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Abstract Aluto is a peralkaline rhyolitic caldera located in a highly populated area in central Ethiopia.
Its postcaldera eruptive activity has mainly consisted of self‐similar, pumice‐cone‐building eruptions of
varying size and vent location. These eruptions are explosive, generating hazardous phenomena that could
impact proximal to distal areas from the vent. Volcanic hazard assessments in Ethiopia and the East
African Rift are still limited in number. In this study, we develop an event tree model for Aluto volcano. The
event tree is doubly useful: It facilitates the design of a conceptual model for the volcano and provides a
framework to quantify volcanic hazard. We combine volcanological data from past and recent research at
Aluto, and from a tool to objectively derive analog volcanoes (VOLCANS), to parameterize the event tree,
including estimates of the substantial epistemic uncertainty. Results indicate that the probability of a silicic
eruption in the next 50 years is highly uncertain, ranging from 2% to 35%. This epistemic uncertainty has a
critical influence on event‐tree estimates for other volcanic events, like the probability of occurrence of
pyroclastic density currents (PDCs) in the next 50 years. The 90% credible interval for the latter is 5–16%,
considering only the epistemic uncertainty in conditional eruption size and PDC occurrence, but 2–23%
when adding the epistemic uncertainty in the probability of eruption in 50 years. Despite some anticipated
challenges, we envisage that our event tree could be translated to other rift volcanoes, making it an
important tool to quantify volcanic hazard in Ethiopia and elsewhere.

1. Introduction

Active volcanoes have the potential to cause extreme losses in terms of fatalities and casualties, damage to
property and critical infrastructure, and due to disruption of transport and supply chains (e.g., Auker
et al., 2013; Blong, 1984; Brown et al., 2017; Horwell &Baxter, 2006; Loughlin et al., 2015; Newhall et al., 2018;
Wilson et al., 2012). Therefore, quantifying volcanic hazard is a priority for the volcanological community,
and methods have increasingly been developed over recent decades (e.g., Aspinall et al., 2003; Bayarri
et al., 2009; Bebbington, 2013, 2014, 2015; Bevilacqua et al., 2016, 2017; Connor et al., 2001, 2012; Hincks
et al., 2014; Jenkins et al., 2012;Marzocchi et al., 2004, 2008, 2010;Newhall &Hoblitt, 2002; Sandri et al., 2012,
2018; Selva et al., 2014; Tierz et al., 2017; and many others, cf. Connor et al., 2015; Marzocchi &
Bebbington, 2012; Poland & Anderson, 2020; Tierz, 2020). Volcanic hazard quantification is particularly
urgent in Africa, where data scarcity and infrequent eruptions pose particular challenges.

Ethiopia is the second most populous nation (estimated ~110 million inhabitants; e.g., World Bank, World
Development Indicators, 2019) and the fastest growing economy in Africa (World Bank, https://data.
worldbank.org/region/sub-saharan-africa). Ethiopia also holds the largest number of Holocene volcanoes
(~60) in the African continent (e.g., Global Volcanism Program, 2013). Globally, Ethiopia ranks second only
to Indonesia in having the largest number of active volcanoes at the highest level of uncertainty related to
volcanic hazard (i.e., in terms of available data and monitoring activities, Aspinall et al., 2011).
Additionally, exposure to volcanic hazard is high in Ethiopia (Aspinall et al., 2011) and is rapidly
increasing with continued economic and industrial development (Aspinall et al., 2011; United Nations
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Development Programme, 2018; Vye‐Brown et al., 2016). Despite this, contributions to volcanic hazard
assessment in the East African Rift System (EARS) have been limited and are inevitably based on very
little data. They have consisted of preliminary regional volcanic hazard assessments (e.g., Aspinall
et al., 2011; Jenkins et al., 2015) alongside some overview contributions (e.g., Vye‐Brown et al., 2016;
Yirgu et al., 2014). Volcanological knowledge and supporting data sets are increasing in the form of:
geological maps, regional and local pyroclastic stratigraphies, physical interpretations of volcanic
processes, radiometric dates, and geochemical analyses (Clarke, 2020; Clarke et al., 2019; Fontijn
et al., 2010, 2011, 2012, 2018; Hunt et al., 2019; Hutchison, Pyle, et al., 2016; Hutchison et al., 2018; Iddon
et al., 2019; Martin‐Jones et al., 2017; McNamara et al., 2018; Rapprich et al., 2016). The collection and
compilation of such volcanological data sets are of paramount importance to quantify volcanic hazard
(e.g., Tierz, 2020) and also to underpin the design and implementation of volcano disaster risk reduction
strategies in Ethiopia and the wider East African region.

Aluto is a volcanic system in the central Main Ethiopian Rift (MER, Figure 1), which has recently shown
signs of volcanic unrest, as recorded by ground deformation, gas emissions, and seismic data (Biggs
et al., 2011; Hutchison et al., 2015; Hutchison, Biggs, et al., 2016; Wilks et al., 2017). There have been no
observed or documented historical eruptions. The volcano is located between the shallow Lake Ziway to
the north (2.5 m average‐depth, Hengsdijk & Jansen, 2006), Lake Langano to the south and East Ziway
(e.g., Hunt et al., 2020), a basaltic volcanic field with an unestablished relation to the Aluto volcanic system
(e.g., Fontijn et al., 2018; Hutchison, Pyle, et al., 2016), to the northeast. An estimated 200–300k people live
within a radius of approximately 20 km from the center of Aluto caldera (Clarke, 2020; Vye‐Brown
et al., 2016, and references therein). The caldera floor itself hosts numerous rural villages/settlements, a
school, and the Aluto‐Langano geothermal power station. The woredas (districts) of Ziway town (now called
Batu, ~44k inhabitants, Central Statistical Agency, 2007) and Adami Tullu/Jido Kombolcha (~141k inhabi-
tants, Central Statistical Agency, 2007) are located to the NW, W, and SW of the volcano.

Even though many questions still remain about the eruptive history of Aluto volcano (e.g., frequency‐mag-
nitude distributions), it is to date one of the best studied/well‐known volcanoes across the entire EARS. In
this work, we collect the existing volcanological knowledge on the Aluto volcanic system and its potential
eruptive behavior (much of which was acquired over the last decade) and use it to inform an assessment

Figure 1. Geographic and simplified volcanologic setting for Aluto volcano, in the Main Ethiopian rift. Adapted from Clarke et al. (2020). [Modifications © BGS‐
UKRI. Modified after © 2020 Clarke et al. Creative Commons Attribution License (CC BY)].
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of the long‐term volcanic hazard associated with future eruptions at the volcano, including the significant
uncertainties involved. The assessment presented in this work is meant to act as a framework to quantify
volcanic hazard at Aluto and not as a comprehensive, full volcanic hazard assessment of all its possible
hazardous phenomena before, during and after a future eruption.

We use an event tree model (Newhall & Hoblitt, 2002), which is a probabilistic graphical model
(Koller & Friedman, 2009) that encodes our understanding of how a given volcanic system functions (e.g.,
Newhall & Pallister, 2015). This represents one approach to model the joint probability distribution of erup-
tion onset, location, size, and style, including the occurrence of different volcanic hazardous phenomena,
such as tephra fallout, pyroclastic density currents (PDCs), or lava flows (e.g., Marzocchi et al., 2004,
2008, 2010; Neri et al., 2008; Newhall & Hoblitt, 2002; Newhall & Pallister, 2015; Sandri et al., 2012, 2014,
2018; Sobradelo et al., 2014; Sobradelo &Martí, 2010; Tierz et al., 2018; Tonini et al., 2015;Wright et al., 2019).
Hence, event trees are used to capture this natural variability in volcanic activity, or aleatory uncertainty,
which is the primary source of uncertainty in probabilistic volcanic hazard assessment, PVHA (e.g.,
Marzocchi et al., 2004; Tierz et al., 2018; Woo, 1999). Additionally, event trees can also be designed to incor-
porate and model the epistemic uncertainty, which is related to a lack of or incomplete knowledge, in order
to derive comprehensive PVHA (e.g., Marzocchi et al., 2004, 2008, 2010). Epistemic uncertainty has been
increasingly recognized as an important component of PVHA (e.g., Bebbington, 2013, 2014; Bevilacqua
et al., 2015, 2016, 2017; Hincks et al., 2014; Rutarindwa et al., 2019; Sandri et al., 2014, 2018; Selva et al.,
2018; Selva, Orsi, et al., 2012; Spiller et al., 2014; Stefanescu et al., 2012; Tierz et al., 2016). Epistemic uncer-
tainty in event tree models is seldom quantified explicitly using probability estimations coming from differ-
ent alternative data sets or models (e.g., Sandri et al., 2018). Commonly, it is subjectively assigned depending
on the confidence or reliability on the data available or the hazard modeling setup (Sandri et al., 2012, 2014;
Selva et al., 2010; Sobradelo &Martí, 2010; Tierz et al., 2018). It has also been estimated via expert elicitation
(e.g., Neri et al., 2008; Queiroz et al., 2008). In some more sophisticated approaches, it has been quantified
through model ensembles that integrate alternative assumptions on volcanological parameters such as the
grain size distribution, particle aggregation, or column‐collapse height (e.g., Sandri et al., 2018; Selva et
al., 2018). Here, we present a parameterization of the event tree model that accounts for epistemic uncer-
tainty by explicitly fitting probability density functions to alternative estimates of the frequency of different
events across the model, expanding the approach of Sandri et al. (2018). This method allows us to incorpo-
rate varied data from recent research carried out at Aluto volcano into our PVHA. In particular, we use data
coming from (1) proximal and distal volcanic deposits, (2) expert elicitation, and (3) sets of analog volcanoes
identified using the VOLCano ANalogues Search tool (VOLCANS, Tierz et al., 2019). All the hazard esti-
mates obtained through these data sets have been incorporated into our analysis and modeled homoge-
neously across the event tree model presented here.

In section 2, we summarize how past and present research has shaped the current volcanological knowledge
available for Aluto. In section 3, we describe how this critical volcanological knowledge is used to build and
parametrize an event tree model for Aluto, which serves as a conceptual model of the volcano as well as a
framework to quantify its associated volcanic hazard. In section 4, we present some illustrative results of
probabilistic assessments that can be derived from the model, including the effect of incorporating epistemic
uncertainty on different nodes of the event tree. Finally, in section 5, we discuss the implications of our find-
ings for PVHA at Aluto volcano and the challenges and opportunities to apply some of the approaches pre-
sented here to other volcanoes across the MER and the EARS.

2. Past and Present Volcanological Knowledge at Aluto
2.1. Regional Geological Context

TheMain Ethiopian Rift is a mature continental rift sector within the Eastern branch of the East African Rift
System (EARS, Figure 1). It stretches for over 500 km NE–SW in central Ethiopia, between the Afar triangle
to the north and the tectonic transition between the Kenya and Ethiopian rifts to the south (e.g.,
Chorowicz, 2005; Corti, 2009; Ebinger, 2005; Mohr, 1983; Wadge et al., 2016; Woldegabriel et al., 1990).
Aluto volcano is located in the central MER, the least mature portion of the MER, far younger (~5–6 Ma)
than the southern and northern MER (~18–11 Ma) (Figure 1; Corti, 2009; Keranen & Klemperer, 2008).
Continental rifting is commonly described as initiating on thick, cold, and predeformed continental
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lithosphere and evolving through progressive crustal thinning, heating (by magma intrusion), and increas-
ingly localized deformation, potentially culminating in the formation of new oceanic lithosphere
(e.g., Corti, 2009, 2012; Ebinger, 2005). Being the youngest sector of the EARS in Ethiopia, the central
MER has a thicker (up to 40 km), less‐deformed upper crust and is dominated by large silicic calderas, such
as Aluto, rather than by the basaltic volcanic systems that dominate the Afar rift to the north
(e.g., Corti, 2009; Fontijn et al., 2018; Hutchison et al., 2018; Kendall et al., 2005; Lahitte et al., 2003).

Magmas in the MER are generated by decompression‐driven (e.g., Rychert et al., 2012), low‐degree partial
mantle melting (Ebinger, 2005), with extensive fractional crystallization and minimal crustal assimilation
(e.g., Gleeson et al., 2017; Hutchison et al., 2018). This results in bimodal alkaline basalt and peralkaline rhyo-
lite erupted compositions (Barberi et al., 1974; Field et al., 2012;Hutchison, Pyle, et al., 2016; Iddon et al., 2019;
Peccerillo et al., 2003, 2007; Rooney et al., 2012). Due to an excess of alkalis, which increases the proportion of
nonbridging oxygens in the silica network, peralkaline rhyolites possess a relatively low viscosity in compar-
ison to nonperalkaline magmas with similar silica contents (Baasner et al., 2013; Di Genova et al., 2013;
Dingwell et al., 1998; Hess et al., 1995). Thus, at their respective eruption temperatures, hydrous peralkaline
rhyolites show viscosities similar to basalts, and even when they are dry, their viscosity is around two orders
of magnitude lower than a metaluminous rhyolite (Clarke et al., 2019; Di Genova et al., 2013; Dingwell
et al., 1998). An eruption of peralkaline rhyolite magma has never been observed worldwide (e.g., Clarke
et al., 2019), so our understanding of the nature of these eruptions relies solely on the geological record.
Known peralkaline rhyolite eruptions in the geological record that did not form calderas mostly produced
pumice cones (e.g., Clarke et al., 2019; Fontijn et al., 2018; Houghton et al., 1985; Orsi et al., 1989).
Interpretations of the eruption styles that have led to the creation of pumice cones on Pantelleria (Italy)
and Tuhua/Mayor Island (New Zealand) have been in part based on their resemblance to basaltic scoria
cones, suggesting low explosivity (possibly prolonged) Hawaiian to Strombolian eruption styles (Houghton
et al., 1985; Orsi et al., 1989). However, interpretations from recent studies in the MER indicate that
pumice cones in Ethiopia may have been generated by moderate to large explosive eruptions, which gener-
ated convective eruption columns, relatively widespread tephra fall, and PDCs (Clarke, 2020; Clarke
et al., 2019; Fontijn et al., 2018; Hutchison, Pyle, et al., 2016; McNamara et al., 2018; Rapprich et al., 2016).
Clearly, these findings bear significant implications for volcanic hazard assessment at Aluto and across the
MER, which need to be incorporated into hazard models such as the event tree presented in this work and
other possible approaches. Primary volcanic hazards are not the only volcanic hazards: The occurrence of
lahars, especially during the rainy seasons, could also be expected at Aluto (e.g., Bekele, 2017), as indicated
by numerous volcaniclastic water‐sediment‐flow deposits found on, and surrounding, the volcanic edifice
(e.g., Clarke, 2020; Hutchison, Pyle, et al., 2016). In the following subsection, we provide more details on
the current knowledge about eruption sizes and styles at Aluto volcano.

2.2. Previous and Contemporary Research at Aluto

The volcanic edifice of Aluto comprises a trachytic shield volcano incised by a 9 × 6 km elliptical caldera
(Hutchison, Fusillo, et al., 2016), which has later been buried by the products of numerous pumice cone
eruptions, including tephra fall and PDC deposits (e.g., Clarke, 2020; Fontijn et al., 2018; Hutchison, Pyle,
et al., 2016). The oldest rocks at Aluto are associated with its trachytic shield stage, comprising ~570 ka
trachyte lavas and tuffs (Hutchison, Pyle, et al., 2016), partly overlain by lake sediments. Between
~300–320 ka, Aluto underwent at least one, and perhaps two, caldera‐forming eruptions (Fontijn et
al., 2018; Hutchison, Fusillo, et al., 2016; Hutchison, Pyle, et al., 2016), generating low‐aspect ratio, peralka-
line rhyolite ignimbrites, and leaving a remnant caldera fault scarp in the NE of the caldera (Hutchison,
Biggs, et al., 2016; Hutchison, Fusillo, et al., 2016; Hutchison, Pyle, et al., 2016). Since at least 60 ka
(Hutchison, Pyle, et al., 2016), volcanism at Aluto appears, based on the geological record, to have been
dominated by pumice cone eruptions, which largely buried the underlying geology under proximal fall
deposits, relatively widespread tephra fall deposits, small volume ignimbrites, and silicic lava flows
(Clarke, 2020; Clarke et al., 2019; Fontijn et al., 2018; McNamara et al., 2018). Due to their ubiquity in the
recent eruption record at Aluto, these pumice cone eruptions are considered to be the most representative
eruption type for contemporary volcanic hazard assessment (e.g., Clarke et al., 2020). Nevertheless, it is cru-
cial to note that our event tree is wider in purpose and applicability, and it is not exclusively designed to
model eruptions similar to pumice cone eruptions (see section 3).
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Figure 2. A generalized sequence of a pumice‐cone building eruption at Aluto volcano, constructed from the geological record of several different, albeit similar,
eruptions (modified after Clarke, 2020; Clarke et al., 2020) [Modifications © BGS‐UKRI. Modified after © 2020 Clarke et al. Creative Commons Attribution
License (CC BY)]. Some pumice‐cone forming eruptions began with (1) the generation and collapse of an eruption column, producing tephra fall and PDC
deposits. Most eruptions examined at Aluto began with (2) the generation of a convective eruption column, producing relatively widespread tephra fall deposits
from the umbrella cloud. Material falling from the edge of the column, and ballistic tephra, built a shallow‐sloped pumice cone around the vent. These ultra‐
proximal deposits built as the eruption progressed to form a steep‐sided pumice cone. (3) As the eruption waned, the eruption column became unsteady,
repeatedly collapsing and reinitiating, producing intercalated tephra fall and PDC deposits. (4) The eruption ended with the emplacement of a silicic lava
flow, which could (or not) have been accompanied by explosive tephra production. The increased load on the pumice cone by the lava flow may result in
its partial collapse. Each pumice cone appears to be the product of a single eruption.
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Based on geological observations, pumice cone eruptions at Aluto appeared to follow a self‐similar eruption
sequence (Figure 2), albeit across a range of eruption sizes (Clarke, 2020; Clarke et al., 2019). According to
Clarke (2020), most eruptions began with the generation of a pumice cone, thought to be the product of
ultra‐proximal deposition of pyroclastic material around the vent, with coarse tephra falling from the edge
of an increasingly unsteady, convective eruption column, and deposition closer to the vent by ballistic ejec-
tion (Clarke et al., 2019; Fontijn et al., 2018). This is effectively the same process as that proposed for “ultra‐
proximal cones,” which are generated around Plinian eruption vents (Riedel et al., 2003). Toward the top of
pumice cone deposits, interbedded fall and PDC deposits are often found, coincident with a decrease in the
maximum pumice clast size (Clarke, 2020). This suggests a waning mass eruption rate and an eruption col-
umn that repeatedly collapsed (forming PDCs) and re‐established (producing tephra fall deposits). This is
consistent with the findings of Fontijn et al. (2018) andMcNamara et al. (2018), who suggested, largely based
on distal terrestrial and lake tephras fromAluto, that pumice cone eruptions were characterized by unsteady
eruption columns that may have ranged in intensity from violent Strombolian to sub‐Plinian. Pumice cone
eruptions at Aluto ended with the emplacement of a silicic lava flow (Clarke, 2020; Fontijn et al., 2018;
Hutchison, Pyle, et al., 2016), a feature also recognized at Corbetti, another silicic caldera in the MER
(Hunt et al., 2019), and other pumice cones globally (Houghton et al., 1985; Orsi et al., 1989). The explosivity
of this final eruption phase is highly uncertain, as the peculiar rheology of peralkaline rhyolite lavas means
that it is unclear whether they were emplaced entirely effusively like basaltic lavas or in a syn‐effusive‐explo-
sive fashion as was observed during recent eruptions of rhyolite lavas at Chaitén (Alfano et al., 2011) and
Cordón Caulle (Castro et al., 2013). Work by Hunt et al. (2019) on silicic lava flow morphometry at
Corbetti and Fentale volcanoes (other peralkaline rhyolite calderas in the MER) suggests that they closely
resemble calc‐alkaline rhyolite lava flows and that lava flow emplacement viscosities at Fentale are high,
at around 108–1011 Pa·s. This suggests that rhyolitic, rather than basaltic, lava analogs are most appropriate
for this phase of pumice cone eruptions.

3. Aluto Event Tree: Using Volcanological Knowledge to Quantify
Volcanic Hazard

In Figure 3, we present the event tree model used to conceptualize the Aluto volcanic system and quantify its
long‐term volcanic hazard. This event tree is the result of a complex iterative process that reflects changes in
our understanding of the volcano as well as trade‐offs related to the amount and types of volcanological data
available for the event tree parameterization (e.g., Marzocchi et al., 2004, 2010; Newhall & Hoblitt, 2002;
Newhall & Pallister, 2015). For the interested reader, we report the details of this iterative process, together
with previous versions of the Aluto event tree in the supporting information (see Text S1). Below, we focus
on describing the structure and parameterization of the Aluto event tree.

Figure 3. Structure of the Aluto event tree presented in this work. “Clone” denotes that the event tree structure is
replicated, starting from the node indicated (cf. Newhall & Hoblitt, 2002). Vertical dots in the “location” and
“reaching area” nodes indicate the existence of many branches/events. VEI: Volcanic Explosivity Index
(maximum event during an eruption), PDC: pyroclastic density current.
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The presented event tree is composed of six nodes: eruption, location, size, style, phenomena, and reaching
area (Figure 3). Below, we provide the definitions and the reasoning behind the parameterization of each
node in the event tree, including estimates for the epistemic uncertainty. We report the specific data sets
and probability density functions (PDFs) used to model this epistemic uncertainty in Figure 4 and Tables 1
and 2. The full parameterization of the nodes in the Aluto event tree is provided in Table 3 (e.g., Sandri
et al., 2012, 2018). We build a customized version of the event tree model using MATLAB (2012), although
we note that there are other tools, such as the BET_VH (Marzocchi et al., 2010) and PyBET_VH (Tonini
et al., 2015), available for this purpose. A simplified version of an event tree model, which does not account
for epistemic uncertainty, is provided in spreadsheet format by Newhall and Pallister (2015).

3.1. Node 1: Eruption

1. Definition: Long‐term occurrence of silicic eruptions at Aluto volcano (including potential initial phreatic
phases that evolve into eruptions involving fresh magma). We choose 50 years as the time scale of the
analysis, similar to previous volcanic hazard assessments (e.g., Bevilacqua et al., 2016; Sandri et al., 2018).

Figure 4. Description and evaluation of epistemic uncertainty for Nodes 1 (a), 3 (b) and 5 (c) of the Aluto event tree
model. The epistemic uncertainty associated with each node is quantified in a slightly different way, depending on the
type and amount of data available and some related assumptions (see sections 3.1, 3.3, and 3.5 for more details). P(·):
probability of event; AUnc: aleatory uncertainty; EUnc: epistemic uncertainty; PDF: probability density function;
PDist: probability distribution; VEI: Volcanic Explosivity Index; PDC: pyroclastic density current.
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2. Parameterization: We make use of four main sources of data to estimate the long‐term probability of a
silicic eruption. The different estimates reflect the presence of epistemic uncertainty in this node. We
model the latter using a Uniform PDF that spans the whole range of estimates, assigning them equal
probability (Figure 4a). We sample this PDF (106 times) and use these samples to propagate the epistemic
uncertainty through the other nodes of the event tree, in a similar way to previous studies (e.g., Sandri
et al., 2014, 2018).

The four sources of data are the following: (1) themost recent expert elicitation conducted in April 2018, dur-
ing the RiftVolc project (Crummy et al., 2018); (2) the tephrochronological study on lake‐core tephra layers

Table 1
Different Estimates for the Long‐Term Probability of Eruption at Aluto Volcano, According to Diverse Sources of Data Available

Data source Return period (year) Time window
Downscaled eruption rate

(eruptions/50 years) P(X ≥ 1) References

Distal pyroclastic deposits
(lake cores)

113a 2–12 ka 0.437 35 McNamara et al. (2018)
519b 0.091 9
1700b 0.024 2

Proximal & distal pyroclastic
deposits

250–333 0–12 ka 0.1–0.15 10–14 Fontijn et al. (2018)

Expert elicitation 142 100 kyr 0.352 30 Crummy et al. (2018)
Past eruptive vents 639 0–62 ka 0.077 7 This study (after Clarke, 2020;

Hutchison et al., 2015)

Note. Average return periods taken from the different sources are converted into average rates of eruptions and used to calculate the probability of at least one
eruption in the next 50 years (P(X ≥ 1)), following a simple Poisson model. Note that each return period is associated with a different time window and that the
rates are downscaled to the target time window of 50 years (see section 3.1 for more details). The collection of estimates (expressed in percentage in the table) is
interpreted as a representation of the epistemic uncertainty of Node 1 (Eruption) in the event tree (e.g., Marzocchi et al., 2010; Marzocchi & Jordan, 2014; Tierz,
Sandri, Costa, Sulpizio, et al., 2016) and modeled using a Uniform PDF that covers the whole range of estimates. In other words, the long‐term probability of (at
least one) eruption in 50 years is defined as P(X ≥ 1) ~ Uniform (2, 35) (%).
aAverage value of “pulses” in McNamara et al. (2018); standard deviation = 13 years. b

“Quiet periods” in McNamara et al. (2018).

Table 2
Different Estimates for the Probability of Eruption Size, Given Eruption, at Aluto Volcano, According to Diverse Sources of
Data Available

Data source No. of analogs P (VEI ≤ 2) P (VEI 3) P (VEI 4) P (VEI ≥ 5) References

Expert elicitation — — 0.305 0.006 — Crummy et al. (2018)
— — 0.714 0.054 —

— — 0.773 0.051 —

— — 0.252 0.102 —

— — 0.564 0.045 —

— — 0.302 0.041 —

— — 0.441 0.033 —

— — 0.781 0.143 —

VOLCANS set 1 50 0.838 0.067 0.095 0.000 This study (after Tierz
et al., 2019)100 0.747 0.093 0.151 0.009

VOLCANS set 2 50 0.798 0.017 0.102 0.083
100 0.692 0.022 0.199 0.087

VOLCANS set 3 50 0.738 0.012 0.188 0.063
100 0.744 0.021 0.155 0.081

VOLCANS set 4 50 0.787 0.013 0.133 0.067
100 0.766 0.028 0.137 0.069

Mean 0.764 0.275 0.102 0.057
Normalized mean 0.637 0.230 0.085 0.048
Variance 0.002 0.085 0.004 0.001

Note. Each estimate corresponds with a “realization” of the probability distribution for the eruption sizes and the col-
lection of estimates is interpreted as a representation of the epistemic uncertainty of Node 3 (Size) in the event tree (e.g.,
Marzocchi et al., 2010; Marzocchi & Jordan, 2014; Rougier et al., 2013; Tierz, Sandri, Costa, Sulpizio, et al., 2016). This is
modeled using a Dirichlet multivariate PDF whose variable means are equal to the (normalized) mean value of the esti-
mates for each eruption size and whose variance is constrained by the variable with the largest variance (P (VEI 3); see
section 3.3 for more details and the whole parameterization of the event tree in Table 3). Probabilities are indicated
between 0 and 1.
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by McNamara et al. (2018); (3) the MER‐wide stratigraphical study on tephra layers by Fontijn et al. (2018);
and (4) a data set of eruptive vents from postcaldera volcanism collected by Hutchison et al. (2015) and
refined by Clarke (2020). From all the sources, we extract an average rate of eruptions per time window
(the inverse of the average return period, including the current repose time) and use the Poisson distribution
to calculate the probability of at least one eruption during the target time window: next 50 years (Table 1).

FromCrummy et al. (2018), we take the consensus log‐normal PDF for the number of silicic eruptions in any
100 kyr period to calculate the average rate in such time window (~705 eruptions/100 kyr) and downscale it
to a 50 year‐period average rate (~0.352 eruptions/50 years). Note that this assumes that (1) the number of
eruptions per time period at Aluto may follow different distributions depending on the timescale (e.g.,
log‐normal PDF for 100 kyr periods versus Poisson distribution for 50 year periods) and (2) there is not
enough evidence against stationarity in the number of eruptions over short time scales (e.g., McNamara
et al., 2018, suggested nonstationarity on the scale of several kyr).

FromMcNamara et al. (2018), given the lack of data spanning the last 2 kyr, we assume that it is not known
whether Aluto volcano is currently in a “quiet period” or experiencing a “pulse in activity.” Therefore, we
use all the return periods provided by McNamara et al. (2018) to calculate a set of average rates of eruptions,
which we downscale to 50 years (Table 1). From Fontijn et al. (2018), we take their average rate of ~2–3 erup-
tions/kyr and downscale it to 50 years as well.

Finally, based on 96 postcaldera vents (Hutchison et al., 2015; revised by Clarke, 2020), and assuming an age
of ~62 ka for the oldest (Hutchison, Pyle, et al., 2016), we estimate at least 0.077 eruptions/50 years (Table 1).
We acknowledge that a number of vents, older than those identifiable on the surface, could have been buried
by the eruptive products of younger eruptions. Including these “buried vents” would affect the volcanic
hazard assessment (e.g., Wetmore et al., 2009). Unfortunately, we lack a data set of buried vents at Aluto.
Not being able to consider buried vents has the effect of artificially lowering the estimated average rate of
eruptions because we are missing eruptions (i.e., vents). On the other hand, the age of the oldest postcaldera
eruptive product remains unclear. Hutchison, Pyle, et al. (2016) dated an obsidian coulée at 62 ± 13 ka.
However, Clarke (2020) suggested that this might not correspond to the oldest postcaldera unit, given that
it rests on top of a thick pile of postcaldera deposits and has a “relatively fresh‐looking topography” (e.g.,
recognizable ogives, lack of gullying, and a low degree of revegetation) compared to other obsidian lava flows
at Aluto (Clarke, 2020). Therefore, if the 96 vents identified had been produced over a period of time longer
than ~62 ka, we would be artificially increasing the estimated average rate of eruptions at Aluto volcano.
Consequently, the two described effects have opposite implications for our estimate of 0.077 eruptions/
50 years.

3.2. Node 2: Eruption Location

1. Definition: Spatial occurrence of silicic eruptions (i.e., vent opening) at Aluto volcano.
2. Parameterization: We apply the same approach as Clarke (2020), based on field evidence that suggests

that individual pumice cones are monogenetic and that pumice cone vents are distributed across the edi-
fice (Clarke, 2020; Fontijn et al., 2018; Hutchison, Biggs, et al., 2016; Hutchison, Pyle, et al., 2016). A data
set with the locations of 96 past eruptive vents (Clarke, 2020; Hutchison et al., 2015), assumed to have
been formed since approximately 55–60 ka (Hutchison, Pyle, et al., 2016), is used to fit a Gaussian sym-
metric kernel function (e.g., Connor et al., 2018; Connor & Hill, 1995; Weller et al., 2006), with band-
width ~0.7 km (Clarke et al., 2020), to provide us with a bivariate PDF (UTM Easting‐Northing) for
the probability of future vent opening at Aluto, given eruption. Given the very limited information about
the ages of each of the specific vents, we are not able to reject the hypothesis of temporal stationarity in
the vent‐opening pattern. In other words, we assume that the data‐generating process responsible for the
formation of the available data set of vent locations remains meaningful for future vent locations at the
volcanic system (e.g., Connor & Hill, 1995). We note that epistemic uncertainty is not quantified at this
node, given the scarce information available for this task.

3.3. Node 3: Eruption Size

1. Definition: Occurrence of silicic eruptions of different VEI sizes at Aluto volcano.
2. Parameterization: We use several pieces of evidence to estimate the probability distribution of eruption

sizes, given eruption. First of all, we assume that eruption size is independent of vent location. This is
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supported by observations of self‐similar eruptive sequences in eruptions of varying sizes and sourced
from diverse locations at Aluto volcano (Clarke, 2020; Clarke et al., 2019).

We use data from two different sources to derive probability distributions of eruption size (Figure 4b): (1) the
expert elicitation results from Crummy et al. (2018) and (2) sets of top analog volcanoes identified with the
VOLCANS tool (Tierz et al., 2019). VOLCANS uses five volcanological criteria (tectonic setting, Ts; rock geo-
chemistry, G; volcano morphology, M; eruption size, Sz; and eruption style, St), and a structured combina-
tion of them, to quantify the overall multicriteria volcano analogy between any two volcanoes in the Global
Volcanism Program (GVP) database (Global Volcanism Program, 2013). The user is provided with full

Figure 5. Conditional probability distributions of eruption size (VEI) given eruption computed from different sets of analog volcanoes identified using the
VOLCano ANalogues Search tool (VOLCANS; Tierz et al., 2019). Four weighting schemes (see below) and different numbers of top analog volcanoes (10, 20,
50, 100, 200, and 500) are explored. Black dots indicate the global probability distribution of VEI given eruption, after correcting for under‐recording (Tierz et
al., 2019). Please note that “2” on the x‐axis denotes “VEI ≤ 2.” Weighting schemes used (abbreviations as in section 3.3 and Tierz et al., 2019): Al1: Ts = 1/3,
G = 1/3,M = 1/3, Sz = 0, St = 0; Al2: Ts = 0.5, G = 0.3,M = 0.2, Sz = 0, St = 0; Al3: Ts = 0.7, G = 0.2,M = 0.1, Sz = 0, St = 0; Al4: Ts = 0.9, G = 0.075,M = 0.025,
Sz = 0, St = 0.
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flexibility in the choice of the weights assigned to each criterion, when calculating the multicriteria analogy
(which represents a weighted average of single‐criterion analogy values, Tierz et al., 2019).

We take the probability distribution of eruption sizes for each top analog volcano, sample it randomly 104

times, cumulate the samples for each eruption size, and recompute a merged probability distribution of
eruption sizes, by combining the samples from all top analog volcanoes. We test the influence of the number
of top analog volcanoes used (10, 20, 50, 100, 200, and 500) in the estimates obtained for the merged prob-
ability distributions (Figure 5). We note that if the number of analog volcanoes is small (e.g., 10 and 20),
the computed probability distribution can be very unstable and not necessarily realistic (Figure 5). If the
number of analog volcanoes used is too high (e.g., 500), the probability distributions start to approximate
the global probability distribution of eruption sizes (e.g., Papale, 2018; Rougier et al., 2018), because we
are using almost one in every three volcanoes in the database. We find that using an intermediate number
of analog volcanoes can be a good compromise between deriving a probability distribution of VEI sizes that
may be characteristic of the volcano of interest and obtaining realistic, stable estimates of the probability of
different eruption sizes. In this work, we use 50 and 100 top analog volcanoes (see Data Sets S1–S4) to derive
the probability distributions of VEI sizes to parameterize our event tree model.

We explore four different weighting schemes in VOLCANS, all of which give preference (i.e., higher weights)
to tectonic setting over rock geochemistry over volcano morphology (NB). (We remove the rock type
“Dacite” from the GVP profile of Aluto volcano to run VOLCANS, because there is no evidence to support
the presence of such rock type in the post‐caldera erupted products of Aluto, e.g., Clarke et al., 2019; Fontijn
et al., 2018; Hutchison, Pyle, et al., 2016; Hutchison et al., 2018; Iddon et al., 2019; McNamara et al., 2018).
The reasoning behind this choice is that peralkaline volcanic systems are more likely to be tied to tectonic
settings similar to that of Aluto, especially because the GVP database, and thus VOLCANS, do not differenti-
ate peralkaline and metaluminous rock suites (Siebert et al., 2010). Volcano morphology is given the lowest
weight in all the explored weighting schemes because the intermediate value that Aluto has for the simpli-
fied morphology metric used by VOLCANS (MAluto = 0.579) is quite similar to the mean value of shield vol-
canoes (mean (Mshields) = 0.567, Tierz et al., 2019). Therefore, giving a high weight to the volcano
morphology criterion might generate some misleading sets of analog volcanoes (e.g., dominated by basaltic
shield volcanoes).

We obtain eight different estimates for the distribution of probability of eruption size, given eruption, from
VOLCANS (Table 2). From the expert elicitation of Crummy et al. (2018), we take another eight estimates
for the probability of VEI 3 and VEI 4 eruptions, by randomly sampling the PDFs of the variable “number
of VEI 3 and VEI 4 eruptions per 10,000 eruptions at Aluto volcano” (Crummy et al., 2018). The probability
of smaller and bigger eruptions was not assessed in this expert elicitation. The different probability distribu-
tions derived for the eruption size at Aluto volcano inform us of the presence of epistemic uncertainty for the
probability of different eruption sizes. We model this uncertainty using a Dirichlet multivariate PDF (e.g.,
Marzocchi et al., 2008, 2010), which assumes that the eruption sizes defined are mutually exclusive and
exhaustive events. We parameterize the Dirichlet PDF by calculating the mean of each of the variables
(i.e., VEI sizes) as equal, respectively, to the normalizedmean probability for each eruption size, as computed
from the different available sources (Table 2), and using the largest variance—P (VEI 3), Table 2—to calcu-
late the “number of equivalent data,” Λ, for the Dirichlet PDF (see equations 6 to 11 in the supplementary
material of Marzocchi et al., 2008). The latter represents a way of expressing the variance of the distribution
and can be understood, under a Bayesian perspective, as the number of (past) data required to significantly
modify the posterior distribution, by Bayesian updating, from the prior distribution (e.g., Marzocchi
et al., 2008, 2010). Like in Node 1, we sample the target PDF (106 times) and use these samples to propagate
the epistemic uncertainty through the other nodes of the event tree (e.g., Sandri et al., 2012, 2014, 2018).

3.4. Node 4: Eruption Style

1. Definition: Occurrence of different eruptive styles (dry magmatic and phreatomagmatic) during silicic
eruptions at Aluto volcano.

2. Parameterization: We rely on data coming from the GVP 4.6.7 database (Global Volcanism
Program, 2013) to estimate the proportion of eruptions, for each eruption size, that may display phreato-
magmatic or dry volcanic activity only. We note that, although there is constant updating and upgrading
of the GVP resources, some inadequacies may still be present in the data set (e.g., Ogburn et al., 2015;
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Siebert et al., 2010; Tierz et al., 2019). We treat these two events as mutually exclusive and exhaustive
events, that is, each eruption may include phreatomagmatic activity or not.

In Node 3, data coming from sets of top analog volcanoes were used to calculate the probability distributions
of eruption size. In Nodes 4 and 5, we use data from any volcanic system in the GVP database that has erup-
tions with phreatomagmatic activity. We then weight the data coming from each different volcano according
to its degree of analogy calculated with VOLCANS (see Data Set S5). This allows us to compute the probabil-
ity of phreatomagmatic and dry magmatic eruptions at Aluto volcano and accounting for the degree of ana-
logy between each available volcano and our target volcano (Tierz et al., 2019). The formula used is the
following:

f ph xð Þ ¼
∑
I

i
∑
J

j
1ij xð ÞAiAluto

∑
I

i
∑
J

j
AiAluto

(1)

where fph(x) is the frequency of phreatomagmatic eruptions for VEI size x, 1ij(x) is the indicator function for
the jth eruption of size x at volcano i, and AiAluto is the multicriteria analogy value between volcano i and
Aluto volcano. In this way, the presence or absence of phreatomagmatic eruptions from volcanoes with high
value of analogy with Aluto will count more in the final calculation of fph(x). If all volcanoes in the available
data set had the same value of multicriteria analogy with Aluto, formula (1) would return the classical fre-
quency, that is, total number of phreatomagmatic eruptions divided by the total number of eruptions.

We use the same four weighting schemes as in Node 3 to calculate the multicriteria analogy between the
available set of volcanoes and Aluto, using VOLCANS. The different estimates obtained for the conditional
probability of dry magmatic and phreatomagmatic eruptions at Aluto are a representation of the epistemic
uncertainty for this node. We note that these estimates differ by a maximum value of 8 · 10−3, across all erup-
tion sizes. Given these very low values, we choose not to model the epistemic uncertainty in this node (see
Table 3).

3.5. Node 5: Hazardous Phenomena

1. Definition: Generation of different hazardous phenomena (tephra fallout, PDCs, lahars, and lava flows)
during and/or after in the case of lahars, silicic eruptions at Aluto volcano.

2. Parameterization: We also use the GVP 4.6.7 database to extract data on the occurrence of different volca-
nic hazardous phenomena.We use the same set of volcanoes as in Node 4 andweight their data according
to the analogy values computed from VOLCANS, using the same weighting schemes as in Nodes 3 and 4.
The probability of generation of each hazardous phenomenon is conditioned upon both the eruptive style
(i.e., dry magmatic and phreatomagmatic eruptions) and the eruption size (VEI), the latter being particu-
larly important for phenomena such as PDCs (e.g., Newhall & Hoblitt, 2002; Sandri et al., 2018). Also, in
the same way as in Node 4, we use four different weighting schemes to calculate themulticriteria analogy
between the available set of volcanoes andAluto, usingVOLCANS. This provides uswith a representation
of epistemic uncertainty for Node 5 (Uniform PDFs covering the range of conditional probabilities,
Figures 4c–4d) which we explore by sampling the Uniform PDF and propagate through the other nodes
of the event tree. In the case of PDCs, we extend the upper limit of the Uniform PDF to 1, to include a
somewhat “maximum hazard,” precautionary estimate as in Clarke et al. (2020). In other words, any
value of the probability of PDC occurrence given eruption below 1 would represent a lower PDC hazard.
Note that our estimations of the probability in nodes 4 and 5 are not specifically designed for caldera‐form-
ing eruptions, although the latter are included in relation to the VEI ≥ 5 branch/event.

3.6. Node 6: Reaching Area of Hazardous Phenomena

1. Definition: Occurrence of different hazardous phenomena on specific points around the volcano.
2. Parameterization: We refer to Clarke et al. (2020) for an example of a probabilistic hazard assessment of

PDC invasion at Aluto, conditional on the occurrence of a silicic eruption producing PDCs at the volcano.
In that work, the authors used an Energy Cone‐Monte Carlo approach (e.g., Sandri et al., 2018; Tierz
et al., 2016; Tierz, Sandri, Costa, Sulpizio, et al., 2016) to quantify aleatory uncertainty in PDC
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inundation at Aluto. They built PDFs for the collapse height (H0) and effective friction (φ) parameters of
the energy cone that were applicable across the expected eruption intensities for pumice cone eruptions
at Aluto (Clarke et al., 2020), without an explicit partition in terms of VEI. The PDF for H0 was derived
from an innovative multimodel strategy that uses the PlumeRise model of Woodhouse et al. (2013) to
constrain the height of the top of the gas‐thrust region for eruptive conditions expected at Aluto
(Clarke et al., 2020; Ben Clarke, unpublished data). The PDF for φ was obtained from pumice‐flow
data in Ogburn (2012), after manually filtering the data set for PDCs that resembled those interpreted
from the deposits studied at Aluto volcano (Clarke, 2020; Clarke et al., 2020). PDC volumes of the
selected pumice flows ranged between approximately 104 and 108 m3. The development of other
parameterizations for alternative hazardous phenomena is discussed in section 5.1.

4. Event Tree Results

We illustrate a few examples of joint, marginal, and conditional probabilities for different volcanic events
that can be derived through the event tree model. These can be loosely interpreted as eruption scenarios or
eruptive settings (e.g., Biass et al., 2016; Marzocchi et al., 2010; Sandri et al., 2014; Selva et al., 2010; Tierz
et al., 2018). It is important to note that event tree models, like other volcanic hazardmodels, are quantitative
tools that offer the user full flexibility on the choice of scenarios to be explored. The focus on specific scenar-
ios is seldom based on volcanological grounds exclusively (Papale, 2017), due to the complicated links
between volcanic hazard and risk management under uncertainty at volcanic systems (e.g., Aspinall
et al., 2002; Marzocchi et al., 2012; Marzocchi & Woo, 2007).

4.1. Occurrence of Silicic Eruptions

Considering all available estimates, the long‐term (50 years) probability of one or more silicic eruptions at
Aluto volcano ranges from 2% to 35% (Table 1), both estimates are from assumptions based on McNamara
et al. (2018). The estimate based on the number of postcaldera past vents identified at the surface is closer
to the lower limit while the estimate based on the elicitation exercise by Crummy et al. (2018) is closer to
the upper limit. The estimates from the work of Fontijn et al. (2018) are closer to the mean of the
Uniform distribution (Figure 4a). The effect of the epistemic uncertainty on the long‐term probability of
silicic eruptions at Aluto is reflected in the estimates of the probability of eruption size and occurrence of
PDCs (see next subsections).

4.2. Size of Silicic Eruptions

We report the values for conditional (i.e., eruption size given silicic eruption, Figure 6a) and joint (i.e., silicic
eruption and eruption size, Figure 6b) probabilities for the size of silicic eruptions at Aluto, including the

Figure 6. Conditional and joint probabilities of eruption size at Aluto volcano, as computed with the event tree model
presented in this work. (a) Conditional probability of eruption size (VEI) given eruption at Aluto, accounting for
epistemic uncertainty; (b) Joint probability of eruption (in 50 years) and eruption size (VEI) at Aluto, accounting for
epistemic uncertainty. Node numbering as in Figure 3.
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effect of epistemic uncertainty on both nodes 1 and 3 of the event tree. The mean conditional probability of
VEI ≤ 2 is around 67%, making it the most‐likely eruption size in future eruptions, followed by VEI 3 erup-
tions, with a mean conditional probability of 23%. The mean conditional probability for VEI≥ 5 eruptions at
Aluto is just below 5% (Table 2). Although the parameterization of our event tree does not consider VEI ≥ 6
eruptions separately, we report here that the mean conditional probability of occurrence of VEI 6 and VEI 7
eruptions, respectively, is about 4% and 0.1%, considering the eight different sets of analog volcanoes from
VOLCANS used to parameterize the event tree (see Figure 5, Table 2, and Data Sets S1–S5).

The effect of epistemic uncertainty on the conditional probability for VEI ≤ 2 and VEI 3 eruptions is signifi-
cant (Figure 6a). In the case of VEI 4 and VEI ≥ 5 eruptions, their marginal Beta PDFs indicate that they are
unlikely to occur but, accounting for epistemic uncertainty, their maximum conditional probabilities of
occurrence can be above 80%. It should be noted that any sample from the variables of the Dirichlet PDF
(i.e., conditional probability of eruption sizes) sums up to 1; therefore, if the conditional probability of, for
example, a VEI 4 eruption is high, for that sample, the conditional probabilities for the remaining VEI sizes
must be lower in order to satisfy this requirement.

In terms of the joint probability of eruption and eruption size (Figure 6b), VEI ≤ 2 and VEI 3 eruptions are
the most likely but, when we consider the long‐term probability of eruption and its epistemic uncertainty,
the probability values are much lower and their marginal distributions are all positively skewed and, more
skewed in general. This implies that the probability of eruptions of different sizes in the next 50 years are
generally low. For example, the mean probability of VEI ≤ 2 is 12%, and mean probabilities for VEI 3 or
VEI 4 eruptions are about 4% and 2%, respectively. However, it is also observed that, considering the episte-
mic uncertainty, there is a nonzero likelihood that the (true) probability of VEI ≥ 5 eruptions in the next
50 years may be almost 25% (Figure 6b).

4.3. Occurrence of Pyroclastic Density Currents

We explore the probability of occurrence of one of the most hazardous volcanic phenomena: PDCs. We focus
on the marginal probability of PDCs in the next 50 years, P (PDC; 50 years), and explore the PDFs obtained
when taking into account the epistemic uncertainty in different nodes of the event tree model for Aluto vol-
cano. To obtain this marginal probability, we use the following formula:

P PDC;50 yearsð Þ ¼
∑ i ∑ j P eruption50 years; ersizei; erstylej ; PDC

� �
¼

P PDCjeruption50 years; ersizei; erstylej
� �

P stylejjeruption50years; ersizei
� �

…

P ersizeijeruption50 years
� �

P eruption50 years

� �
¼ P PDCjersizei; erstylej

� �
P erstylejjersizei
� �

P ersizeijeruption50 years
� �

P eruption50 years

� �

(2)

where eruption50 years is the long‐term probability of silicic eruption, ersizei is the probability of the ith
eruption size, erstylej is the probability of the jth eruption style (i.e., wet or dry eruptions). Note how
the independencies borne by the event tree model (e.g., P(erstylej ⊥ eruption50 years|ersizei) permit simpli-
fication of some terms in Equation 2.

In particular, we compute the following cases for P (PDC; 50 years): (1) only epistemic uncertainty for Node
5 (Figure 4c) is incorporated, while the mean probabilities (i.e., aleatory uncertainty only) are used in Nodes
1 and 3 (Figure 7a); (2) only epistemic uncertainty for Node 1 (Figure 4a) is incorporated, while the mean
probability for Node 3 and the maximum probability for Node 5 (Clarke et al., 2020) are used (Figure 7b);
(3) epistemic uncertainty for Nodes 3 and 5 (Figures 4b and 4c) is incorporated, while the mean probability
for Node 1 is used (Figure 7c); and (4) all the epistemic uncertainty accounted for in our event tree model is
incorporated (Figure 7d).

Several aspects are evidenced in these graphs. First of all, not only the extent of the epistemic uncertainty for
P (PDC; 50 years) changes between graphs but, importantly, also the shape of the PDF is modified. The lat-
ter, in turn, conditions the estimate for the aleatory uncertainty as the mean of the distribution (dashed line
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in Figure 7). The extent of the epistemic uncertainty can be expressed, for instance, as the interval between
lower and upper percentiles of the PDF for P (PDC; 50 years). We use the 5th and 95th percentiles (solid lines
in Figure 7) to stress the effect of skewed PDFs in the interval (Figure 7d). According to our estimates, the
extent of the epistemic uncertainty is largest when considering the epistemic uncertainty in P
(eruption50 years) only (about 30%, between 4% and 34%, Figure 7b) and smallest when considering the
epistemic uncertainty in P (PDC|ersizei, erstylej) only (around 11%, between 5% and 16%, Figure 7a). When
accounting for the epistemic uncertainty in Nodes 1, 3, and 5, the extent of the total epistemic uncertainty
for P (PDC; 50 years) is approximately 21%, between 2% and 23% (Figure 7d). This may seem counter‐
intuitive because one may think that the more epistemic uncertainty is accounted for, the greater the
overall extent of the epistemic uncertainty in the final computed PDF. However, this extent depends on
(a) the specific node where the extent of epistemic uncertainty is being evaluated (Node 5 in our case); (b)
the node(s) where the epistemic uncertainty is being accounted for (different combinations of Nodes 1, 3,
and 5, in Figure 7); and, finally, (c) the combinatorial probabilistic calculations that take place to compute
the final PDF, which depend on the location and shape of the different PDFs involved (e.g., the
multiplication of samples drawn from two Uniform distributions tends to an exponential‐like distribution).

Figure 7. Marginal probability of PDC occurrence in 50 years (see formula 2) at Aluto volcano, as computed with the
event tree model presented in this work. Different insets illustrate the effect on this marginal probability of
incorporating the epistemic uncertainty of different nodes within the event tree: (a) epistemic uncertainty in the
conditional probability of PDC occurrence, given eruption size and eruption style (Node 5); (b) epistemic uncertainty in
the probability of eruption in 50 years (Node 1); (c) epistemic uncertainty in the conditional probability of eruption size
given eruption and in the conditional probability of PDC occurrence, given eruption size and eruption style (Nodes 3
and 5); (d) epistemic uncertainty in the probability of eruption in 50 years, in the conditional probability of eruption size
given eruption and in the conditional probability of PDC occurrence, given eruption size and eruption style
(Nodes 1, 3, and 5). Solid lines denote the mean of the distribution sample and dashed lines denote the
5th and 95th percentiles (90% credible interval) of the distribution sample.
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In our explored examples, the epistemic uncertainty in Node 1 (eruption) is of paramount importance
because its aleatory and epistemic uncertainties propagate into the calculation of the probability of any of
the nodes in the model. In Figure 7b, given that we assume P (PDC|eruption) = 1 (see above), we are actually
displaying the long‐term probability of eruption. In other words, if P (PDC|eruption) = 1, then P (PDC;
50 years) = P (eruption; 50 years). The estimates of P (PDC; 50 years) when considering the epistemic uncer-
tainty in Nodes 3 (size) or Nodes 3 and 5 (phenomena) are relatively similar (Figures 7a and 7c). In the latter
case, both the mean probability and the minimum probabilities are slightly lower, likely due to the incor-
poration of estimates for P (VEI ≤ 2) and P (VEI 3) that are above the mean (Figure 6a) and because these
small eruption sizes tend to have conditional probabilities of PDC occurrence that are lower than those of
larger eruption sizes (Figure 4c). Finally, when the epistemic uncertainty in all the nodes is accounted for,
the overall effect is that of making the PDF for P (PDC; 50 years) more skewed (Figure 7d). When compared
to Figure 7c, the incorporation of the epistemic uncertainty in P (eruption; 50 years) results in low values of P
(PDC; 50 years) being more likely, due to the incorporation of below‐average estimates of the former prob-
ability. However, it also results in high values of P (PDC; 50 years) being more likely, due to the incorpora-
tion of above‐average estimates. In other words, the PDF displayed in Figure 7d has collapsed and spread
around the mean probability, compared to the PDF in Figure 7c, and this has the effect of increasing the
overall extent of the epistemic uncertainty from 12% in the latter to 21% in the former.

5. Discussion
5.1. Probabilistic Volcanic Hazard Assessment at Aluto

The event tree model presented here represents a framework to quantify volcanic hazard at Aluto volcano
that can be coupled with hazard assessments for specific hazardous phenomena to compute integrated
PVHA, similar to other volcanic systems (e.g., Bartolini et al., 2014; Becerril et al., 2014; Sandri et al., 2014,
2018; Tierz et al., 2018). The development of the event tree at Aluto benefits from the availability of indispen-
sable volcanological data derived from past and recent research activities (Clarke, 2020; Clarke et al., 2019;
Dakin & Gibson, 1971; Di Paola, 1972; Fontijn et al., 2018; Hutchison, Fusillo, et al., 2016; Hutchison, Pyle,
et al., 2016; Kebede et al., 1985; McNamara et al., 2018). The parameterization of the event tree is an attempt
to incorporate diverse sources of information, as aleatory and, especially, epistemic uncertainty, that can be
relevant in terms of the overall volcanic hazard that the volcano poses. Unfortunately, there still remain sub-
stantial gaps in our knowledge of the eruptions at Aluto (e.g., eruption ages, volumes, mass eruption rates,
spatial distribution of PDC and other types of deposits, etc.), so epistemic uncertainty remains a key element
of the PVHA. In particular, the epistemic uncertainty in the long‐term probability of eruption has a funda-
mental role for the event tree assessments (Figures 6 and 7). One possible strategy to reduce this epistemic
uncertainty is through additional fieldwork and dating of volcanic products in the proximal and medial sec-
tors of the volcano. For instance, this may help unravel whether Aluto volcano is currently on a “quiet” per-
iod or a “pulse” (McNamara et al., 2018) or even if such nonstationary behavior is expected to hold on the
timescale of the last 2–3 kyr. Concerning eruption size, there is very little information for Aluto, apart from
a ~VEI 3–4 event (Fontijn et al., 2018; Hutchison, Pyle, et al., 2016). Further fieldwork would be required to
map deposits and derive a collection of erupted volumes for eruptions at Aluto. This would serve to better
understand what the aleatory uncertainty (i.e., the true distribution of eruption sizes) may be at the volcano.
Additional expert elicitations (e.g., Crummy et al., 2018; Jenkins et al., 2015) can also help reduce the epis-
temic uncertainty, as it has been demonstrated elsewhere how repeating this type of exercises can foster con-
sensus among the group of experts (e.g., Selva, Marzocchi, et al., 2012). Our approach of using VOLCANS
stands as an innovative avenue to try to tackle the problem of data scarcity. The results obtained using this
tool seem reasonable, considering the current state of knowledge about Aluto volcano. As previously intro-
duced, these results include the (unlikely) possibility of very‐large‐size eruptions (e.g., VEI ≥ 6) at the sys-
tem. Nevertheless, it must be noted that one current problem with this approach is that the analogs
identified for rift volcanoes may tend to be data‐scarce themselves (e.g., very few to no eruptions stored in
the global databases). Consequently, there is an urgent need to incorporate recent volcanological knowledge
on rift volcanism (e.g., Clarke, 2020; Clarke et al., 2019; Fontijn et al., 2010, 2012, 2018; Hunt et al., 2019,
2020; Hutchison et al., 2018; Hutchison, Biggs, et al., 2016; Hutchison, Fusillo, et al., 2016; Hutchison,
Pyle, et al., 2016; Martin‐Jones et al., 2017; McNamara et al., 2018; Rapprich et al., 2016; Siegburg et
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al., 2018; Vye‐Brown et al., 2016; Wadge et al., 2016) into relevant databases that can be used to compute
PVHA (Tierz, 2020).

5.2. Portability of Event Trees Across the Main Ethiopian Rift

Event tree models are very useful hazard tools that have been widely applied to a large number of volcanic
systems worldwide (see, for instance, Newhall & Pallister, 2015). Three main advantages make them parti-
cularly suitable to quantify volcanic hazard at different volcanoes. Firstly, their design and structure are gen-
eric (Marzocchi et al., 2008, 2010; Newhall & Hoblitt, 2002), meaning that event trees can be easily adapted
to a particular volcano (e.g., Aspinall et al., 2002; Newhall & Pallister, 2015; Queiroz et al., 2008; Sobradelo &
Martí, 2010). Secondly, once implemented, the structure of the event tree for a particular volcanic system
tends to be stable in time, particularly during noneruptive periods. That is, changes in the event tree para-
meterization may occur in time as new information becomes available, but the structure may remain vir-
tually the same (e.g., Somma‐Vesuvius, Italy; Marzocchi et al., 2004, 2008; Sandri et al., 2009, 2016, 2018;
Tierz et al., 2017, 2018). Finally, event trees are easy to understand, visualize, and model because of the
partitioning of volcanic events in nodes and branches. This modularity is beneficial both conceptually
(i.e., different structures can be explored and discussed, see Text S1 and Figure S1) and computationally
(i.e., nonconsecutive nodes tend to be independent of each other, given the intermediate node; therefore,
the calculation of conditional and joint probabilities is simplified, e.g., Newhall & Hoblitt, 2002;
Marzocchi et al., 2008, 2010; Sobradelo & Martí, 2010). However, event trees also have some notable limita-
tions such as (a) they are not optimal for dynamic hazardmodeling, in the context of short‐term variations in
the probability of occurrence of hazardous phenomena related to changes in triggering factors or mechan-
isms (e.g., Tierz et al., 2017; Wolpert et al., 2018); and (b) they are not the best suited model for “intra‐erup-
tion forecasting,” that is, modeling transitions between eruptive styles during a given eruption, especially
when the types of eruptive phases/stages are numerous and/or their temporal sequences are long and com-
plex (e.g., Bebbington & Jenkins, 2019; Cassidy et al., 2018; Jenkins et al., 2007; Ogburn et al., 2015;
Sheldrake et al., 2016). We acknowledge that event trees have been previously applied to intraeruption fore-
casting (e.g., Aspinall et al., 2002; Monserrat Volcano Observatory et al., 1998; Newhall & Pallister, 2015;
Wright et al., 2019) but suggest that other statistical models, such as Markov Chain models (e.g., Aspinall
et al., 2006; Bebbington, 2007; Bebbington & Jenkins, 2019), may be better suited for this purpose. In any
case, we also remark that defining “intraeruption” is implicitly associated with defining “eruption,” which
still remains a very complicated issue in modern volcanology (e.g., Bebbington & Jenkins, 2019; Sheldrake
et al., 2016; Siebert et al., 2010; Wadge et al., 2014). Finally, it is important to note that event trees can be
combined with other uncertainty quantification techniques (e.g., Sandri et al., 2018; Tierz et al., 2017,
2018), and this could potentially help alleviate the aforementioned issues.

Notwithstanding the described limitations, we suggest that event trees could be a key tool to quantify volca-
nic hazard at silicic centers and basaltic volcanic fields across the MER and, generally, East Africa. The para-
meterization, and probably the structure, of event trees for different volcanoes in the region will need to be
different than the one presented here for Aluto, for instance, to reflect differences in eruptive activity at each
volcanic system (e.g., phreatomagmatic activity and hazardous phenomena). Some volcanoes may show a
tendency to source eruptions that are either predominantly explosive or effusive from different areas. For
example, at Corbetti caldera, based on geological studies, the Urji edifice, on the central‐western caldera
floor, has mostly erupted explosively while the Chabbi edifice, on the eastern rim of the Corbetti caldera,
has mostly erupted obsidian lava flows (Fontijn et al., 2018; Martin‐Jones et al., 2017; Rapprich et al., 2016).
These particularities must be reflected in the event tree models that aim to quantify volcanic hazard at each
volcanic system. It is of course also important to recognize that there are uncertainties in the geological
record in terms of exposure and preservation of the deposits of past eruptions (e.g., Engwell et al., 2013).

The opportunity to parameterize different event trees using analog volcanoes as a proxy for the volcano of
interest has been preliminarily shown here for Aluto using the newly developed VOLCANS tool (Tierz
et al., 2019). This allows us to fully parameterize the event tree, including estimates of epistemic uncertainty.
A finer‐tuned search for analog volcanoes could also be explored, which could start from (subjectively)
removing some analogs from the sets identified with VOLCANS. Some good analogs for Aluto that have
been previously proposed are the following: Pantelleria, Italy (Clarke, 2020; Crummy et al., 2018; Fontijn
et al., 2018; Jenkins et al., 2015); Monte Pilato, Lipari, Italy (Crummy et al., 2018; Fontijn et al., 2018),
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Newberry, USA (Crummy et al., 2018), Tuhua/Mayor Island, NZ (Clarke, 2020; Jenkins et al., 2015), Gran
Canaria, Spain (Jenkins et al., 2015), and peralkaline caldera systems in general (Clarke, 2020;
Mahood, 1984). It should be noted that, given the acute data scarcity across the MER, fine‐tuning the
analog search may be challenging and the derived sets of analog volcanoes may have very few volcanoes
to use. In the end, to estimate a given hazard variable of interest (e.g., distribution of VEI sizes), it might
remain a compromise between choosing a one‐for‐all parameterization (e.g., Mastin et al., 2009), using
one or very few analog volcanoes; or an all‐for‐one parameterization (Tierz et al., 2019), where more
general analogs are identified and a larger set of them is used to obtain an average estimate of the hazard
variable. Better understanding and optimizing this trade‐off between the amount of objectivity and
subjectivity that is introduced in a given set of analog volcanoes will likely be a topic for future research.

5.3. Challenges of Building Event Trees at Rift Volcanoes

Despite the potential of event tree models to be adapted to different volcanoes across the MER, it is also
important to note some general and setting‐specific challenges implied in building an event tree for a per-
alkaline caldera in a continental rift.
5.3.1. Bimodal Magmatism
The occurrence of bimodal magmatism complicates the design of the “Eruption” and “Location” nodes
(Figure S1). In any bimodal volcanic system, the hazard analysis should acknowledge the possibility of dif-
ferent magma compositions being erupted across a given (large) area. One major challenge is understanding
the coupling between the feeding systems of the two end‐member geochemical compositions. For example,
in Iceland, the geochemical evidence suggests that central volcanoes are more likely to erupt evolvedmagma
compositions, but fissure swarms, which typically erupt basaltic magmas, belong to the same feeding system
as the evolved magmas (e.g., Sigmundsson et al., 2015; Thordarson & Larsen, 2007). In central Ethiopia, this
link, or the absence of it, between rhyolitic and basaltic volcanic products is still under debate (e.g., Fontijn
et al., 2018; Giordano et al., 2014; Hutchison, Fusillo, et al., 2016; Hutchison, Pyle, et al., 2016). At Aluto, the
two compositions seem to be spatially partitioned, with basaltic volcanism occurring along the East Ziway
volcanic field and the Wonji fault belt and silicic volcanism occurring almost exclusively across the volcanic
edifice of Aluto and surroundings (e.g., Fontijn et al., 2018; Hutchison, Pyle, et al., 2016). Nevertheless, it
seems unlikely that there would be no spatial overlap between silicic and basaltic volcanism, especially in
some MER volcanic systems other than Aluto (e.g., Tullu Moye, Boset‐Baricha; Fontijn et al., 2018;
Siegburg et al., 2018). Two event‐tree configurations could be adopted to tackle these issues: (a) probability
of location given eruption composition is the parameter of the event tree (Figure S1c) or (b) probability of
eruption composition given location is the parameter of the event tree (e.g., Sobradelo & Martí, 2010). In
the first case, different data sets may be used to compute vent‐opening probabilities for the different magma
compositions and normalization factors should be used to ensure that the following expressions hold true: Σi
P (venti |silicic eruption) = P (silicic eruption), Σi P (venti |basaltic eruption) = P (basaltic eruption) and,
importantly, Σi P (venti|silicic OR basaltic eruption) = 1, assuming that P (silicic OR basaltic
eruption) = P (eruption). In the second case (b) above, a common data set could be used to assess P (vent-

i|eruption) but then P (silicic|venti) and P (basaltic|venti) should be estimated. We anticipate that this may
become complicated, even if vent locations are grouped into sectors (e.g., Marzocchi et al., 2008;
Sobradelo & Martí, 2010).
5.3.2. Phreatic and Phreatomagmatic Explosive Activity
One recurrent issue encountered while designing the event tree models was the spatial and temporal occur-
rence of phreatic and phreatomagmatic explosive activity (see Text S1 and Figure S1). In the first version of
the event tree (Figure S1a), the focus at the “Eruption” node was on being able to discern between eruptions
generating phreatic explosions only, and eruptions that may start with phreatic and/or phreatomagmatic
explosions but then evolve toward other main eruptive phenomenology (e.g., Eyjafjallajökull 2010,
Dellino et al., 2012; Sinabung 2013–2018, Gunawan et al., 2019). Our final event tree incorporates the latter
situation only. The occurrence of phreatic explosions only may be explored in future expansions of the event
tree toward short‐term forecasts (Constantinescu et al., 2016; Rouwet et al., 2014). The spatial likelihood of
phreatic and phreatomagmatic activity was also greatly debated, given that Aluto has developed a mature
hydrothermal system (e.g., Braddock et al., 2017; Hutchison et al., 2015; Hutchison, Biggs, et al., 2016;
Wilks et al., 2017), and there are permanent sources of shallow groundwater and surficial water available
nearby, for example, lakes Ziway and Langano (Benvenuti et al., 2002). In addition, the effect of the rainy
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seasons (belg, February–May; and kiremt, June–September) at Aluto can lead to the formation of a tempor-
ary intra‐caldera lake (Friedrick Samrock, pers. comm., Fig. 3.47 in Clarke, 2020). Thus, the seasonal
patterns in rainfall imply transient changes in the spatial probability of phreatic and phreatomagmatic
explosive activity. Given the current lack of detailed data to try modeling such complexities, we simplify
our event tree modeling by making the probability of phreatomagmatic eruptions spatially equiprobable.
Nevertheless, with further research into the spatio‐temporal dynamics of the groundwater system at Aluto
and using the presented event tree, it would be feasible to adopt a parameterization that accounted for spatial
variations in the probability of phreatomagmatic activity (e.g., Lindsay et al., 2010; Sandri et al., 2012).
5.3.3. Eruption Size and Scenarios
In PVHA, and across the volcanological community, there is still great debate about what measures are most
adequate to define the size of a given eruption. Here, we leave aside the fact that volcanic eruptions are mul-
tistaged events composed of many distinctive eruptive phases (e.g., Cassidy et al., 2018; Jenkins et al., 2007;
Ogburn et al., 2015; Siebert et al., 2010). Data requirements to model this intraeruption aleatory variability
are enormous, and clearly lacking at Aluto, as research in this area of PVHA is currently under development
(e.g., Bebbington & Jenkins, 2019; Wolpert et al., 2018).

The VEI has been widely used as a metric for explosions and explosive eruptions (e.g., Connor et al., 2001;
Global Volcanism Program, 2013; Marzocchi et al., 2004; Newhall & Hoblitt, 2002; Ogburn et al., 2015;
Sobradelo & Martí, 2010), in part because of its versatility to be assigned from varied data sets and observa-
tions, including historical data (Newhall & Self, 1982). However, this versatility has also been a source of
criticism toward the VEI scale, for example, because the different criteria used to assign a specific VEI to
a given explosive eruption (e.g., erupted volume and eruption column height), may not correspond to the
same VEI size for certain eruptions (e.g., Orsi et al., 2009; Pyle, 2015; Rougier et al., 2018). Nevertheless, if
volume of erupted pyroclastic material is considered the highest weighted parameter to define the VEI
(and pyroclastic material associated with any dome collapse PDCs is not included) problems can be mini-
mized. An additional challenge is the degree of specificity of the eruption scenarios that, almost unavoidably,
are behind the selection of eruption sizes at a particular volcanic system of interest (e.g., Neri et al., 2008;
Newhall & Pallister, 2015; Sandri et al., 2014; Sobradelo & Martí, 2010; Tierz, Sandri, Costa, Sulpizio,
et al., 2016; Tierz, Sandri, Costa, Zaccarelli, et al., 2016). This complication represented a particular issue
at Aluto. On the one hand, the eruption scenarios (Figure 2; Clarke et al., 2019; Clarke, 2020) are the best
representation of what to expect at the volcano. However, they can become too specific to be successfully
handled with a model to quantify volcanic hazard such as the event tree. In other words, if the chosen erup-
tive scenarios are very specific, it may be difficult to assess whether their union set satisfies the “mutually
exclusive‐and‐exhaustive” requirement, commonly applied to nodes describing the eruption size in event
tree models (Marzocchi et al., 2004, 2008, 2010; Newhall & Hoblitt, 2002; Sobradelo et al., 2014).
Similarly, if known events at the volcano of interest cannot be related to eruption size metrics that are applic-
able across volcanic systems (e.g., VEI or magnitude; Global Volcanism Program, 2013; Crosweller
et al., 2012), then comparisons with eruptions from other volcanoes and/or the use of analog volcanoes to
estimate the probability of different eruption sizes (Figures 4 and 5) can become virtually impossible.

6. Conclusions

In this work, we build the first published event tree model to quantify volcanic hazard at an African volcano:
Aluto, in central Ethiopia. The model both conceptualizes the functioning of the volcanic system and pro-
vides a quantitative framework for probabilistic volcanic hazard assessment at Aluto volcano. Hazard ana-
lyses of specific phenomena, such as tephra fallout or pyroclastic density currents, can strongly benefit from
the existence of the presented event tree model. The parameterization of the event tree model attempts to
incorporate different sources of information and data available for Aluto volcano, from past and recent
research, and use them to estimate the aleatory variability and, importantly, the large epistemic uncertainty
currently associated with PVHA at Aluto. Results indicate that the effect of this epistemic uncertainty is sig-
nificant for the different volcanic events represented in the event tree. This is particularly relevant for the
long‐term probability of eruption, because the epistemic uncertainty in this node cascades down to all the
other nodes in the event tree. Future research carried out at Aluto (e.g., geological fieldwork and dating)
could help reduce the epistemic uncertainty without necessarily requiring a significant modification of
the event tree structure. Moreover, the presented event tree model could be translated to other volcanic
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systems across theMain Ethiopian Rift by slightly updating its structure and significantly modifying its para-
meterization to reflect the particularities of each volcanic system. Structured, objective, and reproducible
approaches to identify sets of analog volcanoes (VOLCANS, Tierz et al., 2019) could play a key role in explor-
ing preliminary parameterizations as demonstrated here. Finally, despite some anticipated general and rift‐
related challenges to building event tree models across the MER and East African Rift, we argue that there is
great potential to use this type of models to carry out probabilistic volcanic hazard assessment at many other
volcanic systems in the region. In parallel, fundamental hazard‐focused data collection is needed at these
volcanoes.

Data Availability Statement

Data sets for this research are included in these papers (and their supplementary information files): Crummy
et al. (2018), Fontijn et al. (2018), McNamara et al. (2018), Tierz et al. (2019), and Clarke (2020). All data com-
puted using VOLCANS (Tierz et al., 2019) have been deposited at https://www.bgs.ac.uk/services/ngdc and
can be discovered at https://doi.org/10.5285/f46c19aa-535f-4631-a032-60a2fc825a42 and accessed online
(https://www.bgs.ac.uk/services/ngdc/accessions/index.html#item135505).
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