE 5 | Threshold values calculated for all vignettes using different
algorithms. Colors show threshold algorithm type as orange (reference
algorithm) and blue (binary). Values are expressed as boxplots, showing
median (horizontal line), first and third quartile range (box), minimum and
maximum values (error bars), and outliers (dots). Based on all imaged particles
(n = 6400).

The choice of threshold algorithm had a marked influence on
the estimates of particle size, carbon content, sinking velocity
(data not shown) and flux for each vignette (Figure 6). Binary
algorithms that detected low thresholds (Li and Minimum)
estimated lower particle parameter values, while the algorithms
that detected higher thresholds (Mean, Triangle, and Yen)
estimated higher particle parameter values. Owing to the
conversion steps, these differences magnified from ESD to
POC content to POC flux for each particle (Figure 6). For
example, the respective estimates using Mean (relative to
Otsu) were (median) 112, 129, and 156% for ESD, POC
content, and POC flux.

The four edge-detection algorithms all calculated larger
particles with, accordingly, higher carbon content, sinking
velocities and fluxes. In the order of ascending estimated particle
size, the algorithms were Canny, Roberts, and, jointly, Sobel and
Scharr (median ESD relative to Otsu 103, 133, 150, and 150%,
respectively). The POC flux for an individual vignette estimated
by Sobel and Scharr were up to 670 times that by Otsu. Even
though this was an extreme, median flux estimates were still 6.8
times that by Otsu.

Vertical flux profiles from the first station (DY086-034 at the
northern South Georgia site) followed the expected decrease in
flux from the surface to depth for all algorithms, though the
overall flux magnitude differed greatly (Figure 7). For example,
the flux at 100 m according to Otsu was 278 mg C m−2 d−1

(Figure 7). The algorithms Minimum, Li and Isodata estimated
the flux to be 16, 74, and 93% of this value, respectively. On the
other hand, the algorithms Yen, Mean, Triangle, Canny, Roberts,
Sobel, and Scharr estimated the flux to be much higher at 118,
153, 153, 173, 245, 318, and 318%, respectively. Hence, when
using the Sobel or Scharr algorithms, particle flux at 100 m would
have been estimated 886 mg C m−2 d−1; a carbon supply to the
deep ocean of∼600 mg C m−2 d−1 more (Figure 7).

In addition, the different algorithms gave slightly different
vertical shapes. Fitting a power-law to the flux profile below 50
m (Martin et al., 1987) suggests that the flux attenuation rate
(“b parameter”) at the first station (DY086-034 at the northern
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FIGURE 6 | Comparison of different threshold algorithms relative to Otsu. (A) Particle size (ESD in mm). (B) Average POC flux per particle (mg C m−2 d−1). Values
are expressed as boxplots (see legend for Figure 5). Gray dashed lines indicate 0.5, 1, and 2 times Otsu value. Note the different y-axis scales. Colors show
threshold algorithm type as orange (reference algorithm Otsu), blue (binary), and green (edge detection). Based on all imaged particles (n = 6400).

FIGURE 7 | Flux profiles from deployment DY086-34 near South Georgia
according to the different threshold algorithms. Fluxes were calculated for all
particles as described in the methods and summed for each vignette. Flux
profiles were binned at 1-m resolution and a running mean (n = 11) calculated.

South Georgia site) varied from 2.29 to 2.96 depending on the
flux algorithm (Minimum and Sobel/Scharr, respectively).

We observed a large effect of algorithm choice on median
particle size (ESD), POC concentrations, flux estimates, and flux
attenuation rate (“b parameter”) at all sites (Table 5).

Solidity and Roundness
Observed particles ranged in solidity from very loosely
aggregated (S < 0.1) to solid (S > 0.9). The median
solidity of the particle population was strongly dependent
on the threshold algorithm (Figure 8). The highest median
solidity was estimated by the binary algorithm Minimum,
with a median solidity of 0.83. The edge detection algorithms
Roberts, Sharr and Sobel diagnosed high solidities with a
median of 0.48–0.56. Canny and the other binary algorithms
calculated median solidity values between 0.30 and 0.36. The
static thresholds below a gray value of 60 also diagnosed
very solid particles, but owing to their poor performance
(>75% of analyzed vignettes were “empty”), these are not
further discussed.

There was no consistent relationship between particle size
and solidity, though the density plots suggest two loose clusters
(Figure 9). The most prominent cluster comprised of particles
with a diameter of around 20 px (∼88 µm) and a relatively low
solidity (S∼0.25). There was a second cluster of particles with
a similar diameter but much rounder shape (R > 0.75). For all
algorithms, particles with an ESD of >30 px (∼132 µm) appeared
to become less solid as they got larger.

We next investigated the roundness of particles according
to the different algorithms. The population median was
similar for all binary (except Minimum) and edge detection
algorithms, ranging from 0.36 to 0.42 (Figure 8). The Minimum
algorithm estimated particles to be rounder (median: 0.53),
while the static thresholds above 60 estimated particles to
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TABLE 5 | Variability of particle characteristics at all stations based on vertical profiles.

Profile b ESD (mm) at 100
m depth

ESD (mm) at 200
m depth

POC
concentration
(mg C m−3) at
100 m depth

POC
concentration
(mg C m−3) at
200 m depth

Flux
(mg C m−2

d−1) at 100 m
depth

Flux
(mg C m−2

d−1) at 200 m
depth

Min Max Min Max Min Max Min Max Min Max Min Max Min Max

DY086-034 −2.96 −2.29 0.01 0.12 0.01 0.13 1.3 34.5 0.1 4.3 26 1106 1 151

DY086-098 −2.68 −2.13 0.02 0.12 0.01 0.17 3.1 48.1 0.1 16.7 62 1622 2 648

DY086-120 −4.38 −1.8 0.02 0.15 – – 1.3 9.0 – – 26 296 – –

DY086-145 −2.67 −2.10 0.03 0.17 0.01 0.18 0.9 14.2 0.0 6.2 15 364 0 196

DY086-205 −1.85 −1.39 0.01 0.1 0.01 0.16 0.2 6.5 0.3 14.3 2 223 4 463

DY086-330 −3.05 0.58 0.02 0.13 0.03 0.13 0.6 11.2 0.7 4.5 12 340 23 133

DY090-047 −0.29 0.10 0 0.09 0 0.09 0.0 0.2 0.0 0.4 0 4 0 14

DY090-154 −1.24 0.14 0.01 0.15 0.01 0.12 0.0 4.4 0.0 1.7 0 160 0 57

DY090-444 −1.89 −1.44 0.01 0.11 0.01 0.11 0.0 1.6 0.0 1.8 0 62 0 67

Vertical profiles of mean ESD (in mm), POC concentration (in mg C m−3), and POC fluxes (mg C m−2 d−1; e.g., Figure 7) were calculated for all station using every
algorithms. Data was binned in 1-m bins and a running mean (n = 11) calculated. The minimum and maximum value based on all algorithms is presented. “–” indicates
that no particles were observed around this depth.

FIGURE 8 | Median roundness and solidity for all threshold algorithms. The
symbol size shows the median particle size for each algorithm (reference point
of 10 px in diameter shown in black in bottom right corner). Blue symbols:
binary algorithms, orange symbol: Otsu, green symbols: edge detection
algorithms, gray symbols: static threshold with symbol color representing the
threshold. Based on all imaged particles (n = 6400).

be more elongated (median: 0.24–0.39). As static thresholds
increased from 140 onward, the median roundness increased
consistently (Figure 8). There was no clear trend between
particle ESD and roundness (Figure 9). Please keep in mind,
however, that the trends observed here might be a result of
the optical device and its resolution rather than an overall
ecological phenomenon.

DISCUSSION

Particle Size
Our error estimates are likely conservative owing to the LISST-
Holo methodology: As the LISST-Holo uses diffraction pattern
to reconstruct particles rather than conventional photography,
the reconstructed particle images have relatively clear edges
(Graham and Nimmo Smith, 2010). Conventional cameras often
struggle with lighting artifacts such as halo-like boundaries
around the particle (e.g., Farhadifard et al., 2017), refraction and
semi-transparent edges. It is hence surprising and worrying that,
even with well-defined particle edges in the LISST-Holo vignettes,
the effect of the threshold algorithm choice on final size and flux
estimates are significant.

Particle size estimates appear to be highly sensitive to
even small changes in threshold values. One advantage of
threshold algorithms is that they are easy to understand
and sensitivity analyses are uncomplicated. For example, to
explore the effect on particle size, a defined number can be
added or subtracted from the estimated threshold value before
recalculating size. Edge detection algorithms are more complex
and the results not as straightforward to evaluate particularly
for aggregates with complex textures. These algorithms generally
produced particle size estimates that exceeded those of the
threshold algorithms. A possible reason for this phenomenon
is the nature of the processing used to produce a binary
mask from the detected particle outline, and the fact that
edges in the binary image were not always clearly defined
(i.e., pixels at edge boundaries were often noisy). This noise
resulted in detected edges that appeared extruded, thus the
binary mask covered a larger area. In addition, the Scharr
and Sobel detectors also treat loose and closely connected
aggregates as a single continuous particle, producing a mask
that covers a large area (see example in Table 1). The Canny
edge detector often produced edges that were not enclosed
and therefore, when applying the flood fill operation, the
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FIGURE 9 | Heat map of (A–C) solidity and (D–F) roundness of particles as a function of size (ESD in pixels) for profile DY086-034 near South Georgia. The closer
the values are to 1, the more solid and circle-like the particles are. Note the logarithmic scale for the x-axis. Values based on (A,B) Yen (blue), (C,D) Otsu (orange),
and (E,F) Sobel (green) thresholding. Lighter colors indicate higher density of data points. Pixel size: 4.4 µm.

masks only represented a portion of the visually determined
particle shape. This partial filling explains why this algorithm
produced smaller particle size estimates compared to the
other edge detectors, though, perhaps surprisingly, the average
particle sizes calculated by Canny were the same as those
calculated by Otsu.

The effect of such nuances on final flux estimates is potentially
huge, with our estimates by different algorithms varying by
an order of magnitude. Our data highlights the importance of
thorough calibration of the particle sizing routines and detailed
method descriptions.

Researchers need to be very careful and considerate when
choosing the particle detection and sizing algorithms. Simple
visual inspection is a potential first step and may help to select
a suitable algorithm for the particle type (e.g., compare raw
and binary images in Table 1). However, algorithm choice by
eye alone is not sufficient: both Li and Triangle appear to trace
the example particle in Table 1 well, but their estimated area
differed by ∼20% (1146 and 1386 px2, respectively). Rather, the
sizing algorithm needs to be calibrated using external reference
material. The developers of the Underwater Vision Profiler
(UVP) calibrate each newly built UVP by deploying the new
UVP alongside a “reference” UVP, which had been calibrated
using natural marine snow and zooplankton (Picheral et al.,
2010). While this is a good instrument-specific approach, it
is not a feasible strategy for comparison between different

instrument types and when comparing in situ and ex situ
devices. Sosik et al. (pers. comm.) used a range of beads to
fine-tune an edge detection algorithm for the FlowCytobot.
When applied to phytoplankton cells of a known size-range,
the new algorithm calculated much more realistic size estimate
(unpublished data).

Particle Shape
The trend of particles to become less solid as size increases
matches visual inspection of the vignettes. Many of the small
vignettes contained relatively well-contained shapes, whereas
many of the large vignettes depicted long diatom chains, such as
Eucampia spp. (Figure 2G), and loose aggregates. This trend was
the same for all threshold levels, suggesting – at face value – that
the overall particle shapes were preserved (Figure 9). However,
the median population solidity was different for the different
thresholds (Figure 8), likely because an increase in threshold
leads to the inclusion of more pixels, which filled in the “holes.”

The effect of including lighter pixels on particle size and shape
is also indicated in the roundness of particles (Figure 8). Those
algorithms with a higher median threshold estimated particles to
be both larger and rounder. An increase in roundness was likely a
result of, as for solidity, higher thresholds including more pixels,
such as “peripheral” pixels.

The complex relationship between size, solidity and roundness
highlights problems when reducing images to simple particle
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metrics such as ESD. Figure 2F, for example, shows a
colony (likely the diatom Chaetoceros socialis) that forms
large structures made of shorter chains of individual cells.
As a consequence, this particle is very loosely packed with
a large fraction of the particle within the convex hull being
above the threshold (S = 0.20). The traditional roundness
metric (area/F) suggests that this particle is very elongated
(Rtrad = 0.10), equivalent to an ellipse with a width of
30 px. However, the effective width of the particle (width
of ellipse with equivalent hull area and maximum length)
is 154 px. Our adapted roundness metric, which uses the
hull instead, suggests that the particle is reasonably round
(R = 0.52), which matches the particle image much better.
An inappropriate choice of particle shape descriptor that
does not take into account the particle’s solidity and/or an
inappropriate choice of threshold settings will result in a
wrong description of the particle population. Such distinctions
are important for the interpretation and modeling of how
particles behave, e.g., in terms of sinking velocity and
aggregation/disaggregation.

CONCLUSION

We here show that the choice of threshold algorithm is critical
in particle sizing and, consequently, POC concentration and
flux estimates. The final estimates can vary by >20% when
selecting different algorithms for analysing a single dataset. This
uncertainty is exacerbated when different methods are mixed,
such like the cases when datasets from different studies or even
devices are merged.

The knock-on effects of “blindly” mixing data sets are
likely most severe when the estimated particle sizes are run
through a series of conversions, as was done here. (1) First,
we imaged particles and estimated ESD using one method
and threshold setting. (2) We then used a conversion from
ESD to POC contents that was based on a different camera
system with an unknown threshold setting and calibration.
(3) We estimated the sinking velocity based on data from a
third camera system, again without clear knowledge of the
image analysis routine and calibration. (4) Finally, we multiplied
POC contents and sinking velocities to arrive at POC fluxes.
Each step introduces uncertainties leading, potentially, to large
errors in the final estimate of POC contents and fluxes. For
example, before accounting for solidity when calculating particle
POC content (Eq. 1), calculated POC concentrations based on
particle images were up to an order of magnitude higher than
measured concentrations.

The interpretation of particle shapes (e.g., solidity and
roundness) is also affected. Image analysis routines that
set a high threshold, and thus include more pixels, will
not only estimate particles to be larger than those using
a low threshold but also to have a different shape and
density. Uncertainty in particle shapes has implications
for data interpretation (e.g., density, sinking behavior)
and particle modeling (e.g., aggregation/disaggregation;
Burd and Jackson, 2009).

We conclude that it is important to make an informed decision
on the particle detection algorithm when analysing particle
images, and we therefore make the following recommendations:

1. The thresholding decision should be justified and clearly
stated in the method section for each study.

2. The threshold choice should be based on calibrations with
beads or natural aggregates of known size.

3. The equations used to describe particle size and shape
should be clearly stated.

4. To allow merging datasets from different devices, all
devices should be calibrated using the same calibration
standard.

Currently, there are no calibration standards for particle
sizing and no specifications on how to report thresholding. We
therefore urge a collective effort to develop calibration routines
and specifications to accurately describe particle size. Optical
particle measurements are rapidly emerging as a major tool for
understanding biogeochemical cycles and food webs in the ocean
(Lombard et al., 2019; Giering et al., 2020). To fully leverage these
exciting technological advances and the insights they provide,
the research community needs a framework that encourages
increased transparency in image analysis routines (including
threshold choices) and allows merging data from the plethora of
optical devices that are now used to explore the ocean.
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