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ABSTRACT 15 

Quantitatively linking observations from independent non-invasive soil assessment methods 16 
enhances our ability to understand root zone processes. Electrical Resistivity Tomography (ERT) and X-17 
ray Computed Tomography (CT) are two advanced non-invasive technologies routinely employed in soil 18 
science. ERT allows 4D process monitoring (e.g. solute transport) and is sensitive to changes in moisture 19 
content (MC) and soil texture. X-ray CT is a higher resolution method used to appraise soil structure. We 20 
measured the variation of electrical resistivity and X-ray absorption with gravimetric moisture content 21 
(GMC) for two distinct soil types. Experimental results were compared with existing pedophysical 22 
relationships that express these dependencies. Based on the good fit between measurements and model 23 
predictions, we formulated a new pedophysical relationship that links directly the two soil properties. This 24 
will allow a direct translation between ERT and X-ray data for the study of root-zone parameters under 25 
well-defined experimental circumstances. 26 

Introduction 27 

A very important aspect of root zone processes is understanding the behaviour of water in soils. 28 
Consequently, linking soil hydraulic properties, such as water retention curve and hydraulic conductivity, 29 
with soil structure is essential for understanding processes that control soil functions (van Genuchten and 30 
Pachepsky, 2011), such as water storage or food production. 31 

In recent years, the scientific community has sought to develop numerous non-invasive methods 32 
that preserve soil structural integrity. We can distinguish two categories of methods: static, offering 33 
higher spatial resolution, such as Neutron Radiography (Shokri et al., 2008) or X-ray CT (Tracy et al., 34 
2015) and dynamic ones offering higher temporal resolution, such as Electrical Resisitivity Tomography 35 
(Cassiani et al., 2016) or Time-Domain Reflectometry (Nyberg, 1996). The methods in the latter category 36 
enable time-lapse monitoring and give greater flexibility, as they can be employed both in the lab (Garre  ́37 
et al., 2011) and in the field (Boaga et al., 2013). Instead, the static methods attain greater spatial 38 
resolution (pore-scale - µm − mm) and a very high contrast sensitivity between different soil matrix 39 
components, such as minerals, water, air-filled pore space (Wildenschild et al., 2002). 40 

Past research suggests a strong correlation between visually derived soil structural information 41 
and other soil intrinsic properties. Mueller et al. (2009) showed that physical properties and qualities, such 42 
as dry bulk density or soil strength, correlate significantly with visually observed structure, such as 43 
aggregate shape and size. Paradelo et al. (2016) correlated CT-derived parameters with water transport in 44 
soils and suggested the potential of the method to estimate air, water and solutes fluxes at the field scale. 45 

Lewis and Sjostrom (2010) emphasized the importance of having appropriate pedophysical 46 
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calibrations for a fluid infiltration experiment on a soil monolith. For ERT monitoring experiments, prior 47 
calibration is needed in order to translate electrical resistivity (ER) into values of MC. Such calibrations 48 
can be done by regression analysis comparing resistivity results with MC measurements made 49 
independently (Srayeddin and Doussan, 2009) or by using a pedophys- ical relationship (Beff et al., 2013). 50 

In this study we focus on two methods: ERT has been frequently employed for monitoring water 51 
content in the root zone (Samouëlian et al., 2005), whilst X-ray CT has proven to be very successful for 52 
assessing soil structure (Peyton et al., 1992) and reconstructing root architecture (Mooney et al., 2012). 53 
We establish a quantitative link between X-ray absorption, the parameter representative for the structural 54 
information contained in the CT scans, and bulk resistivity, which is an electrical property of soils and the 55 
measurable parameter for ERT. In order to test the validity of our methodology for different soil textures 56 
we sampled two soil types, clay loam and silt clay loam. Subsequently, we measured the ER and average 57 
X-ray absorption of both soils as a function of MC. By fitting known pedophysical models, which express 58 
the dependence of either physical parameters on MC, to the laboratory measurements, we obtain soil-59 
specific calibration curves corresponding to the two different textures. Encouraged by the good fit 60 
between measurements and models we derive a quantitative link between x-ray absorption and ER of the 61 
soil by rearranging the pedophysical expressions. Finally, we propose an alternative strategy for the 62 
quantitative interpretation of electrical measurements based on water content estimates obtained from X-63 
ray CT scans. 64 

Theoretical background 65 

Basic principles of ERT and X-ray CT 66 

X-ray CT allows visualization of the interior structure of a target object due to the attenuation 67 
properties of electro- magnetic waves. X-rays are produced in a tube containing an anode and a cathode 68 
when a voltage is applied across the electrodes. The Beer-Lambert equation describes the X-ray beam 69 
attenuation as it passes through a target medium (Wildenschild et al., 2002): 70 

𝐼 ൌ  𝐼 𝑒𝑥𝑝ሺെµ ∗  𝐷ሻ ,  (1) 71 

where D is the thickness, µ is the attenuation coefficient, and I0 and I are the intensities before and after passing 72 
through the sample. In medical CT scanners the source-detector pair rotates whereas in industrial scanners the 73 
source-detector pair is fixed and the sample rotates, allowing projections from different angles. From these 74 
measurements, 3D structures can be digitally reconstructed as volumes of pixels expressed in grayscale (GS) 75 
values, which represent the X-ray attenuation coefficient of the volume element. 76 

ERT is a near-surface geophysical method that uses electrical resistance measurements in order to 77 
reconstruct an image of the bulk electrical resistivity of the subsurface. Small electrical currents are 78 
injected into the ground and the resulting electrical potential difference is recorded. Resistivity (or its 79 
inverse conductivity - σ ) is obtained using Ohm’s law: 80 

𝜌 ൌ 𝐾 ∗  
ఋ

ூ
  ,    (2) 81 

where I is the injected current, δV is the electrical potential difference and K is the formation factor which 82 
depends on the geometric arrangement of electrodes. 83 

Known pedophysical models 84 

Archie (1942) formulated one of the first petrophysical relationships to describe the dependency 85 
of ER on MC in porous rocks. Building on Archie’s relation, the Waxman Smits (WS) model includes 86 
surface conductivity effects, which become important when an increased content of clay particles is 87 
present (Waxman and Smits, 1968). 88 

In this study we used a modified formulation of WS (Chambers et al., 2014): 89 
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where  𝐹 ൌ  𝛷െ𝑚 
 
is the formation factor, 𝛷 is porosity, 𝑐 is the cation exchange capacity, 𝐵௪௦ is the average 91 

ion mobility, 𝜎௪ is the water conductivity, 𝐷, 𝐷௪ are the grain and water densities. In this model, 𝑚 and 𝑛 92 
are empirical parameters. As its application has extended to soil studies we will refer to it here as a 93 
pedophysical relationship. 94 

As described by Bailly et al. (2003), Beer-Lambert’s law can be used to describe the contribution 95 
of various parameters to the overall absorption process. Baker et al. (2007) used this to formulate GMC in 96 
terms of dry and wet conditions: 97 

𝐺𝑀𝐶 ൌ  
ሺ

ೝ
ೢ

ሻ

ఓೢೌೝ∗௫ೝ∗ఘೝ
 ,  (4) 98 

 where µ௪௧  is water attenuation coefficient, 𝑥ௗ௬ is the dry thickness,  𝜌ௗ௬  is the dry density and 𝐼ௗ௬, 99 
𝐼௪௧  are the dry and wet X-ray intensities respectively. For simplicity, we will further refer to Equations 100 
(3) and (4) as BR and XA relationships respectively. 101 

Methodology 102 

A range of steps were undertaken to prepare the soil samples for X-ray CT and resistivity 103 
measurements. Following the acquisition of both datasets, we discuss data processing and the formulation 104 
of a combined pedophysical relationship. We also suggest an alternative method of obtaining a BR 105 
calibration based on CT estimates. 106 

Soil sample preparation 107 

Two soil types: clay loam (Clay:Silt:Sand (%) 65:23:12) - soil type 1 (S1) and silty clay loam 108 
(Clay:Silt:Sand (%) 52:39:9) - soil type 2 (S2), were sampled from University of Nottingham’s Bunny 109 
Farm, Nottinghamshire, UK (Fieldsite 1: N 52.85593 W -1.12520 and Fieldsite 2: N 52.85743 W -110 
1.12723). In the subsequent discussion measurement set 1 corresponds to S1 and measurement set 2 to S2. 111 

The samples were fragmented and sieved to < 5 mm aggregates. Afterwards, we dried them for 112 

72 hours at 35◦C, a temperature low enough to avoid the destruction of clay particles. The whole soil 113 
mass was then split into seven batches of three samples each for S1 and eight batches of three samples 114 
each for S2. To each batch we added different amounts of water by uniformly spraying the soil aggregates. 115 
Water addition was quantified by weighing the soil (GMC values in Fig.2 XA and BR). Finally, the soil 116 
was compacted into rectangular plastic receptacles (dimensions 2.5x2.5x7 cm). 117 

Electrical and CT measurements 118 

To facilitate resistivity measurements, stainless steel plate electrodes were placed at either end of 119 
each receptacle and two thin steel rod electrodes were inserted into the middle section. The electrode 120 
positioning resembles a Wenner geometry (Burger et al., 2006). The sample was left for 24 hours for 121 
moisture redistribution and equilibration. Afterwards, electrical resistance measurements were made with 122 
a Terrameter 4000 device, and using Equation (2) we estimated the ER of the samples. 123 

To facilitate CT scanning, the electrodes were removed with minimal soil disruption. On the 124 
following day the samples were transported to the University of Nottingham’s Hounsfield Facility where 125 
they were scanned with a v—Tome—x M X-ray scanner (Scan settings: 140 kV , 160 µA, 8 minutes scan 126 
time and 30 µm resolution). 127 

Cross-sectional scan images were reconstructed using Volume Graphics 2.1 software over an 8 bit value 128 
range, implying each of the pixels had Gray Scale (GS) values in the interval 0(Black) - 255(White). 129 
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CT image processing 130 

Each sample was reconstructed lengthwise and widthwise as two sets of 1400 and 500 cross-131 
sectional ’slice’ images respectively (Fig. 1 I). From the whole image, a representative area was selected, 132 
which was kept constant in every cross-sectional image. The selection, visualized in Fig. 1 II, does not 133 
take into account the edges of the soil volume, which are more likely to have been subjected to 134 
interactions with the exterior medium. 135 

For every image, over the indicated area, an average GS value was computed, without taking into 136 
account the pixels with very low (< 10 GS corresponding to air filled pore/fissure space) or very high (> 100 137 
corresponding to high density minerals) GS values present in the sample, as we are strictly interested in the 138 
soil material response to variations in MC. For both orientations, a GS value distribution along the sample 139 
was computed from which the average and standard deviation have been derived. 140 

Formulating a pedophysical link  141 

Given the BR and XA relationships, we can compute an expression of ER as a function of X-ray 142 
absorption by rear-ranging the two equations. Hence, we find: 143 
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Except for 𝑚 and 𝑛, all other soil and fluid properties in the combined expression above have been 145 
measured independently in the laboratory (Table 1). 146 

Enhancing BR predictions based on CT estimates 147 

As described previously, calibration curves for interpreting ERT monitoring experiments are 148 
obtained by taking bulk electrical resistivity measurements on samples of a known MC, estimated by 149 
weighing. The water is added manually and its distribution is assumed to be uniform, therefore the 150 
estimates are subject to error. An alternative option arises from the methodology described above. We 151 
estimated the soil MC by fitting the XA model to our average GS measurements. These values were in 152 
turn used to estimate ER on the basis of a BR relationship (Fig. 2 BR ). 153 

Results and Discussion 154 

MC variability 155 

Visual inspection of the image selections in Fig. 1 II, show how GS decreases with increasing MC. This 156 
is also later confirmed by the average GS per sample estimates (Fig. 2 XA). 157 
Fig. 2 shows a significant variance within the triplicate samples of the same batch. In order to determine the 158 
source of this variance we have derived an average percentage of air-filled pores from the CT scans. It is 159 
important to note that these estimates were recorded after the samples were packed so they will differ from 160 
the soil’s undisturbed values of air-filled porosity. For S1 we recorded values between 9.3 and 0.8 % with 161 
larger air-filled porosity values corresponding to the first three batches with lower MC. In consequence, they 162 
had the highest variance within the batch between the three replicates. For S2 we recorded a similar range of 163 
values between 12.7 and 2.88 %. As for S1, the highest values and variance were observed within the first 164 
three batches. 165 

For S1 we noticed greater variation within the batches corresponding to the upper half of the 166 
GMC distribution. This implies that when more moisture is present in the system the variations in GS are 167 
higher. This can be explained by the way water redistributes once it enters the soil matrix. Capillary 168 
pressure and movement of free water determine different regions of higher and lower MC Free (1911). 169 
Therefore, an increased capillary activity may cause such variability. The percentage of air-filled pores 170 
per sample batches showed a higher variance corresponding to the driest three batches for both soil types. 171 
This implies a GMC threshold between 0.128 𝑔. 𝑔ିଵ and 0.15 𝑔. 𝑔ିଵ, over which, for this particular 172 
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sample size and geometry, a higher percentage of water-filled pores reduces the heterogeneity of water 173 
distribution. 174 

Implications of the pedophysical fit 175 

For both soil types the conceptual models show a good fit with measured datasets (Fig. 2 XA and 176 
BR and Table 1), implying the experimental data validates the model predictions. However, it is useful to 177 
remember the pedophysical relations are case specific and correspond only to samples with the intrinsic 178 
physical properties listed in this study (Table 1). Therefore, soil texture is an essential variable, which we 179 
can also understand by observing the different shapes of the BR curves corresponding to the two soil 180 
types. 181 

For the BR model, the S1 exhibited higher resistivity values than S2 for low and medium GMC 182 
(Fig. 2 BR). This effect may well be due to the difference in sample air-filled pore space, as an increase 183 
implies an increase in electrical resistivity. However, our measurements do not support such statement as 184 
the average percentage of air-filled pores is similar between the soil types. In the high GMC region, 185 
where the majority of the pore-space has been occupied with water, the models produce similar values, 186 
hence air-filled pore-space contribution to bulk values of resistance decreased. The electrical response is 187 
also correlated with the soil clay content as it is directly linked to an electric charge deficit (Waxman and 188 
Smits, 1968). Calculated cation exchange capacity (Table 1) supports the difference between S1 and S2 189 
implying a clay content effect on resistance values recorded. 190 

From the XA model we observe a more abrupt change in X-ray attenuation on the curve 191 
corresponding to S1 (Fig. 2 XA). Also, S1 exhibits a higher dry GS value (intercept). Given the same X-192 
ray energy, the differences in absorption magnitude are also correlated to the sample’s porosity and 193 
texture. With increasing MC, a higher porosity implies a lower rate of saturation hence a higher 194 
absorption increase rate. 195 

Improving BR calibration 196 

We proposed an alternative way of estimating water content for ERT experiment calibrations. In 197 
Fig. 2 (BR) and Table 1 (BR lab and CT fit), the new estimates represent BR values based on CT 198 
estimates of MC. These show a better fit with resistivity lab measurements than BR values (Model) based 199 
on MC weighing for both soil types. We can also observe the new estimates correct the resistivity 200 
underestimation for S1 in the high GMC region, but on the other hand underestimate the measured 201 
resistivity values in the low GMC region. The conventional methodology is very laborious and time-202 
consuming with daily additions of extra water to subject samples which have to reach hydraulic 203 
equilibrium before electrical measurements. The CT strategy we suggest allows simultaneous preparation 204 
of multiple samples. Therefore, total experimental time is reduced to a few hours. Also, MC is derived for 205 
each individual sample and not for each individual batch. We can state that from a theoretical point of 206 
view, a calibration based on CT measurements is more advantageous and improves the calibration 207 
estimates. However, we acknowledge that the use of X-ray CT is not always cost effective. 208 

CT-ER relationship 209 

In Equation (5) we formulated an expression for bulk ER as a function of X-ray intensity. As 210 
seen in Fig. 2 Combined and based on the Pearson r and RMSError values (Table 1) the model fits well the 211 
corresponding datasets. We observed an underestimation of electrical resistance in the low GS region of 212 
the S1, which was a consequence of BR inaccuracy. For S2 we did not observe this behaviour, but BR 213 
also accurately predicted the resistivity in the high GMC region. We extended the models beyond the 214 
dataset boundaries and towards both ends the estimations asymptotically tend to a constant. For low values 215 
of GS the value implies reaching soil water saturation and for the high values implies reaching a dry state, 216 
zero GMC. 217 

 218 

 219 
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Conclusion 220 

We have presented a methodology that facilitates the joint appraisal of datasets obtained through 221 
two well established non-invasive soil observation methods: X-ray CT and ERT. We obtained laboratory 222 
measurements of resistivity and average X-ray absorption for two soil types at different GMC. 223 
Subsequently, we fitted our results to representative MC pedophysical relations - Equations (3) and (4). 224 
The good fit between the model and measured datasets enabled us to: 1. rearrange the pedophysical 225 
equations in order to formulate a quantitative link between CT images and ER and 2. obtain an improved 226 
BR soil resistivity calibration based on X-ray CT estimates of MC. These results indicate the possibility of 227 
inferring electrical properties from CT images of soil and can be used as a benchmark calibration 228 
reference for future joint studies which employ the two methods. Further research should use such a 229 
relationship for a more comprehensive investigation of soil hydraulic properties by directly correlating 230 
MC distribution due to soil structure to changes in electrical resistance due to water infiltration flux or 231 
evapotranspiration. Furthermore, these new insights allow the development of improved geoelectrical 232 
calibrations that will enhance the ability to non-invasively monitor vadose zone processes, vital for 233 
agriculture management or civil engineering. 234 
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 304 

Figure 1. I: Image showing two cross-sections (I- Widthwise and B- Lengthwise) of a CT 305 
reconstructed soil volume. White rectangles indicate the selection area used for image processing. 306 
II: Selected area cropped from scan images corresponding to every soil batch. ’A’ group corresponds 307 
to soil type 1 and ’B’ group to soil type 2. 308 
 309 
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 311 
 312 
 313 
 314 
 315 
 316 
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 319 

Figure 2. XA: Average GS measurements (circle) fitted by XA estimates (dashed line). Error bars 320 
indicate the GS standard deviation within the sample; BR: Resistivity measurements (circle) fitted by 321 
BR estimates based on laboratory measurements (dashed line) of MC and based on X-ray CT 322 
estimates (down triangle) of MC; Combined: Lab derived measurements fitted by the new 323 
pedophysical relation, Equation (5), estimates (dashed line). BR and Combined plots have an 324 
assumed 10% error for resistivity estimates.  325 
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  S1 S2

BR 

φ (%)  35  30

c (meq/100g)  27.2  37

Bws (S.cm3.m‐1.meq‐1)  2  2

m  2.84  0.87

n  2.51  1.22

Dg (g/cm3)  2.65  2.65

Dw (g/cm3)  1  1

σw (S/m)  0.05  0.05

BR lab fit 
Pearson r  0.958  0.89

RMSError  5.89  2.84

BR CT fit 
Pearson r  0.97  0.93

RMSError  4.43  2.22

XA 

Idry (GS)  46.04  42.5

ρdry (kg/m3)  4800  3794

xdry (m)  0.02  0.02

μwater (m2/kg)  0.01186  0.01186

XA fit 
Pearson r  0.93  0.96

RMSError  1.1  1.9

Combined relationship 
fit 

Pearson r  0.97  0.93

RMSError  5.96  2.41

 339 

Table 1. Laboratory determined parameters used to compute BR and XA relationships and 340 
indicators describing the fit between measured data and model predictions. 341 

 342 


