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1  |   INTRODUCTION

The interactions that occur at the ocean–atmosphere bound-
ary act as a major control on the climate system and under-
standing these processes requires not only measurements of 

sea surface temperature (SST) but also marine air tempera-
ture (MAT). The ship-based observations contained in the 
International Comprehensive Ocean-Atmosphere Data Set 
(ICOADS, Freeman et al., 2017) provide a global data set of 
observations of MAT spanning the past 150 + years and these 
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Abstract
A new data set of Night Marine Air Temperature (NMAT) is presented that builds 
on the HadNMAT2 data set, which was released in 2013. In a similar manner to 
HadNMAT2, the new data set (CLASSnmat) provides uninterpolated, monthly 
global values at a 5° resolution back to 1880. In addition to being extended to the 
end of 2019, four main developments are made in CLASSnmat: (1) the NMAT val-
ues are extracted from the most recent version of the International Comprehensive 
Ocean-Atmosphere Data Set (ICOADS Release 3) and a revised method of eliminat-
ing duplicated observations is used; (2) values of NMAT are adjusted to 2m and 20m 
heights in addition to the 10 m height used in HadNMAT2; (3) a refinement is made 
to the corrections necessary during World War 2, which uses more of the NMAT ob-
servations and hence results in a more extensive spatial coverage for this period than 
was possible in HadNMAT2; (4) an updated gridding method is used that allows for 
an improved propagation of uncertainty from the individual NMAT values through 
to the gridded estimates. In this paper, the method used to construct CLASSnmat 
(version 1.0.0.0) is described.
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data have previously been used to construct several gridded 
MAT datasets.

The National Oceanography Centre (NOC) surface flux 
dataset v2.0 (Berry and Kent, 2009, 2011) provided daily 
fields of several variables including MAT back to 1973 at a 
1° spatial resolution. An adjustment was applied to the MAT 
data used in that data set to correct for the bias associated 
with heating of the ship via solar radiation during daylight 
hours (Berry et al., 2004). Other gridded marine temperature 
data sets extend back to the mid-nineteenth century, for exam-
ple the Global Ocean Surface Temperature Atlas (GOSTA) 
(Bottomley et al., 1990), the Met Office Historical Marine 
Air Temperature data set version 4 (MOHMAT4) (Parker 
et al., 1997) and the Hadley Centre Marine Air Temperature 
data set version 1 (HadMAT1) (Rayner et al., 2003). A cor-
rection for daytime heating biases is not applied to the data 
in these data sets, and only observations recorded when the 
effect of solar heating is minimal are used (one hour after 
sunset to one hour after sunrise) to reduce the heating bias. 
As a reflection of their primary role in quantifying long-term 
changes in temperature, these century-long data sets are gen-
erally constructed as monthly anomaly fields, relative to a 
given base period, with a spatial resolution of 5°, although 
climatology fields are also provided in MOHMAT4 and 
HadMAT1 to allow for the reproduction of gridded absolute 
values.

The HadNMAT2 data set (Kent et al., 2013) provided sev-
eral improvements over earlier Night Marine Air Temperature 
(NMAT) data sets: both absolute and anomaly fields were 
generated back to 1880, uncertainty estimates were calcu-
lated and a more consistent method was developed to adjust 
the measurements to a common height above sea level. In 
addition, certain adjustments were refined to ensure that SST 
measurements were not used directly in the production of the 
data set. More recently, a global monthly data set of NMAT 
back to 1900 has been developed (UAHNMATv1) by Junod 
and Christy (2019). While that data set was developed using 
different processing procedures compared to HadNMAT2, 
the data sets are broadly comparable in terms of long-term 
trends and decadal variability at both the regional and global 
scales.

In this paper, an updated version of HadNMAT2 is de-
scribed. The data set (CLASSnmat1) follows the approach of 
its predecessor in providing 5°×5° global fields of monthly 
mean NMAT back to 1880, but updates the data set to 
December 2019. Several other amendments and additions are 
made in this data set: the latest version of ICOADS and its 
near-real time update are used, release 3.0 (Freeman et al., 

2017) and 3.0.2 respectively (c.f. the use of ICOADS release 
2.5 in HadNMAT2); a new duplicate identification procedure 
is employed to quality control the data; a refined gridding and 
uncertainty calculation are used; NMAT values are adjusted 
to 2m and 20m height, in addition to the 10m as used in 
HadNMAT2; and a refinement is made to the corrections ap-
plied to the data during World War 2.

2  |   DATA PROCESSING

2.1  |  Pre-processing of the ICOADS data

Ship-based air temperature measurements obtained from 
ICOADS R3.0 (Freeman et al., 2017) were used for the 
period 1880–2014; thereafter, data from the near-real time 
update of ICOADS R3.0.2 were used. Henceforth, we will 
simply refer to these data as ICOADS. Ship-based observa-
tions were identified using the ICOADS platform type (PT) 
codes 0-5 and 9. Observations from specialist ship sources, 
such as research vessels, were excluded. Observations in 
Deck 245 (UK Royal Navy Ship's Logs 1938-47) (Brohan 
et al., 2009; Wilkinson et al., 2011) that were recorded on-
board submarines during World War 2 were also excluded 
from further analysis pending further assessment of this unu-
sual data source.

As with HadNMAT2 and its predecessors, only night-
time observations are used in CLASSnmat. The night-time 
period is defined using the same approach as HadNMAT2, 
as starting one hour after sunset and finishing one hour 
after sunrise. Analysis of the daily cycle of MAT values 
has revealed that the data from Deck 781 (Chinese/ Global 
Ocean Data Archeology and Rescue [GODAR] Ships) over 
the period 1968–1993 appear to be given as local standard 
time. These times have been adjusted to UTC prior to the 
calculation of sunrise/sunset times. Solar elevation is cal-
culated using the algorithm described by Spencer (1989) in 
a similar manner to previous NMAT data sets (MOHMAT4 
and HadNMAT2).

Duplicated observations exist in ICOADS as a conse-
quence of the multitude of data sources used in the construc-
tion of the data set. These values were identified and removed 
in HadNMAT2 using the duplicate elimination (dupelim) 
procedure described by Slutz et al. (1985). In CLASSnmat, 
a new method of identifying duplicate reports is used that is 
based on the ICOADS R3.0 ‘Total’ files; these files include 
all available duplicates (Freeman et al., 2017). The new ap-
proach follows the ICOADS technique of identifying similar 
reports based on date, time, position and content, but extends 
this with a more rigorous approach to the comparison of 
ship identifier information (e.g. name, number or callsign; 
Carella et al., 2017) and incorporates checking for consis-
tency in the timestamp and positioning of the ships using the 

 1The dataset has developed as part of the Climate-Linked Atlantic Sector 
Science (CLASS) project, which is funded by the Natural Environment 
Research Council (NERC, see acknowledgements). It is from the project 
acronym that the dataset name has been derived.
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position-checking and date/time-checking components of the 
Met Office Quality Control suite (using an updated version 
of the procedures described in Rayner et al., 2006, see https://
github.com/ET-NCMP/MarineQC). Details about the new 
duplicate identification scheme are provided in Kent et al. 
(2019a). Missing ship identifier information is completed 
where possible using the ship-tracking method devised by 
Carella et al. (2017).

The NMAT values that remained following application of 
the duplicate identification procedure were then subjected to 
further quality control using the Met Office Quality Control 
tests. The plausibility of the NMAT values relative to clima-
tological normal values was assessed using pentad values cal-
culated from HadNMAT2 over the period 1961-90 that had 
been disaggregated to a 1°x 1° grid-spacing from the original 
5° x 5° resolution. NMAT values in a given grid cell and 
pentad that deviated more than |10°C| from the climatologi-
cal mean were removed. NMAT values outside of the range 
[−80°C, 65°C] were also removed, and buddy-checking was 
carried out to ensure consistency amongst neighbouring 
values.

During the late nineteenth century, a warm bias exists 
in the NMAT observations recorded onboard ships passing 
through the Suez Canal (Bottomley et al., 1990; Kent et al., 
2013). This bias has been attributed to the practice on certain 
ships of storing cargo on deck rather than in the hold. In the 
construction of HadNMAT2, Kent et al. (2013) noted that 
this bias extended farther than the Suez Canal region into the 
North Atlantic. This bias was resolved by removing NMAT 
values recorded in Deck 193 (Netherlands Marine) across 
this region during the period 1880–1893. This procedure was 
repeated in CLASSnmat.

As a result of recent data-recovery efforts, ICOADS R3.0 
contains more observations than R2.5 for certain periods (see 
Freeman et al., 2017). However, due to the stricter duplicate 
elimination procedure used in the new processing of the data, 
and the exclusion of data from specialist ships, this is not 
always reflected in the observation numbers in CLASSnmat. 
Indeed, for certain periods there are fewer observations in 
CLASSnmat compared to HadNMAT2 (Figure 1). However, 
since the new duplicate elimination scheme removes more 
of the unreliable values, the NMAT observations used in 
CLASSnmat are expected to be of a higher quality overall. 
The largest diminution in observations occurs after 1960 
where in extremis, there are 20% fewer observations in 
CLASSnmat in terms of annual totals, although generally the 
reduction is much less. The reduction post-1960 is generally 
spatially consistent, whereas the increase in observation num-
bers before this date is often confined to certain ocean basins 
(Figure  2). During the two World Wars, there is a notable 
increase in the number of observations used in CLASSnmat. 
This reflects recent data-recovery efforts. In addition, the 
change to the correction of data during World War 2 period 

(see Section 2.4) results in more values available for use in 
CLASSnmat, particularly across the Pacific Ocean. The in-
crease in observations in this region is particularly important 
given the strong El Niño that occurred during 1939–1942 
(Brönnimann, 2009).

2.2  |  Adjusting NMAT to a common 
reference height

Over time, the observing height onboard ships has increased, 
and to avoid spurious trends in the final NMAT dataset, the 
temperature readings need to be adjusted to a common height. 
This requires information about the observation height of the 
thermometer as well as the lapse rate of the lower layer of the 
atmosphere.

Heights prior to 1970 were estimated as in HadNMAT2 
using globally fixed values (see table 1 in Kent et al. (2013)). 
Information about the height of observation on Voluntary 
Observing Ships (VOS) for the period after 1970 was taken 
from the World Meteorological Organization's (WMO) 
Publication 47 (Pub. 47) (Kent et al., 2007). However, it is only 
after 2002 that this publication explicitly lists the height of the 
thermometer onboard a given ship. Before this time, the height 

F I G U R E  1   Annual total number of observations used globally 
in the CLASSnmat and HadNMAT2 data sets (a) and the difference in 
the annual totals (CLASSnmat-HadNMAT2) expressed as a percentage 
of HadNMAT2 totals (b)
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must be estimated from either the ‘platform height’ or the 
‘height of the barometer’ (see Kent et al., 2013). The platform 
height, the barometer height and thermometer heights were 
used for the periods 1970–1994, 1995–2001 and 2002–2014, 
respectively. Rather than using the heights directly from Pub. 
47, these heights were taken from the Berry and Kent (2006) 
version of the publication, which corrects for typographical er-
rors, entry duplication and inconsistencies in the data.

For many ships, the observation height is not listed in 
Pub. 47 and following HadNMAT2 estimates of these heights 
were made by averaging known observation heights in each 
5° grid cell for each month. These values were then smoothed 
over time in each grid cell with a triangular filter and these 
values were used to infill any missing heights for ships in 
the respective grid cell and month, under the assumption that 
ships in a given grid cell will be of a similar height.

The NMAT values are adjusted to the common refer-
ence height using Monin–Obukhov similarity theory with 
the parameterizations of Smith (1980) and Smith (1988). As 
with HadNMAT2, 5° area average, monthly climatological 
values of wind speed, humidity, sea-air temperature differ-
ence and mean sea-level pressure from the NOC surface flux 
dataset v2.0 (NOCSflux v2.0, Berry and Kent, 2011) were 
used to determine the stability of the lower atmosphere. In 
HadNMAT2, the NMAT values were adjusted to a height of 
10m. In CLASSnmat, the data are also adjusted to 2m and 

20m to allow comparison against other temperature data sets 
which are generated at different heights above sea level. The 
adjustments vary over time principally on account of the 
long-term changes in measurement height (Figure 3) and be-
cause of differences in regional sampling (Figure 4).

2.3  |  Uncertainty estimates in the MAT 
height adjustments

The uncertainty estimates for the height corrections are a 
combination of uncertainties in the stability estimates (σs) 
and the height estimates (σh). Each of these uncertainties 
consists of random (σs,r and σh,r) and systematic compo-
nents (σs,s and σh,s). The uncertainty in the height estimates 
arises from variations in the heights across different ships 
around a mean value (σh,r) and the uncertainty in the mean 
itself (σh,s). The stability-related uncertainties are taken 
as arising from a combination of uncertainty in the esti-
mates of stability used for individual height adjustments 
(σs,r) and from a pervasive uncertainty in the stability es-
timates (σs,s). Figure 5 demonstrates the magnitude of the 
height adjustments when the temperature values measured 
at a range of heights are adjusted to the three CLASSnmat 
reference heights. The mean adjustment increases as the 
observation moves away from the reference height. The 

F I G U R E  2   Mean differences (CLASSnmat minus HadNMAT2) in the total annual number of observations, calculated for consecutive 27-
year periods (chosen to provide convenient segments for plotting) from 1900 to 2005 expressed as a percentage of HadNMAT2 totals
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uncertainty in the adjustment also scales as the observa-
tion–reference height difference increases, but in practice, 
this will vary geographically depending on the mean state 
of the lower boundary stability. The random component in 
the height estimates (σh,r) was set to zero where the height 
was known. In the cases where estimated heights were 
used, σh,r was determined using a kernel density estima-
tion (KDE, e.g. Scott, 1992) of the distribution of known 
heights in a given 5° grid cell and in a 30-month range 
centred on the month of interest. KDE is particularly useful 
in this context as the distribution of heights can be highly 
irregular and hence the fitting of the non-parametric KDE 
to the distribution is preferable to any parametric alterna-
tives. The KDE produces a smoothed estimate of the distri-
bution, which alleviates the problem of selecting a suitable 
bin-width, which was the case in HadNMAT2, where σh,r 
was estimated by sampling from an empirical histogram.

Taking the probability distribution function (f), the 
KDE function ( f̂ ) for each distribution of heights (x) was 
calculated as

where n is the number of heights and K is a subjectively 
chosen kernel function (Scott and Sain, 2005). The KDE is 
therefore formed as the sum of kernels centred on each data 
value and the calculation proceeds through the use of the 

scaled kernel [Kh (x)=
1

h
K
(

x

h

)
]. Although the form of K is 

a subjective choice, it has less effect on the KDE than the 
choice of bandwidth (h), which defines the degree of 
smoothing of a discrete point in the distribution. In this 
analysis, a Gaussian kernel function was used and h was 
chosen after the method described by Scott (1992), where 
for n sampled heights with an inter-quartile range iqr and 

standard deviation �, h=min (�, iqr∕1.34) ⋅1.06 n
1

5. This 
distribution was sampled 5,000 times to generate a range of 
heights that honours the underlying distribution of known 
heights subject to the smoothness of the fitted KDE. The 
heights used in the KDE were initially log-transformed to 
ensure that all height samples were greater than zero once 
back-transformed. A temperature adjustment was calcu-
lated using this sample of heights, along with the climato-
logical stability parameters for the respective grid cell and 
climatological month; the standard deviation across these 
adjustments was taken as σh,r.

The systematic height uncertainty component (σh,s) was 
calculated following the technique used in HadNMAT2. A 
sample of heights was generated from a normal distribu-
tion with a mean taken as the grid cell mean and with a 
fixed standard deviation (σ) depending on the time period 
under consideration: 2σ  =  2m for the period 1880–2014 
and 2σ = 4m after 2014. This increased uncertainty for the 
later period reflects the fact that recorded heights end in 
2014 (c.f. 2007 in HadNMAT2).

The random contribution to the stability uncertainty 
(σs,r) was estimated from the 1° × 1° longitude/latitude daily 
air–sea temperature and wind speed values taken from the 
NOCflux v2 dataset. Since these variables are correlated, a 
random sample of air–sea temperature differences and wind 
speed values were extracted from a bivariate KDE using the 
distribution of high-resolution values in each 5° grid cell over 
the period 1970–2015. As an extension to the univariate KDE 
used for the calculation of random height uncertainty, the bi-
variate KDE takes the form.

where in this case, f is a bivariate distribution, x consists of 
two vectors (the air–sea temperature and wind speed values) 
and the bandwidth (H) is a positive definite, symmetric matrix 
that acts as a covariance matrix. The bivariate distribution was 
sampled 5,000 times and stability parameters were calculated (1)f̂K (x)=

1

n

n∑
i=1

Kh

(
x−xi

)

(2)f̂ (x, H)=
1

n

n∑
i=1

KH

(
x−xi

)

F I G U R E  3   The annual global average ship heights (a) and the 
temperature values adjustments (b) for the three reference levels. The 
lines in (b) represent the average adjustment to the three reference levels 
from the respective ship heights for each year on a global average basis
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using these absolute-value samples along with mean values 
of sea-level pressure and relative humidity from the respec-
tive grid cell, which were also derived from NOCflux v2.0. 
Examples of the bivariate distribution and the sampled values 
are shown in Figure 6 for two grid cells: one grid cell situated 
over the Grand Banks of Newfoundland (47.5°W; 47.5°N) and 
one cell situated off the coast of Peru (82.5°W; 12.5°S). This 
figure demonstrates the flexibility of the KDE in forming a 
bivariate distribution for these contrasting data series.

The estimate of random stability-related uncertainty (σs,r) 
was calculated from the sample of stability parameters in the 
respective month and 5° grid cell along with the recorded or 
estimated observation height to construct a sample of 5,000 
height corrections; the standard deviation across these height 
adjustments is taken as σs,r. The systematic stability uncer-
tainty (σs,s) was calculated in a similar manner but rather than 
sampling from the bivariate distribution, a sample of 5,000 
values was drawn that had a mean equal to the climatolog-
ical value of the variables in the respective month and grid 
cell and a fixed standard deviation for the wind speed, air 

temperature and SST variables (see table 2 in Kent et al. 
(2013)).

The sample size of 5,000 used to sample the distributions 
above follows the example of HadNMAT2. To test whether this 
is an optimal value, considering the significant computing time 
required when large sample sizes are used, uncertainty estimates 
were calculated using a range of different sample sizes from 30 
to 10,000 for the year 2000. The results from that test are plotted 
in Figure 7, in which the uncertainty estimates are expressed 
as proportions of the median across the nine samples for the 
respective grid cell and month of the year. These results indicate 
that the uncertainty estimates generally stabilize at around sam-
ple sizes of 2000, with 5,000 being a reasonable value.

2.4  |  Corrections applied to the data 
during the Second World War

The NMAT observations recorded during the Second World 
War contain warm biases on account of different recording 

F I G U R E  4   The average height adjustments for the three reference levels for January and July over the period 1961–1990. The values are 
restricted to the range −0.5–0.5°C for plotting purposes
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practices used during wartime operations. In HadNMAT2, 
NMAT values from Deck 195 (U.S. Navy Ship Logs) were 
excluded due to the presence of a large warm bias relative 
to the data from other decks but the data from the remain-
ing decks also suggested a warm bias during the night-time 
period. This artefact has been attributed to the practice of tak-
ing measurements of NMAT in overly sheltered locations—
possibly indoors—to avoid showing a light on deck during 
wartime. In HadNMAT2 during the period January 1942 to 
February 1946, night-time anomalies of MAT were replaced 
with daytime anomalies that had been adjusted so that the av-
erage difference (DMAT-NMAT) over that period matched 
the average difference over the period 1947–1956.

The air temperature data during the Second World War are 
mostly contained in three ICOADS decks: 195, 204 and 245. The 
data from Deck 245 (UK Royal Navy Ships) are relatively newly 
digitized values and provide additional observations for the pe-
riod 1938–1947 (Brohan et al., 2009; Wilkinson et al., 2011); 
during the Second World War, these data are distributed globally 
in similar areas to the US Navy (Deck 195) data. However, as 
with the US Navy data these Royal Navy data also show a warm 
bias, albeit at a slightly lower magnitude than the US data. In 
contrast, the data from Deck 204 do not show such a bias. These 
observations were also recorded onboard UK Royal Navy ships 
and were extracted from log books into the UK Meteorological 
Office Main Marine Data Bank (MDB) and were merged into 
COADS version 1c, released in February 2001. These log books 

were kept on the senior ship of the squadron and were recorded 
by qualified Meteorological Officers from the Instructor Branch 
of the Royal Navy using precision instruments (Rhodes, 1994). 
A limitation of these data, however, is that they were generally 
recorded three times a day at 0800, 1200 and 1800 local time, 
with fewer observations taken during the hours of darkness.

In order to use the data from Decks 195 and 245 in 
CLASSnmat, a correction was developed for the NMAT read-
ings recorded during the period January 1942 to December 
1945. Night-time was defined in this correction as the period 
between sunset and sunrise, that is, without the one-hour off-
set that is normally used. This definition was also used in 
HadNMAT2 for the Second World War correction and gives 
better results than using the normal night-time definition and 
probably relates to the watch-time used during this period rel-
ative to the sunset/sunrise times.

A calibration for NMAT from each ship in decks 195 and 
245 was derived by comparing the data against the values from 
all other decks. This was determined by first calculating anom-
alies relative to the period 1961–1990 for each observation. 
Individual observation anomalies excluding Decks 195 and 
245 were gridded at 5° monthly resolution. The biases in in-
dividual observation anomalies from Decks 195 and 245 were 
calculated taking the difference of each observation anomaly in 
those decks from the gridded anomalies from the other decks. 
The average of these values for each ship track was taken as 
the correction value for a given track and the standard devia-
tion as the uncertainty in the correction (�ww). This correction 
assumes that the correction was also valid for locations where 
there were no observations from the data from other decks, that 
is, a consistent recording practice was used for the duration of 
a ship's voyage. The uncertainty is therefore considered to be 
correlated within the observations from a given track. Tracks 
were only used where there were more than 20 values available 
for calibration, where the absolute mean difference was less 
than 5°C and standard deviation was less than 5°C, under the 
assumption that data with a larger mean or spread were unre-
liable; the values from these ships were not used. This correc-
tion significantly reduces the warm bias evident in the NMAT 
values during the Second World War (Figure 8).

2.5  |  The gridding method and uncertainty 
calculation

The calculation of the monthly mean 5° grid cell values and 
the associated estimation of uncertainty takes the approach 
that has been widely employed in other marine data sets 
(Berry and Kent (2017) and which builds on the optimal 
averaging technique described by Kagan et al. (1997). The 
NMAT observations are extremely heterogenous, with ob-
servations clustered in space and time, and the residual errors 
from the data may be correlated across observations made 

F I G U R E  5   The magnitude of temperature adjustment relative 
to the height at which the temperature measurement was taken. These 
values are generated by applying the temperature correction for a 
range of stability parameters (Monin–Obukhov lengths [L] from 100 to 
1,000 and the temperature scale [t*] fixed at 1) and recording heights 
(1–30 m), and correcting to 2, 10 and 20m reference heights. The 
coloured lines represent the mean (x) and x±2σ values
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onboard the same ship (Kent et al., 2019b). As a result, sim-
ply taking the arithmetic mean of all values (tobs) in a given 
grid cell and month would likely lead to a value that is biased 
towards the point locations with the greatest number of points 
and towards the ships contributing the most observations. A 

weighted mean that takes into account the correlation be-
tween observations is therefore calculated: 

where the weights are given by wi. The expected mean-
squared error in the calculated areal mean (T̃) compared to 
the ‘true’ areal mean (T) is taken as:

(3)T̃=

n∑
i=1

witobs,i

(4)E{(T̃−T)2}=

N∑
i=1

N∑
j=1

wiwj

(
ΔiΔj+�i�j+� i� j

)

F I G U R E  8   Global average monthly anomalies (weighted by the 
cosine of latitude and relative to 1961–1990 averages) from January 
1930 to December 1960 derived using the gridded data both before and 
after application of the Second World War correction
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F I G U R E  6   Examples of the 
distribution of air–sea temperature and wind 
speed distributions from two grid cells in 
January. Grid cell 1 is situated at 47.5°W, 
47.5°N (Grand Banks of Newfoundland) 
and grid cell 2 at 82.5°W, 12.5°S (off 
Peru).The contours are repeated across the 
horizontal but the grey dots represent either 
the original distribution or those sampled 
from the KDE
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F I G U R E  7   The effect of different sample sizes on the uncertainty 
estimates. Uncertainty values calculated for the year 2000 are 
expressed as a proportion of the average across the nine sample sizes 
for the respective grid cell and month of the year. The error ranges 
indicate the median and 10th and 90th percentiles across all grid cells/
months
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where three uncertainty types are defined for observa-
tions i and j: uncorrelated (�), systematic (�) and sampling 
uncertainties (∆). In the case of the uncorrelated uncertainty, 
a covariance matrix � is constructed as �ii =�2

r,i
 and �ij =0 as 

a reflection of the random nature of the errors between ob-
servations. In contrast, the matrix � needs to reflect the per-
fect correlation across observations from the same ship track 

and the zero relationship otherwise. Hence taking x=

�st,1

⋮

�st,n

, 

B=xTx and Aij =1 where the systematic uncertainties are 
from the same ship track and zero otherwise, �=AB. While 
the new ship-tracking technique assigns more ships to a 
track than was the case with HadNMAT2, there are cases 
where the tracking fails to attribute a ship to a particular 
track. In these cases, a covariance value of Aij =0.25 is used, 
which reflects this ambiguity in the covariance of the two 
observations.

Assuming that the individual uncertainty terms are inde-
pendent of each other, the systematic height correction (sta-
bility and height-related) uncertainties for each observation 
were combined in quadrature with the estimated uncertainty 
in the World War 2 correction (�ww, where applicable) and a 
systematic observational error (0.6°C) taken from Berry and 

Kent (2017), giving �st =
√

�2
s,s
+�2

h,s
+�2

ww
+0. 62. In a sim-

ilar manner for the random component but with a larger ob-

servational error estimate (0.9°C), �r =
√

�2
s,r
+�2

h,r
+0. 92; in 

this case �ww =0.

In a manner that is the basis of the widely used kriging equa-
tions, the covariance term for sampling uncertainty (∆) is calcu-
lated assuming an exponential correlation in the observations 

over space and time as r= c ⋅exp

(
−

[(
x

x0

)2

+
(

t

t0

)2
])

, where 

c is the sill, which quantifies the variance in NMAT at the char-
acteristic length scale (x0), x is the geographical distance be-
tween the two points, t is the absolute time difference between 
the observations and t0 is the characteristic temporal scale. The 
covariance matrix is constructed as Δii = c along the diagonal 
and Δij = r for off-diagonal elements. The value of x0 was fixed 
at 200km, which is considered a reasonable value given the aver-
age spatial autocorrelation of MAT, and t0 =2 days. The value of 
the sill (c) was calculated for each 5° grid cell from the variance 
across the 1° daily mean air temperature values from the ERA5 
reanalysis (Copernicus Climate Change Service, 2017) in each 
month over the period 1981–2010; the use of this climatological 
period results from the data only currently being available from 
1979 onwards. These values provide a measure of the climato-
logical variance of MAT in each grid cell (Figure 9). Although 
the reanalysis data set assimilates the same ship observations, 
alongside many other in situ data and satellite observations, the 
data were used because they provide spatially complete fields of 
the climatological temperature variance in each 5° grid cell.

Expressing equation 4 in matrix form and adding the 
Lagrange parameter (�) to ensure that the weights sum to one 
we have.

Taking the first derivative of this expression and setting 
to zero, we derive

(5)E{(T̃−T)}=wTCw+�1w−�

F I G U R E  9   Standard deviation of 2m temperature derived from the ERA5 reanalysis data set for January and July. A square-root 
transformation is used on the colour scale in this figure
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and hence the weights are obtained as.

(6)

⎡⎢⎢⎢⎢⎢⎢⎣

C1,1 ⋯ C1,n 1

⋮ ⋱ ⋮ ⋮

Cn,1

1

⋯

⋯

Cn,n

1

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

w1

⋮

wn

�

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

⋮

0

1

⎤⎥⎥⎥⎥⎥⎥⎦
(7)

⎡⎢⎢⎢⎢⎢⎢⎣

w1

⋮

wn

�

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

C1,1 ⋯ C1,n 1

⋮ ⋱ ⋮ ⋮

Cn,1

1

⋯

⋯

Cn,n

1

1

0
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F I G U R E  1 0   CLASSnmat grid cell average annual anomalies (with respect to the 1961-90 base period) calculated for four decades (a) and the 
associated uncertainties (b). Note the square-root scaling used in the legend in (b). grid cells with fewer than 96 complete months in the decade are 
marked as missing
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The final gridded values are taken as the weighted aver-
age of the NMAT values in each grid cell/month (Equation 3) 
with variance wTCw.

3  |   COMPARISON AGAINST 
OTHER GRIDDED DATASETS

As indicated in Figure 10, the uncertainty in the gridded values 
is clearly related to the sampling density, with greatly reduced 
uncertainty in the gridded fields in areas and periods with a rel-
atively high density of ship data. While on the whole the level 
of uncertainty decreases over time, with increased data cover-
age, the uncertainty across the Southern Ocean remains high 
throughout the period. The uncertainty values are calculated 
in that figure assuming that the correlated uncertainty compo-
nents are perfectly correlated over time in each grid cell but that 
the sampling and uncorrelated components are not correlated.

In terms of global and hemispheric averages, the interan-
nual and longer-timescale variability in anomalies (relative 

to the 1961–1990 base period) from the three NMAT data 
sets (CLASSnmat, HadNMAT2 and UAHNMATv1) are 
broadly comparable, although the different adjustments 
made during World War 2 lead to noticeable differences 
between the data sets, particularly UAHNMATv1, which 
is cooler than the other series (Figures  11 and 12). The 
NMAT data sets all show a differential trend relative to 
HadSST4 (Kennedy et al., 2019), which is particularly ap-
parent after ca. 1990.

The uncertainty ranges in the large-scale averages in 
CLASSnmat and HadSST4 are of the same order of magni-
tude over the 1880–2018 period, which would be expected 
given the similar processing methods and origin of the data 
(Figure 11). The uncertainty ranges are slightly larger over-
all in CLASSnmat, and this is principally due to larger cor-
related uncertainty and because of the additional climatology 
uncertainty component (see Section 4 below). The increased 
correlated uncertainty arises from the higher proportion of 
ships with ship IDs in CLASSnmat; this is most apparent in 
the Northern Hemisphere.

F I G U R E  1 1   Annual average global 
anomaly time series (with respect to the 
1961-1990 base period) calculated from 
CLASSnmat, HadNMAT2, HadSST4 
and UAHNMATv1 across three regions. 
The pink (blue) shading indicates the 2 
σ uncertainty range of the CLASSnmat 
(HadSST4) series
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DATA AVAILABILITY
The CLASSnmat data are available from the Centre for 
Environmental Data Analysis (CEDA) archive. Each file 
contains the gridded NMAT values, the corresponding uncer-
tainty values and the anomalies relative to three different base 
periods (1961–1990, 1971–2000 and 1981–2010). In addi-
tion, monthly and annual averages of NMAT anomalies (with 
respect to the three climatological periods) are provided in 
CLASSnmat for four regions: globally, for the northern and 
southern hemispheres and for the tropics (30°S-30°N). The 
construction of the anomaly fields and large-scale averages 
and accompanying uncertainty values are described below.

CALCULATION OF ANOMALY FIELDS
Anomaly values have been calculated at each grid cell by 
subtracting the climatological monthly average at each grid 
cell. These climate normals were obtained by calculating 
the means across each month of the year over the given year 
range. The values (y) were then fitted with a second-order 

F I G U R E  1 2   Differences in the 
CLASSnmat annual anomaly series (with 
respect to the 1961-1990 base period) 
relative to the HadNMAT2, HadSST4 and 
UAHNMATv1 series. The grey shading 
indicates the combined (2 σ) uncertainty 
from HadSST4 and CLASSnmat, in which 
the correlated uncertainty components are 
assumed to perfectly correlated and the 
other components are uncorrelated
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harmonic model using least-squares regression to produce 
the climate normal in order to produce a smoothed annual 
cycle and reduce the effects of sampling variability (see 
Wilks, 2019): 

where 2�
�
=12 months.

Uncertainty in the climatology values is estimated by gen-
erating 200 random draws from the annual cycle model at 
each grid cell. The realizations are conditional upon the 
model covariates and as such provide a way of taking into 
account the temporal correlation in the climatology uncer-
tainty which is important in the calculation of the annual re-
gional averages (described below in Section 4.2). The 
climatology uncertainty in the monthly gridded data is calcu-
lated as the standard deviation across the 200 realizations for 
the respective month of the year (�norm). The 1-� uncertain-
ties are given as �mean for the absolute NMAT values and 

�anom =
√

�2
mean

+�2
norm

 for the anomaly values, which takes 

the combined effect of uncertainty in the grid cell NMAT 
values and the uncertainty in the climate normals. Separate 
files are provided that contain the climate normals for each 
base period and the 200 climatology realizations.

LARGE-SCALE MONTHLY AND ANNUAL 
NMAT AVERAGES
The large-scale averages are calculated using area-weighted, 
gridded 10m NMAT anomalies and are accompanied by un-
certainty estimates, which have been calculated following the 
approach described for the HadSST3 and HadSST4 data sets 
(Kennedy et al., 2011; Kennedy et al., 2019).

The uncertainty values for the monthly averages make use 
of a covariance matrix C(p,q), which takes into account the 
systematic uncertainty (�st) that results from a given ship tra-
versing grid cells p and q:

where the weights (w) are as described in Section 2.5, 
and m is the number of individual ships in a given month. 
The random, sampling and climatology uncertainties, taken 
as being uncorrelated across grid cells (in addition to the 
systematic uncertainty), form the diagonal elements of the 
matrix as: 

where �2
clim

 is the variance across the 200 climatology en-
semble members, from which the monthly grid cell means 

have been subtracted. The monthly uncertainty estimate for 
the area average is �2

month
=aCaT where a are the grid cell 

area weights. To this is added a coverage uncertainty com-
ponent that estimates the uncertainty related to the fact that 
there are missing grid cells in the area average (see Kennedy 
et al., 2011).

The coverage uncertainty is calculated using the 2m 
monthly average temperature values from the JRA-55 re-
analysis data set (Kobayashi et al., 2015), which have been 
regridded using bilinear interpolation to match the reso-
lution of CLASSnmat. This reanalysis data set was chosen 
because it covers a relatively long time period (1958–2019). 
The monthly anomaly values from JRA-55 were first ar-
ea-weighted averaged over the respective region using all 
grid cells for the given month of the year; this was repeated 
for the respective months over the 1958–2019 period. The 
grid cells were then sub-sampled to match the coverage of 
the CLASSnmat data for the target month. The standard de-
viation across the full and reduced samples over the period 
1958–2019 provides the estimate of coverage uncertainty 
for the given month, and this was added in quadrature to the 
other uncertainty components.

The calculation of the full space-time covariance matrix is 
computationally prohibitive for the annual average anomalies 
and we therefore used the simplification described by Kennedy 
et al. (2011, taken from their equations 23–25). To that esti-
mate is added the climatology uncertainty (calculated across 
the climatology ensemble) and the coverage uncertainty (cal-
culated as for the monthly averages except that annual averaged 
from the JRA-55 data are used). As with HadSST4, correlated 
uncertainty values are calculated only using data that have ship 
IDs. This is also the case with the monthly uncertainty esti-
mates, and while this will lead to an underestimation in the 
correlated uncertainty, this will be less in CLASSnmat than 
HadSST4 as there are fewer observations with missing IDs due 
to the use of the new ship-tracking method (see Section 2.1).
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