
Water balance components estimation under scenarios of land cover 

change in the Vea catchment, West Africa 

*Isaac Larbi1, Emmanuel Obuobie2, Anne Verhoef3, Stefan Julich4, Karl-
Henz Feger4, Aymar Yaovi Bossa5 and David M. J. Macdonald6 

1Climate Change and Water Resources, West African Science Service Centre on 
Climate Change and Adapted Land Use (WASCAL), Universite d’Abomey Calavi, 
Cotonou, Benin  

2Water Research Institute, CSIR, Accra, Ghana;  

3 Department of Geography and Environmental Science, University of Reading, 
Reading, UK  

4 Institute of Soil Science and Site Ecology, Technische Universität Dresden, Dresden, 
Germany 

5 National Water Institute, University of Abomey Calavi, Cotonou, Benin 

6 British Geological Survey, Wallingford, Oxfordshire, UK 

*Corresponding author: larbi.i@edu.wascal.org 

Abstract The need for a detailed investigation of the Vea catchment water balance 

components cannot be overemphasized due to its accelerated land cover dynamics 

and the associated impacts on the hydrological processes. This study assessed the 

possible consequences of land-use change scenarios (i.e. business as usual, BAU, 

and afforestation for the year 2025) compared to the 2016 baseline on the Vea 

catchment’s water balance components using the Soil and Water Assessment Tool 

(SWAT) model. The data used include daily climate and discharge, soil and land 

use/land cover maps. The results indicate that the mean annual water yield may 

increase by 9.1% under the BAU scenario but decrease by 2.7% under the 

afforestation scenario; actual evapotranspiration would decrease under BAU but 

increase under afforestation; and groundwater recharge may increase under both 

scenarios but would be more pronounced under the afforestation scenario. These 

outcomes highlight the significance of land cover dynamics in water resource 

management and planning at the catchment.   

Keywords water balance components; Vea catchment; SWAT modelling; land 

cover change scenarios 



1   INTRODUCTION 

Although freshwater constitutes less than 3% of the world’s water resources, it forms an 

important part of all terrestrial ecosystems. Concerns about the management of this 

limited resource in river basins have been on the increase due to changes in climatic 

conditions combined with anthropogenic influences (Jones et al. 2015, Zhang et al. 2008). 

Effective catchment management requires a thorough knowledge of the hydrological 

processes and their spatial distribution over the catchment (Wang et al. 2015). Land 

use/land cover (LULC) change is one of the main human induced activities which 

potentially impacts hydrology and water resources by affecting different hydrological 

processes and stores in the catchment (Bhaduri et al. 2000, Tang et al. 2005, Stonestrom 

et al. 2009). The changes in LULC have a direct and significant impact on the amount of 

evapotranspiration, surface runoff and groundwater recharge driven by infiltration during 

and after precipitation events (Doerr et al. 2000, Wei et al. 2013).  

In the past decades, modelling of hydrological response to the changes in LULC 

has become increasingly important. The changes in LULC, such as the conversion of 

forest to agriculture and urban areas, have accelerated the rate of surface runoff and also 

affected other water balance components (Costa et al. 2003, Jat et al. 2009, Awotwi et al. 

2014). A study conducted by Mwangi et al. (2016) on agroforestry impact on the 

hydrology of the Mara river basin, East Africa found a decrease in water yield (surface 

runoff, groundwater flow and lateral flow) due to the increase in tree cover. A similar 

study by Mango et al. (2010) investigated the hydrological response of the Mara River 

basin to land-use change and found a decrease in river baseflow and average streamflow 

due to the conversion of forest to agriculture and grassland. Using a semi-distributed 

hydrological modelling approach, Awotwi et al. (2014) estimated that the conversion of 

savanna (30.2%) and grassland (56.2%) to cropland caused a decrease in surface runoff 

and groundwater during the period from 1990 to 2006 in the White Volta basin (WVB) 

in West Africa. The above studies confirm that the water resources are under threat from 

the effects of LULC change. 

In the past decades, several hydrological models have been developed to simulate 

the water balance of catchments, especially in data scarce regions. These catchment 

models are generally applied for water balance assessments (Ghoraba 2015, Vilaysane et 

al. 2015, Bansode and Patil, 2016, Yin et al. 2016) or climate/land-use change impact 

assessments (Zhang et al. 2008, Mohamed, 2010, Palazzoli et al. 2015). Among these 

models, the physically based semi-distributed Soil and Water Assessment Tool (SWAT) 



model is a well-established model for estimation of water balance components, as well as 

for the analysis of the impact of land management practices on water, sediment and 

agricultural chemical yields in large complex catchments (Arnold et al. 1993). The 

SWAT model is one of the most widely used hydrologic models and has been applied in 

the USA, China, Europe, South Asia and Africa (Abbaspour et al. 2009). Hydrological 

models face challenges in terms of data requirements, spatial heterogeneity of basin 

characteristics, and how to represent complex terrestrial systems by model equations. 

SWAT is capable of overcoming some of these challenges (Gassman et al. 2007). The 

model has been used for a wide range of applications such as those relating to hydrology, 

including hydrological climate change impact studies (Gassman et al. 2007). In West 

Africa, a number of studies (Schuol and Abbaspour, 2007, Obuobie 2008, Kasei 2010, 

Kankam-Yeboah et al. 2013, Bossa et al. 2014) evaluated the SWAT model favourably 

in the context of water balance simulation. For example, Obuobie (2008) applied the 

SWAT model in the WVB to simulate the water balance components and found a good 

agreement between simulated and observed annual discharge, surface runoff and 

baseflow with a coefficient of determination (R2) and Nash-Sutcliffe model efficiency 

(NSE) both greater than 0.80. Other studies, such as Awotwi et al. (2015), also confirmed 

that the SWAT model was able to simulate reliably the hydrology of the WVB, hence the 

use of SWAT in our study.  

Freshwater availability and distribution have been declining over time partly due 

to changes in LULC and population growth. Studies such as Braimoh and Vlek (2004), 

Forkuor (2014), and Batuuwie (2015) have all reported substantial changes in LULC over 

recent years within the Volta basin, where the Vea catchment is located. The study by 

Batuuwie (2015) indicated that a significant portion of natural vegetation cover in the 

WVB, has been lost over the years partly due to human activities. Similarly, a study by 

Larbi et al. (2019) indicated the conversion of forest/mixed vegetation to cropland as the 

dominant LULC from 1990 to 2016 in the Vea catchment. Their projection of LULC 

predicted continuous expansion of cropland at the expense of forest/mixed vegetation 

with an estimated decrease of non-agricultural vegetation of 4.5% between 2016 and 

2025, under business as usual scenario (Larbi et al. 2019). This unfavorable situation of 

LULC change has heightened the need for afforestation and the protection of forest 

reserves in most river basins in Ghana such as the Vea catchment. There is however a 

trade-off between afforestation and surface water resources. For example, forest improves 

water quality and enhances infiltration but uses more water, causing higher 



evapotranspiration and lower runoff (Yira et al. 2017). Hence, there is an urgent need for 

catchment scale water balance information since the changes in LULC have been shown 

to alter the hydrological processes of many river basins (Stonestrom et al. 2009, Mwangi 

et al. 2016). In the study region, although Awotwi et al. (2014) undertook a broader scale 

study of LULC change impact on water resources on the entire White Volta basin, little 

is known at the local scale (e.g. for a sub-catchment such as the Vea). The previous large-

scale study of LULC change impacts on water balance have used coarse resolution data 

for land use, digital elevation model (DEM) and soil, which may ignore or over-simplify 

landscape characteristics that relate to the hydrology of the Vea catchment. Having a 

higher resolution DEM and LULC data provides better details for drainage, slope and 

related land-use types for small scale catchments. According to the study by Sivasena and 

Janga (2015), the accuracy of sub-catchments decreases with coarse resolution data, and 

this affects the generated runoff at the HRU level within each sub-catchment. There is 

also the issue of data scarcity and uneven distribution of climate stations in the catchment 

that hampers spatio-temporal studies of the various components of the water balance 

(Ibrahim et al. 2015). The issue of data scarcity is a challenge in Ghana, hence the need 

to rely on high-resolution satellite-based climate products for hydrological studies.  

Moreover, in the Vea catchment there is a proposed initiative to increase the 

number of small dams or dugouts with the aim of ensuring all year-round crop production. 

This initiative as a result may increase cropland area in the future and also affect other 

land-use types, which would eventually alter the water balance of the catchment. Given 

the reviewed impacts of LULC change on hydrological processes in Ghana, the need for 

a detailed investigation of the Vea catchment water balance components cannot be 

overemphasized due to its accelerated land cover dynamics and its associated impacts on 

the hydrological processes. This study assessed the possible consequences of land-use 

change scenarios (i.e. business as usual and afforestation, for the year 2025) compared to 

the 2016 baseline, on the water balance components of the Vea catchment (i.e. actual 

evapotranspiration, surface runoff, water yield and groundwater recharge ) using the Soil 

and Water Assessment Tool (SWAT) model. The specific objectives of this study  are to: 

(a) apply the SWAT model to simulate the water balance components of the data-scarce 

Vea catchment using both weather station and high-resolution (5-km) gridded 

precipitation data; and (b) estimate the impact of business-as-usual (BAU) and 

afforestation scenarios of land cover change on the water balance components. The BAU 

scenario deals with the projection of the LULC pattern based on expansion in cropland 



and grassland at the expense of forest/mixed vegetation, while the afforestation scenario 

deals with the by limiting cropland expansion into the forested areas and increasing 

natural vegetation (forest cover and grassland). The study provides information on the 

present water balance components of the catchment and the implication of different 

scenarios of LULC change on the future water resources which are relevant to decision 

makers for a sustainable management of the land and water resources of the Vea 

catchment. 

 

2   MATERIALS AND METHODS 

2.1 Study area 

The Vea catchment, with an area of 306 km2, is one of the three focal experimental 

catchments of the West African Science Service Center on Climate Change and Adapted 

Land Use (WASCAL); it is located within the White Volta basin (Figure 1). The Vea 

catchment covers mainly the Bongo and Bolgatanga districts in the Upper East region of 

Ghana and lies between 10°30–11°08N and 0º59–0º45W. The catchment lies mainly 

in Ghana, with a small northern portion located in the south-central part of Burkina Faso. 

The climate of the catchment is controlled by the movement of the Inter-Tropical 

Discontinuity (ITD) that dominates the climate of the entire West African region 

(Obuobie 2008). Located in a semi-arid agro-climatic zone, the catchment covers three 

agro-ecological zones: the Savanna and Guinea Savanna zones in Ghana, and north 

Sudanian Savanna zone in Burkina Faso (Forkuor 2014). It is characterized by a uni-

modal rainfall regime from April/May to October with a mean annual rainfall of 957 mm, 

which normally peaks in August, and a very high potential evapotranspiration with a 

mean annual value ranging from 1650 to 1950 mm (Limantol et al. 2016, Larbi et al. 

2018). It is characterized by fairly low relief with elevation ranging between 89 and 317 m 

(Figure 1) and mainly dominated by cropland followed by grassland interspersed with 

shrubs and trees, and woodland (closed/open) (Figure 2) (see also Section 2.2). The 

dominant soil type in the Vea catchment is lixisols (90%) while vertisols (8%) and 

cambisols (2%) occur in relatively smaller proportions (Figure 2). The catchment also 

contains a considerable number of wetlands and valleys, as well as the Vea Dam and 

many small dams (used for irrigation and animal watering) and wells/pumps, resulting in 

a complex hydro-ecological system. Agriculture (rain-fed and irrigated), which includes 

the cultivation of annual crops such as: beans, rice, sorghum, millet, and groundnuts is 

one of the main sources of income for many of the rural people in the catchment. The 



construction of the Vea irrigation project in the 1980s for irrigation farming and provision 

of potable water to the surrounding communities has led to changes in LULC in the 

catchment (Adongo et al. 2014). 

 
Figure 1 Location of the Vea catchment within the White Volta Basin, as well as the 
topography, weather and hydrological measurement stations in the Vea catchment, after 
Larbi et al. (2018).  
 

 

2.2   Data collection and preparation 

The SWAT model requires a digital elevation model (DEM), daily meteorological 

data, soil and LULC maps and management as input data. The characteristics of the 

datasets used for this study and their sources are listed in Table 1. Meteorological 

observations for the Vea catchment were taken mainly from the Bolgatanga and Vea 

climate stations maintained by WASCAL (Figure 1). Due to the sparse distribution of 

climate stations throughout the catchment, daily precipitation data from the Climate 

Hazards Group InfraRed Precipitation with Station (CHIRPS) data were used to 

complement the observed data. CHIRPS data combines 0.05° resolution satellite imagery 

with in-situ station data to create gridded rainfall time series (Funk et al., 2015). The 

CHIRPS data have been demonstrated to reproduce well both the seasonal and annual 

rainfall pattern of the Vea catchment, with validation resulted in a very high correlation 

coefficient (r = 0.99), and a Nash-Sutcliffe efficiency of 0.9, indicating that the CHIRPS 



precipitation data can be employed in this study (Larbi et al. 2018). The CHIRPS daily 

precipitation data were extracted for the various grid locations within the Vea catchment 

(Figure 1). These gridded locations (Figure 1, right) were selected to represent the three 

agro-ecological zones namely; the Savanna zone (GRID3, GRID 4, GRID 5, GRID 6, 

GRID 7 and GRID 8), the Guinea Savanna (GRID 9, GRID 10, GRID 11 and GRID 12) 

and the north Sudanian Savanna zone (GRID 1 and GRID 2) in the study area (Larbi et 

al. 2018). Missing records (less than 10%) in the Vea and Bolgatanga station data were 

filled with the CHIRPS precipitation data and the 0.5º resolution daily minimum and 

maximum temperature data from the NASA Langley Research Center (LaRC) POWER 

project (Stackhouse et al. 2018). The LULC map (Figure 2) was obtained from the 

maximum likelihood algorithm classification of Landsat image of the year 2016 with the 

details of the LULC classification found in Larbi et al. (2019). Tables 2 and 3 show the 

various LULC types and the associated statistics.  

 

 
 
Figure 2 Land use/land cover (left), Soil (middle), and slope classes (right) maps of the 

Vea catchment. Lixisols (Lf1-1a), vertisols (Vc1) and cambisols (Bv2) 
 
Table 1. Datasets used within the SWAT modelling of the Vea Catchment and their 
sources 



S/N Data type Description  Source 

1 DEM 30m digital elevation model for 
delineation of the catchment boundary, 
stream networks and sub-catchments. 

Shuttle Radar Topography 
Mission (SRTM) 
http://earthexplorer.usgs.gov/ 

2 Climate Daily rainfall (mm), maximum and 
minimum temperature (oC) from 1990-
2017. 

Ghana Meteorological 
Agency, WASCAL Vea 
catchment, CHIRPS and 
NASA POWER 

3 Hydrological  Daily discharge data from 2013-2015 
from Sumbrugu river gauging station 
for calibration and validation of 
SWAT model. 

 WASCAL Vea catchment 

4 Soil 
map/properties 

10km soil map, Soil texture and 
physical properties such as: bulk 
density, hydrological group, available 
water content, hydraulic conductivity 
and organic matter content for two 
layers (30cm and 100cm) for the three 
soil types namely; lixisols (Lf1-1a), 
vertisols (Vc1) and cambisols (Bv2) in 
Figure 2. 

CSIR-Soil Research Institute 
(Ghana), Harmonized World 
Soil Database (Dewitte et al., 
2013). 
 

5 Land use/land 
cover map 

LULC map of the year 2016  Landsat image classification 
(Larbi et al. 2019) 

 
Table 2. Land use/ land cover classification scheme used for the Vea Catchment after 
Larbi et al. (2019) 

LULC Categories Description 
Water bodies Areas permanently covered with standing or moving water 

such as inland waters, water logged areas, wetlands, dams, 
dugouts, and streams. 

Grassland Mainly mixture of grasses and shrubs with or without 
scattered trees (<10 trees per hectare) areas covered with 
only grasses. 

Built-Up areas Areas of human settlements, roads, artificial surfaces etc. 
Cropland Areas used for crop cultivation (irrigated and rain-fed 

agriculture), harvested agricultural land and bare soil. 
Forest/Mixed 
Vegetation 

Areas with dense trees usually over 5m tall, riparian 
vegetation, shrub and trees. 

 
 
Table 3. Distribution of 2016 land use/cover classes within the Vea catchment (Larbi et 

al. 2019) 



LULC type Redefined LULC according 
to SWAT database 

SWAT 
Code 

Area (km2) Area 
Coverage 

(%) 
Cropland Agricultural Land-Generic AGRL 174.50 56.64 
Grassland Range Grass RNGE 82.72 26.85 
Built-Up Areas Residential URBN 1.67 0.54 
Water Bodies Range-Grasses WATR 4.90 1.59 
Forest/Mixed 
Vegetation 

Forest Mixed FRST 44.28 14.37 

 

 

2.3   Hydrological modelling  

2.3.1 Hydrological components of the SWAT model  

The SWAT model is an eco-hydrological model developed to simulate the quantity and 

quality of surface water and groundwater, and predict the environmental impact of land 

management practices, land use and climate change (Arnold et al. 1998, Cornelissen et 

al. 2013). SWAT is useful in modelling ungauged catchment and it simulates the 

catchment by first dividing it into sub-catchments, and then into homogenous units that 

consist of uniform land use, soil and slope characteristics, referred to as hydrologic 

response units (HRUs) (Neitsch et al. 2005). In SWAT, the quantification of the 

hydrological cycle components is based on the water balance equation and is expressed 

mathematically as: 

𝑆𝑊௧ ൌ 𝑆𝑊௢ ൅ ∑ ሺ𝑅ୢୟ୷ െ 𝑄_ୱ୳୰୤ െ 𝐸𝑇 െ 𝑊ୱୣୣ୮ െ Lt୤୪୭୵ െ 𝑄୥୵ሻ௧
௜ୀଵ                 (1) 

where 𝑆𝑊௧ is the final soil profile water content (mm);  𝑆𝑊௢ is the initial soil water 

content on day i (mm); 𝑅ୢୟ୷, 𝑄_ୱ୳୰୤, 𝐸𝑇, 𝑊ୱୣୣ୮, Lt୤୪୭୵ and 𝑄୥୵ are the daily amounts 

(mm) of rainfall, surface runoff, actual evapotranspiration, percolation, lateral flow, and 

the groundwater flow, respectively, on day i. The water yield component, considered in 

this study consists of the contributions from surface runoff, lateral flow and groundwater 

flow to stream flow.    

In this study, the Soil Conservation Service (SCS) curve number equation (SCSD, 

1986) was used to compute the 𝑄_ୱ୳୰୤ SWAT. The Lt୤୪୭୵ which is the lateral movement 

of water in the soil profile was simulated using the kinematic storage model method of 

Sloan and Moore (Sloan and Moore 1984), which is based on mass continuity equation. 

The potential evapotranspiration (PET) in this study was estimated using the Hargreaves 



method (Hargreaves and Samani, 1985), which requires only air temperature as input 

data. The model then computes ET once PET is determined. The groundwater recharge 

to the shallow aquifer is simulated by SWAT using Equation (2).  

𝑊୰ୡ୦୥,ୱୟ௜
ൌ ൫1 െ expඋെ1/𝛿୥୵ඏ൯ ∙ 𝑊ୱୣୣ୮ ൅ expඋെ1/𝛿୥୵ඏ ∙ 𝑊୰ୡ୦୥,ୱୟ௜ିଵ

                  (2) 

where 𝑊୰ୡ୦୥,ୱୟ௜
 and 𝑊୰ୡ୦୥,ୱୟ௜ିଵ

 are, respectively, the amount of recharge from the soil 

profile entering the shallow aquifer on day i and on day i–1 (mm); and 𝛿୥୵ is delay time 

or drainage time (days).  

The Vea catchment was delineated into 52 sub-catchments with an estimated total 

surface area of about 306 km2 using the 30-m DEM. The 2016 LULC map and soil map 

were used to define the HRUs of the catchment. The multiple HRUs definition option 

was used to further sub-divide the Vea catchment into 331 HRUs. The model was run for 

the period 1990–2017; and the first three years (1990–1992) were used as model spin-up 

period. For a detailed description of how the SWAT model simulates the water balance 

components and the model set-up, readers are referred to the SWAT documentation by 

Neitsch et al. (2005), and the SWAT user guide of Winchell et al. (2013).   

2.3.2 Model sensitivity analysis, calibration and evaluation of prediction performance  

The SWAT model sensitivity analysis, calibration and validation were performed via the 

interface of SWAT-CUP using the Sequential Uncertainty Fitting version 2 (SUFI-2) 

procedure (Abbaspour et al. 2009). The superior capability for calibration and uncertainty 

analysis has been demonstrated by various studies, e.g. Shawul et al. (2013), Abbaspour 

et al. (2009). The sensitivity analysis was performed by testing a total of 13 parameters 

(Table 5) based on previous studies (Obuobie, 2008; Guug, 2017) and SWAT 

documentation recommendations (Neitsch et al. 2011). The SWAT model for the Vea 

catchment was calibrated manually as well as automatically based on the available daily 

observed discharge data similar to studies such as Kankam-Yeboah et al. (2013), and Dos 

Santos et al. (2018). The calibration was performed for the periods May 2014–November 

2014 and June 2015–November 2015, and validation for the period (July–November 

2013 at the Sumbrungu gauge station (Figure 1). Due to the limited length of the time 

series, and gaps within the observed discharge data, manual calibration was performed 

first based on the authors and expert knowledge of the catchment in order to ensure that 

the various water balance components were within reasonable and/acceptable ranges. 

Moreover, SWAT applications literature in the region was used to support the manual 



calibration (e.g. Obuobie 2008, Kankam-Yeboah et al. 2013, Guug, 2017). The manual 

calibration was performed for a limited number of parameters, including SCS runoff 

curve number (CN2), soil evaporation compensation factor (ESCO), and baseflow alpha 

factor (ALPHA_BF), by changing one parameter at a time and re-running the model.  

This choice of parameters was based on previous SWAT model runs for the area (Guug 

2017). Manual calibration was then followed by automatic calibration to further tune the 

parameters (Table 5) for the entire catchment. The performance of the SWAT model was 

evaluated using Nash-Sutcliffe model efficiency (NSE; Eq. (3)), coefficient of 

determination (R2; Eq. (4)) and percentage bias (PBIAS; Eq. (5)). The PBIAS measures 

the average tendency of the simulated values to be larger or smaller than the observed. 

The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate model 

simulation. Negative values indicate overestimation, whereas positive values indicate 

underestimation. NSE is a commonly used statistic proposed by Nash and Sutcliffe (1970) 

and ranges from 1 to –∞ with a value of 1 corresponding to an exact fit between modelled 

and measured data. The R2 gives information about the goodness of fit between the 

simulated data and the measured data. It ranges from 0 to 1, with 1 being the best fit 

between the simulated and the observed data; typically values greater than 0.5 are 

considered acceptable (Santhi et al. 2001). The model performance was rated according 

to the performance ratings proposed by Moriasi et al. (2007), which indicated that a 

hydrological model can be considered satisfactory if NSE > 0.50, R2 > 0.60, and PBIAS 

is within ±25% for streamflow. 

NSE ൌ 1 െ
∑ ሺை೔ି௉೔ሻమ೙

೔సభ

∑ ሺை೔ିைതሻమ೙
೔సభ

            (3) 

𝑅ଶ ൌ ቈ
∑ ሺ୓೔െ𝑂ഥ ሻሺ୔೔ି𝑃ഥሻಿ

೔సభ

ൣ∑ ሺ୓೔െ𝑂ഥ ሻమಿ
೔సభ ൧

బ.ఱ
ൣ∑ ሺ௉െ୔ഢതതതሻమಿ

೔సభ ൧
బ.ఱ቉

ଶ

            (4) 

PBIAS ൌ
∑ ሺை೔ି௉೔ሻ೙

೔సభ

∑ ሺை೔ିைതሻ೙
೔సభ

ൈ 100                        (5) 

In these equations 𝑂௜ are the measured discharge data; 𝑃௜  are the simulated discharge 

data, whereas 𝑂ത and �̅�௜ are the mean of the measured and simulated data, respectively. 

 

2.4   Land cover change scenarios and water balance impact assessment 

The 2016 LULC map and the two LULC change scenarios (BAU and afforestation) 

(Figure 3) used in this study were produced by Larbi et al. (2019). The 2016 LULC map 

was based on maximum likelihood algorithm classification of the 30-m resolution 



Landsat image with an overall accuracy of 88%. This was adopted as a baseline in order 

to understand and obtain information on the current hydrological status at the Vea 

catchment. The maps for the two scenarios were produced using the Markov chain in the 

Land Change modeller. The Markov chain calculates how much land transition occurs 

from one class to another from time t0 to t1 in each transition based on the historical rate 

of LULC changes that occurred (Eastman 2006, Olmendo et al. 2015). Based on the most 

dominant transitions (grassland to cropland, forest/mixed vegetation to cropland, and 

forest/mixed vegetation to grassland) that occurred at the Vea catchment between 1990 

and 2016, the transition potential maps were produced using the multi-layer perceptron 

(MLP) neural network algorithm at an accuracy rate of 85% (Larbi et al. 2019). The BAU 

scenario map was produced based on the probability matrix generated from the transition 

potential maps. In the case of afforestation scenario, the probability matrix for the 

forest/mixed vegetation, grassland and cropland were modified based on the definition of 

the afforestation scenario, while the other LULC types were assumed to be maintained 

till the 2025. Table 4 shows the statistics for the 2016 LULC map and projections for the 

two LULC scenarios. Under the BAU scenario, cropland and grassland areas are 

projected to increase in the year 2025 by 1.5% and 6.5%, respectively, while forest/mixed 

vegetation shows a decrease of 4.5%. Under the afforestation scenario, the forest/mixed 

vegetation and grassland showed an increase of 5.4% and 14.3%, respectively, while 

cropland decreased by 20%. Detailed information on the 2016 LULC mapping, LCM 

validation and the two land-use scenarios are given in Larbi et al. (2019). 

After calibration and validation of the SWAT model using the 2016 LULC map, 

the impacts of the two LULC change scenarios on the water balance components were 

simulated by driving the calibrated SWAT model with the 2025 BAU and afforestation 

scenario LULC datasets. The SWAT model was run for each scenario using the climate 

for the period 1993–2017, and the results under each scenario were compared to the 

corresponding water balance components (actual evapotranspiration, water yield and 

groundwater recharge) values for the 2016 LULC condition.  

Table 4. Current and 2025 LULC area statistics (in km2) in the Vea catchment 
LULC Class Baseline 2016 2025 scenarios 

BAU Afforestation 
Cropland 174.50 (56.6%) 177.04 (57.5%) 155.5 (51.3%) 
Grassland 82.72 (26.8%) 88.06 (28.5%) 94.55 (31.3%) 
Built-Up Areas 1.67 (0.5%) 1.67 (0.5%) 1.02 (0.5%) 



Note: The areas expressed as percentages areas of the total area are in brackets. 
 

 
Figure 3 The baseline and 2025 LULC change scenarios maps of the Vea catchment 

(Larbi et al. 2019) 
 

 

3    RESULTS AND DISCUSSION 

3.1 Sensitivity, calibration and validation of SWAT model 

A total of 13 parameters were selected and presented together with their final fitted values 

for the stream flow simulation with the SWAT model (Table 5). Generally, hydrological 

models are sensitive to parameters related to soil, weather, vegetation, land management, 

and channels properties (Arnold et al., 2000). The average slope steepness (HRU_SLP), 

SCS runoff curve number (CN2), baseflow alpha factor (ALPHA_BF), soil evaporation 

Water Bodies 4.90 (1.6%) 4.90 (1.6%) 4.90 (1.6%) 
Forest/Mixed Vegetation 44.28 (14.4%) 36.40 (11.8%) 46.66 (15.3%) 



compensation factor (ESCO) and the threshold water depth in the shallow aquifer for 

return flow to occur (GWQMN) emerged as the most sensitive parameters for the Vea 

catchment. Similar results were reported by a number of studies in the same region using 

the SWAT model (Obuobie, 2008; Kankam-Yeboah et al. 2013; Guug, 2017). The 

comparison between the observed and simulated daily stream flows for the SWAT model 

calibration (2014–2015) and validation (2013) periods are shown in Figure 4 and Figure 

5, respectively. The values for R² and NSE for the calibration period were 0.75 and 0.69, 

respectively, whereas for the validation periods 0.71 and 0.62, respectively, were 

obtained. The PBIAS results for the calibration (10.3%) and validation (–18.5%) of the 

SWAT model are in line with the range for model satisfaction proposed by Moriasi et al. 

(2017), indicating that a hydrological model can be considered as satisfactory if NSE > 

0.50, R2 > 0.60, and PBIAS is within ±25% for streamflow. The obtained modelling 

statistics are also in line with calibration results of previous SWAT modelling studies in 

the study region (e.g. Obuobie, 2008; Kankam-Yeboah et al. 2013, Awotwi et al. 2014). 

In addition, the hydrological balances produced by the SWAT model in this study are 

close to values found for small Sudanian catchments in the study region (Oguntunde, 

2004, Martin 2005, Ibrahim et al. 2015). Therefore, the modelling statistics results 

provide a reasonable support for the model’s ability to describe water balance components 

of the Vea catchment. 

Table 5. Input parameters and bounds, sensitivity ranking and calibrated values by the 
SWAT model for the Vea catchment 

Parameters Definition Lower/ 
upper 
bounds 

Calibrated  
values 

Sensitivity 
Rank 

HRU_SLP Average slope steepness 
(m/m) 

0.0-1.0 0.014 1 

V_CN2.mgt_AGRL 
V_CN2.mgt_RNGE 
V_CN2.mgt_ FRST 

Curve number for cropland, 
Curve number for grassland 

Curve number for 
forest/mixed vegetation. 

35-90 72.5 
73.5 
69.0 

2 

V_ALPHA_BF.gw Baseflow alpha factor (days) 0.0-1.0 0.02 3 
V_ESCO.hru Soil evaporation 

compensation factor 
0.0-1.0 0.42 4 

R_REVAPMN.gw Threshold depth of water in 
shallow aquifer for revap to 

occur 

0.0-1000 550 5 

SLSUBBSN.hru Average slope length (m) 10-150 121.9 6 



V_GWQMN.gw Threshold depth of water in 
the shallow aquifer for return 

flow to occur (mm ) 

0.0-5000 2200 7 

R_EPCO.hru Plant uptake compensation 
factor 

0.0-1.0 0.02 8 

V_GW_REVAP.gw Groundwater “revap” 
coefficient.  

0.02-0.2 0.02 9 

V_GW_DELAY.gw Groundwater delay (days) 0- 500 33 10 

R_GW_SPYLD.gw Specific yield of the shallow 
aquifer (m3/m3) 

0.0-0.4 0.003 11 

SURLAG.bsn Surface runoff lag time (days) 0.0-24 2 12 
R_RCHRG_DP.gw Deep Aquifer percolation 

coefficient 
0.0- 1.0 0.25 13 

BLAI_AGRL 
BLAI_RNGE 
BLAI_FRST 

Maximum LAI for cropland 
Maximum LAI for grassland 
Maximum LAI for 
forest/mixed vegetation 

0.5-10 
0.5-10 
0.5-10 
 

3 
2.5 
5 

 

RDMX_ AGRL Maximum rooting depth (m) 
for cropland 

0-4 2  

RDMX_ RNGE Maximum rooting depth (m) 
for grassland 

0-4 2  

RDMX_ FRST Maximum rooting depth (m) 
for forest/mixed vegetation 

0-4 3  

R: parameter value is multiplied by 1+given value; V: parameter value is replaced by the 
calibrated value  
 

 

 

Figure 4 Simulated vs. Observed daily discharge for calibration period (2014-2015) at 
Sumbrungu gauge station, Vea Catchment 



 
Figure 5 Simulated vs. Observed daily discharge for validation period (2013) for 

Sumbrungu gauge station, Vea Catchment 
 

3.2 Mean annual and monthly water balance components analysis  

The mean annual simulated water balance components from the baseline model run over 

the period 1993–2017, as a proportion of the mean annual rainfall, are shown in Figure 

6. The results show that 74.3% of the mean annual rainfall (954 mm) is lost to ET in the 

catchment during the model simulation period (1993–2017). The water yield (WYLD), 

which consists of surface runoff, groundwater flow and lateral flow, constitutes about 

13.5% of the rainfall (128 mm), of which 𝑄_ୱ୳୰୤ accounts for 8.6%, while 𝑄୥୵ and Lt୤୪୭୵ 

account for 3.4% and 1.4%, respectively. The recharge to the shallow aquifer (𝑊୰ୡ୦୥,ୱୟ) 

is simulated to be 12.1% (115 mm). The results obtained from this study are also in line 

with other previous studies, such as Martin (2005), Friesen et al. (2005), Obuobie (2008) 

and Guug (2017). For example, a very high actual evapotranspiration (ET) within the 

range 73–75%, runoff in the range 10–17% and shallow aquifer recharge (7–13%) for the 

year 2003 were obtained by a study conducted by Martin (2005) using a simple 

spreadsheet-based soil water balance method for Atankwidi catchment (a 275 km2 sub-

catchment of the White Volta in northern Ghana), which is adjacent to the Vea catchment. 

Similarly, Ibrahim et al. (2015) determined the water balance for the Vea catchment, from 

water budget modelling using the GR2M model for the period 1970–2000 and found that 

about 74.6% of the mean annual rainfall (980 mm) comprises actual evapotranspiration, 

with runoff and recharge being, respectively, 11.9% and 12.9% of the annual rainfall. 

In terms of mean monthly distribution of the simulated water balance components 

(Figure 7), it was found that potential evapotranspiration (PET) exceeds rainfall in most 

of the months except July, August and September, which record the highest monthly 



rainfall of 173, 266 and 175 mm, respectively. The ET increases steadily as rainfall 

increases during the season and decreases as the dry season approaches. During the first 

6–9 weeks from the rainfall onset month (April), the model simulates rainfall being 

entirely partitioned by ET and the replenishment of soil moisture storage. The surface 

runoff therefore becomes important only after this first period of approximately 2 months; 

it peaks together with the water yield in August when the rainfall is highest. It is worth 

mentioning that the wet season is from May to October, but the water yield extends to 

December due to groundwater baseflow (also see Guug, 2017).  

 

3.3 Distribution of water balance components for the different LULC types  

The analysis of simulated mean annual water balance components, at the catchment scale, 

under different LULC types show that the lowest average annual 𝑄_ୱ୳୰୤ is from 

forest/mixed vegetation, whereas the highest values occur on grassland followed by 

cropland (Table 6). Grassland, which covers about 26.9% of the catchment, has a mean 

annual 𝑄_ୱ୳୰୤ of 100.3 mm, followed by cropland, with 𝑄_ୱ୳୰୤ of 88.5 mm, whereas the 

lowest 𝑄_ୱ୳୰୤  of 56.2 mm is found for forest/mixed vegetation. For cropland and grassland, 

this is equivalent to approx. 10% of the rainfall, whereas for forest/mixed vegetation it is 

only about 6%. The actual evapotranspiration (ET) is simulated to be in the range 73–

74% of rainfall, i.e. the differences between the three land uses are virtually negligible. 

The contribution of Qgw to streamflow is simulated to be relatively high in forest/mixed 

vegetation (7.7%), follow by cropland (5.6%), but it is low (4%) in grassland.  



Table 6. Mean annual water balance components simulated by SWAT under different 
land use/cover types at catchment scale 

LULC rainfall 
(mm) 

Q_surf 
(mm) 

𝑄௚௪ (mm) ET (mm) 

Cropland  949.3 88.5(9.3%) 50.5 (5.6%) 700.5 (72.9%) 
Forest/mixed 
vegetation 

972.87 56.2(5.8%) 74.3 (7.7%) 720.1 (74.0%) 
 

Grassland 951.45    100.3(10.5%) 37.9 (4.0%) 698.8 (73.4%) 

           NB: Percentage rainfall contribution between brackets 

 

3.4  Water balance components changes under land-use scenarios  

The SWAT simulated mean monthly and annual water balance components for the period 

1990–2017 under the two LULC scenarios (BAU and afforestation) were compared with 

those simulated for the 2016 LULC (baseline) to explore their temporal (Table 7) and 

spatial pattern in the Vea catchment. At the annual scale under the BAU scenario (see 

Section 2.4), the mean annual surface runoff, water yield and groundwater recharge 

increased by 18.7%, 9.1% and 15.3%, respectively, and ET decreased by 2.7% (Table 7). 

In contrast, the opposite impact on ET occurred under the afforestation scenario, which 

showed a slight increase in ET by 0.6%, whereas surface runoff  and water yield decreased 

by 19.6% and 18%, respectively, while groundwater recharge increased by 28.1%. At the 

monthly scale, for the BAU scenario, the ET decreased by 4.9% in the rainy season 

months (May–October) and 𝑄_ୱ୳୰୤ and WYLD increased by 18.6% and 8.7%, respectively 

(Figure 8). Similarly, the afforestation scenario shows a 7.8% decrease in ET, 23.1% 

decrease in 𝑄_ୱ୳୰୤  and 19.1% decrease in WYLD, but an increase in recharge by 21.4% 

in the peak period of the rainfall season (July–September). At the spatial scale under the 

BAU scenario, as shown in Figure 9, the ET shows a decrease in most parts of the 

catchment (Figure 9(b)), but water yield (Figure 9(h)) and surface runoff, especially in 

the central part of the catchment (Figure 9(d)–(f)), increased. Under the afforestation 

scenario, ET increased in the north-central part of the catchment (Figure 9(c)) and surface 

runoff decreased in the southern and northern parts (Figure 9(f)). The water yield 

decreased considerably in the entire catchment, with the highest value of 197 mm (Figure 

9(i)), while an increase in groundwater recharge would occur at the northern part of the 

catchment (Figure 9(L)). 

The SCS curve number (CN) method is used by the SWAT model to compute the 

surface runoff for each land use. From Table 5, the CN for cropland, grassland and forest 



is 72.5, 73.5 and 69, respectively, with an average catchment CN of 71.5. Therefore, 

grassland had the highest surface runoff at the catchment based on CN, followed by 

cropland and forest/mixed vegetation. The conversion from cropland to forest/mixed 

vegetation would lead to a decrease in CN in that area and, hence, a decrease in surface 

runoff under the afforestation scenario. Surface runoff comprises about 63% of the water 

yield; hence, there would be a subsequent decrease in water yield under the afforestation 

scenario. On the other hand, when forest is converted to cropland and grassland, under 

the BAU scenario, the CN for the area where the conversion takes place would increase, 

leading to an increase in surface runoff and water yield.  

The plant canopy influences infiltration, surface runoff and evapotranspiration 

under the different land-use types. When computing surface runoff in SWAT, the SCS 

CN method lumps the canopy interception in the term for initial abstraction. The 

maximum amount of water that can be held on the canopy for subsequent evaporation 

(interception) is a function of the leaf area index (LAI). According to Chen and Black 

(1992), LAI is an important modulator of ET and groundwater recharge. The maximum 

LAI (BLAI) values (Table 5) for forest/mixed vegetation, cropland and grassland for the 

Vea catchment, as simulated by the SWAT model, are 5, 3 and 2.5 m2 m-2, respectively, 

indicating higher interception in forest, followed by cropland and grassland.  

Higher ET occurred in the forest/mixed vegetation (720 mm/year), followed by 

cropland (700.5 mm/year) and grassland (698.8 mm/year), as shown in Table 6. This is 

because ET is partly dependent on transpiration, which is directly proportional to the 

surface area of leaves (equivalent to the LAI) from which water vapour is released. 

According to Adane et al. (2018), the conversion from cropland to forest/mixed 

vegetation leads to increased rooting depth and greater LAI, which together alter the water 

budget considerably. Hence, under the afforestation scenario, we would expect the actual 

evapotranspiration to increase, while the opposite would occur under the BAU scenario.   

Rooting depth determines the maximum depth from which plants can access 

moisture in the soil profile and it has substantial influence on groundwater recharge and 

actual evapotranspiration. In the SWAT model, the maximum rooting depth (RDMX) 

values for each land use type were 3 m for forest/mixed vegetation and 1 m for grassland 

and cropland (Table 5). Under both scenarios of land-use change, groundwater recharge 

increased: in the BAU scenario, this occurred because, although there was more surface 

runoff, the increased area of grassland and cropland meant lower ET. In the afforestation 

scenario, there was a greater infiltration rate which outweighed the increased ET. In 



addition, automatic calibration of the SWAT model indicated that water loss at the 

catchment was more influenced by evaporation than transpiration, as indicated by the 

coefficients of plant uptake and soil evaporation compensation factors which were found 

to be 0.02 and 0.42, respectively (Table 5). This means that the evaporation process is 

sustained from deeper soil layers through capillary rise, whereas transpiration receives 

very little contribution from the deeper soil layers. The dominant soil type in the Vea 

catchment is lixisols (90%), soils with subsurface accumulation of mainly kaolinitic 

clays, whereas approximately 8% of the catchment is characterized by the presence of 

vertisols (dominated by montmorillonite clays). Both clay types will allow for capillary 

rise to sustain the evaporation processes, but their water holding capacities are poor, and 

vertisols display pronounced cracking and swelling, which would negatively affect the 

transpiration process. This explains the pronounced increase in recharge under the 

afforestation scenario. 

The decreased ET was due to the conversion of forest/mixed vegetation to 

cropland (see Table 7, where ET for cropland is marginally smaller than for the other two 

land uses). Zhang et al. (2012) indicated that a decrease in forest cover reduces ET from 

both canopy interception and plant transpiration. The results obtained for water yield 

under the BAU (+9.1%) and afforestation (–18%) scenarios are in accordance with other 

studies, such as those by De Moraes et al. (20060, Coe et al. (2009) and Dos Santos et al. 

(2018). For example, in the Goseng catchment, Nugroho et al. (2013) found that surface 

runoff and water yield (total runoff) increased due to a decrease in vegetation cover. 

Similarly, other studies, such as those by Bewket and Sterk (2005) and Costa et al. (2003), 

have confirmed that LULC change, such as the conversion of forest to agriculture and 

urban areas, can increase the rates of 𝑄_ୱ୳୰୤ and groundwater recharge. According to the 

studies by Andréassian et al. (2004) and Brauman et al. (2007), a reduced forest coverage 

leads to an increase in annual flow, flood peaks and flood volume. Warburton et al. (2012) 

also noticed that the expansion of forest and shrub cover reduces catchment water yields 

and increases storage capacity, which confirms the increase in recharge obtained in this 

study under the afforestation scenario. Similarly, López-Moreno et al. (2013) showed that 

an increase in forest cover in the Upper Aragón River basin caused a decrease in annual 

streamflow by 16%. Indeed, our results also indicate that, within the baseline model run, 

lower surface runoff was simulated under forest/mixed vegetation (5.8%) compared to 

cropland (9.3%) and grassland (10.5%) which covers the greater part of the study area.  



The increased forest cover (conversion of cropland to forest/mixed vegetation) 

under the afforestation scenario would eventually lead to an increase in 

evapotranspiration due to the increase in water consumption by the trees which would 

increase plant transpiration (Oliveira et al. 2018). Also, the surface runoff and water yield 

would decrease, while recharge increases, because trees function as a means of enhancing 

water infiltration into the soil through the process of temporary detention of rainwater by 

interception, stemflow and throughfall, thus increasing the water storage (Nugroho et al. 

2013). As noted by Li et al. (2018), a naturally vegetated land has relatively lower water 

yield coefficients due to higher rates of water infiltration. According to Mwangi et al. 

(2016), the ground surface roughness increases when forest/mixed vegetation increases, 

and this also accounts for an enhanced infiltration and a decrease in surface runoff 

generation. Moreover, afforestation leads to a reduction in peak flows over the 

hydrological year, since it increases the infiltration capacity and the effective root zone, 

thus increasing storage capacity (Wiekenkamp et al. 2016; Lamparter et al. 2018).  

Table 7. Mean annual water balance components under 2016 and 2025 LULC change 
scenarios over the simulated period (1993-2017) 

Water balance components Baseline 
(2016) 

BAU Scenario  afforestation 
scenario  

Rainfall (mm) 954.5 954.5 954.5 
Actual evapotranspiration, ET (mm) 709.5 689.8(-2.7%) 714 (+0.6%) 
Surface runoff, Q_Surf (mm) 82.5 97.9(+18.7%) 66.3 (-19.6%) 
Water yield, WYLD (mm) 128.4 140.3 (+9.1%) 105.1(-18.0%) 

Groundwater recharge (mm) 115.1 132.8(+15.3%) 147.4 (+28.1) 

NB: Values in brackets indicate percentage change in water balance component relative 
to the baseline for each scenario 
 



 
Figure 8 Mean monthly water balance components under different scenarios of land use 

change 
 

 
Figure 9 SWAT Simulated mean annual water balance components under BAU and 
afforestation scenarios of land use change relative to the baseline (2016) LULC map 

 



 

4   CONCLUSION 

The Soil and Water Assessment Tool (SWAT) was configured for the Vea catchment to 

study the water balance components under business-as-usual (BAU) and afforestation 

scenarios of land use by forcing the SWAT model with both station and gridded 

precipitation and other climatic driving data. The study found that about 74% of the 

rainfall received at the catchment is converted into actual evapotranspiration, and the 

remainder is shared between the other components of the water balance. This partitioning 

is consistent across the three main land-use types. The magnitude of the LULC change 

impact on the water balance components varied, with the greatest difference between the 

two scenarios being for surface runoff. The changes in land use played an important role 

in the water balance, indicated by an increased water yield and surface runoff under the 

BAU scenario; these were decreased under the afforestation scenario. The conversion 

from cropland to forest/mixed vegetation would lead to a decrease in curve number in 

that area and, hence, a decrease in surface runoff and water yield under the afforestation 

scenario. On the other hand, the BAU scenario would lead to an increase in catchment 

curve number and, hence, increased surface runoff and water yield. The study also found 

that ET increased under the afforestation scenario but decreased under the BAU scenario 

due to higher leaf area index of forest/mixed vegetation which is equivalent to the surface 

area of leaves from which moisture can be released (either from an intercepted pool of 

stored water on the leaves, just after rainfall, or via transpiration when leaves are dry). In 

addition, it was found that water loss at the catchment was more influenced by 

evaporation than by transpiration (due to the physical properties of the lixisols and 

vertisols in this area) and, hence, the pronounced increase in recharge under the 

afforestation scenario. From an ecosystem service perspective, the increased water yield 

due to cropland and grassland expansion would contribute to the blue water available for 

consumption but would increase soil erosion and flood risks during storms. The increase 

in groundwater recharge under both scenarios of LULC change, especially under the 

afforestation scenario, would increase the availability of groundwater resources for 

different usages in the catchment. The insights acquired in this study provide a useful 

reference relating to the important role of land-use change in water resources planning 

and the need for stakeholders and policy makers to consider practical trade-offs between 



changes in water balance components and other benefits of afforestation in the small-

scale Vea catchment. 
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Table 1. Datasets used within the SWAT modelling of the Vea catchment and their 
sources. 

S/N  Data type  Description   Source 

1  DEM  30‐m  DEM  for  delineation  of  the 

catchment  boundary,  stream 

networks and sub‐catchments. 

Shuttle  Radar  Topography 

Mission  (SRTM) 

http://earthexplorer.usgs.gov/

2  Climate  Daily  rainfall  (mm),  maximum  and 

minimum  temperature  (oC)  from 

1990–2017. 

Ghana Meteorological Agency, 

WASCAL Vea catchment, 

CHIRPS and NASA POWER 

3  Hydrological   Daily discharge data from 2013–2015 

from  Sumbrugu  river  gauging  station 

for calibration and validation of SWAT 

model. 

 WASCAL Vea catchment 

4  Soil 

map/properties 

10‐km  soil  map,  soil  texture  and 

physical  properties,  such  as:  bulk 

density,  hydrological  group,  available 

water content, hydraulic  conductivity 

and  organic  matter  content  for  two 

layers  (30  and 100  cm)  for  the  three 

soil  types,  namely:  lixisols  (Lf1‐1a), 

vertisols  (Vc1) and cambisols  (Bv2)  in 

Fig. 2. 

CSIR‐Soil  Research  Institute 

(Ghana),  Harmonized  World 

Soil  Database  (Dewitte  et  al., 

2013). 

 

5  Land  use/land 

cover map 

LULC map of the year 2016   Landsat  image  classification 

(Larbi et al. 2019) 

 
 
 

  



Table 2. Land use/ land cover classification scheme used for the Vea catchment after 
Larbi et al. (2019). 

LULC Category  Description 

Water bodies  Areas permanently covered with standing or moving water 

such as inland waters, water‐logged areas, wetlands, dams, 

dugouts, and streams. 

Grassland  Mainly  mixture  of  grasses  and  shrubs  with  or  without 

scattered trees (<10 trees per hectare) areas covered with 

only grasses. 

Built‐up areas  Areas of human settlements, roads, artificial surfaces etc. 

Cropland  Areas  used  for  crop  cultivation  (irrigated  and  rain‐fed 

agriculture), harvested agricultural land and bare soil. 

Forest/mixed 

vegetation 

Areas  with  dense  trees  usually  over  5m  tall,  riparian 

vegetation, shrub and trees. 

 
 

  



Table 3. Distribution of 2016 land use/cover classes within the Vea catchment (Larbi et 
al. 2019). 

LULC type  Redefined LULC according 

to SWAT database 

SWAT 

code 

Area (km2)  Area 

coverage (%) 

Cropland  Agricultural Land‐Generic  AGRL  174.50  56.64 

Grassland  Range Grass  RNGE  82.72  26.85 

Built‐Up areas  Residential  URBN  1.67  0.54 

Water bodies  Range‐Grasses  WATR  4.90  1.59 

Forest/mixed 

vegetation 

Forest Mixed  FRST  44.28  14.37 

 
 
  



Table 4. Current and 2025 LULC area statistics (in km2) in the Vea catchment. Values 
in parentheses are the percentage of the total area. 

 
  

LULC Class  Baseline 2016  2025 scenarios 

BAU  Afforestation 

Cropland  174.50 (56.6%)  177.04 (57.5%)  155.5 (51.3%) 

Grassland  82.72 (26.8%)  88.06 (28.5%)  94.55 (31.3%) 

Built‐up areas  1.67 (0.5%)  1.67 (0.5%)  1.02 (0.5%) 

Water bodies  4.90 (1.6%)  4.90 (1.6%)  4.90 (1.6%) 

Forest/mixed vegetation  44.28 (14.4%)  36.40 (11.8%)  46.66 (15.3%) 



Table 5. Input parameters and bounds, sensitivity ranking and calibrated values by the 
SWAT model for the Vea catchment. 

Parameter Definition Lower/upper 
bounds 

Calibrated 
values 

Sensitivity 
rank 

HRU_SLP Average slope steepness 
(m/m) 

0.0–1.0 0.014 1 

V_CN2.mgt_AGRL 
V_CN2.mgt_RNGE 
V_CN2.mgt_ FRST 

Curve number for cropland, 
Curve number for grassland 

Curve number for 
forest/mixed vegetation 

35–90 72.5 
73.5 
69.0 

2 

V_ALPHA_BF.gw Baseflow alpha factor (d) 0.0–1.0 0.02 3 
V_ESCO.hru Soil evaporation 

compensation factor 
0.0–1.0 0.42 4 

R_REVAPMN.gw Threshold depth of water in 
shallow aquifer for ‘revap’ to 

occur 

0.0–1000 550 5 

SLSUBBSN.hru Average slope length (m) 10–150 121.9 6 
V_GWQMN.gw Threshold depth of water in 

the shallow aquifer for return 
flow to occur (mm) 

0.0–5000 2200 7 

R_EPCO.hru Plant uptake compensation 
factor 

0.0–1.0 0.02 8 

V_GW_REVAP.gw Groundwater ‘revap’ 
coefficient  

0.02–0.2 0.02 9 

V_GW_DELAY.gw Groundwater delay (days) 0–500 33 10 

R_GW_SPYLD.gw Specific yield of the shallow 
aquifer (m3/m3) 

0.0–0.4 0.003 11 

SURLAG.bsn Surface runoff lag time (d) 0.0–24 2 12 
R_RCHRG_DP.gw Deep Aquifer percolation 

coefficient 
0.0–1.0 0.25 13 

BLAI_AGRL 
BLAI_RNGE 
BLAI_FRST 

Maximum LAI for cropland 
Maximum LAI for grassland 
Maximum LAI for 
forest/mixed vegetation 

0.5–10 
0.5–10 
0.5–10 
 

3 
2.5 
5 

 

RDMX_ AGRL Maximum rooting depth (m) 
for cropland 

0-4 1  

RDMX_ RNGE Maximum rooting depth (m) 
for grassland 

0-4 1  

RDMX_ FRST Maximum rooting depth (m) 
for forest/mixed vegetation 

0-4 3  

R: parameter value is multiplied by 1+given value; V: parameter value is replaced by the 
calibrated value.  
  



Table 6. Mean annual water balance components simulated by SWAT under different 
land use/cover types at catchment scale. Values in parentheses are percentage rainfall 

contribution. 
LULC Rainfall 

(mm) 
Qsurf (mm) 𝑄୥୵ (mm) ET (mm) 

Cropland  949.3 88.5(9.3%) 50.5 (5.6%) 700.5 (72.9%) 
Forest/mixed 
vegetation 

972.87 56.2(5.8%) 74.3 (7.7%) 720.1 (74.0%) 
 

Grassland 951.45    100.3(10.5%) 37.9 (4.0%) 698.8 (73.4%) 

 

  



Table 7. Mean annual water balance components under 2016 and 2025 LULC change 
scenarios over the simulated period (1993–2017). Values in parentheses indicate the 

percentage change in water balance component relative to the baseline. 
Water balance component  Baseline 

(2016) 

BAU scenario   Afforestation 

scenario  

Rainfall (mm)  954.5  954.5  954.5 

Actual evapotranspiration, ET (mm)  709.5  689.8(‐2.7%)  714 (+0.6%) 

Surface runoff, Qsurf (mm)  82.5  97.9(+18.7%)  66.3 (‐19.6%) 

Water yield, WYLD (mm)  128.4  140.3 (+9.1%)  105.1(‐18.0%) 

Groundwater recharge (mm)  115.1  132.8(+15.3%)  147.4 (+28.1) 

 
  



Figure 1 Location of the Vea catchment within the White Volta Basin, as well as the 

topography, weather and hydrological measurement stations in the Vea catchment, after 

Larbi et al. (2018).  

 
Figure 2 Maps of land use/land cover (left), soil (middle) and slope classes (right) of 
the Vea catchment. Vc1: vertisols; Bv2: cambisols; and Lf1-1a: lixisols. 
 
Figure 3 Maps of the baseline and 2025 LULC change scenarios of the Vea catchment 
(Larbi et al. 2019). 

 
Figure 4 Simulated vs observed daily discharge for the calibration period (2014–2015) 
at Sumbrungu gauge station, Vea catchment. 

 
Figure 5 Simulated vs observed daily discharge for the validation period (2013) at 
Sumbrungu gauge station, Vea catchment. 
 

Figure 6 Mean annual water balance components as a proportion of rainfall for the Vea 

catchment. Q_surf, ET, LT_flow, Q_gw and W_rchg,sa represent surface runoff, actual 

evapotranspiration, lateral flow, groundwater flow, and shallow aquifer recharge, 

respectively. 

 

Figure 7 Mean monthly water balance components for the period 1993–2017 for the 

Vea catchment. 

 
Figure 8 Mean monthly water balance components under different scenarios of land-
use change. 
 

Figure 9 SWAT-simulated mean annual water balance components under BAU and 
afforestation scenarios of land-use change relative to the baseline (2016) LULC map. 
 


