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Abstract: Focusing on West Africa, a region riddled with in situ data scarcity, we evaluate the summer
monsoon monthly rainfall characteristics of five global reanalysis datasets: ERA5, ERA-Interim,
JRA-55, MERRA2, and NCEP-R2. Their performance in reproducing the West African monsoon
(WAM) climatology, interannual variability, and long-term trends for the main monsoon months
are compared to gauge-only and satellite products. We further examine their ability to reproduce
teleconnections between sea surface temperatures and monsoon rainfall. All reanalyses are able to
represent the average rainfall patterns and seasonal cycle; however, regional biases can be marked.
ERA5, ERA-Interim, and NCEP-R2 underestimate rainfall over areas of peak rainfall, with ERA5
showing the strongest underestimation, particularly over the Guinea Highlands. The meridional
northward extent of the monsoon rainband is well captured by JRA-55 and MERRA2 but is too
narrow in ERA-Interim, for which rainfall stays close to the Guinea Coast. Differences in rainband
displacement become particularly evident when comparing strong El Niño Southern Oscillation
(ENSO) years, where all reanalyses except ERA-Interim reproduce wetter Sahelian conditions for La
Niña, while overestimating dry conditions at the coast except for NCEP-R2. Precipitation trends are
not coherent across reanalyses and magnitudes are generally overestimated compared to observations,
with only JRA-55 and NCEP-R2 displaying the expected positive trend in the Sahel. ERA5 generally
outperforms ERA-Interim, highlighting clear improvements over its predecessor. Ultimately, we find
the strengths of reanalyses to strongly vary across the region.
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1. Introduction

Understanding precipitation variability over West Africa is important to the population as
their economies rely heavily on agriculture to supplement livelihoods, food security, and water
availability [1,2]. Generally, rain-bearing systems are embedded in the West African Monsoon (WAM),
a large-scale circulation which is characterised by the reversal of wind direction in the lower levels of
the atmosphere transporting moisture from the Atlantic ocean inland. Thus, rainfall in the region is
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highly variable on intraseasonal, interannual, and interdecadal timescales [3,4]. Moreover, West Africa
has also experienced devastating droughts in the 1970s and 1980s (e.g., [5]), which have been found to
be driven by sea surface temperature (SST) influence [6].

Observational datasets needed to understand precipitation variability and its associated changes
in atmospheric circulations are notably scarce over the region and even for locations with relatively
good coverage, the data may not be easily accessible [6,7]. Thus, a likely alternative approach to tackling
this challenge is to resort to reanalysis datasets. In this context, reanalysis datasets represent a global,
model-based solution to reconstruct continuous atmospheric fields [8]. Reanalyses are an important
source of climate information [9], providing a physically consistent approximation of the state of
the atmosphere that allows process-based analyses of rainfall variability and associated atmospheric
drivers. It is also useful when we want to evaluate not only rainfall changes but drivers of extreme
variability. However, earlier studies (e.g., [10]) have reported inconsistencies in their representation of
precipitation, as they, similar to other global atmospheric models, have to rely on parameterisations for
the representation of rainfall processes. Furthermore, in most reanalyses, rainfall is a purely diagnostic
variable and therefore, does not profit directly from the assimilation of observational data over a
data-sparse region like Africa. However, even the boundary conditions crucial for a skilful rainfall
representation were found to be comparably ill-constrained [7,11–13].

While there have been numerous studies that evaluate and intercompare multiple reanalysis
datasets for other regions [7,14–20], there have been few studies over West Africa despite their
importance in climate monitoring and research. A study by [21] focused on Ghana and reported poor
performance of reanalyses in reproducing interannual variability, having large biases and unrealistically
stronger trends.

Consequently, this paper seeks to evaluate how existing reanalysis datasets represent regional
monthly monsoon precipitation information over West Africa and to validate with gridded observations.
The added motivation for this study is the availability of the new state-of-the-art ERA5 dataset, which
provides an opportunity to gauge improvements in reanalysis techniques and to intercompare with
existing ones.

This paper is structured as follows: the data and methods used are described in Section 2.
The intercomparison of the reanalyses with respect to observations is discussed in Section 3, followed
by a discussion and summary of conclusions in Section 4.

2. Data and Methods

2.1. Study Area

West Africa is a region located between latitudes 4–20◦ N and longitudes 17◦ W–17◦ E, and
comprises 15 countries (as shown in Figure 1). The region has three main agro-ecological zones, namely
the Guinea Coast (4–8◦ N), the Savanna (8–12◦ N), and the Sahel (12–20◦ N) [22]. The climate of the
region is mainly driven by the WAM, which accounts for about 70% of the annual rainfall and is
modulated by localised highlands, such as the Guinea highlands (11◦ N, 10◦ W), Jos Plateau (10◦ N,
9◦ E), and the Cameroon Mountains (5◦ N, 12◦ E) [23]. The WAM is a large-scale circulation which
is characterised by the reversal in direction of winds in the lower levels of the atmosphere from the
Atlantic Ocean transporting moisture into land [24]. This large-scale feature drives the seasonal rainfall
pattern in West Africa and exhibits dominant south-westerly winds during the summer monsoon
months (June–September, JJAS) and north-easterlies during the dry season months (January–March,
JFM). Additionally, the WAM controls the onset, variability, and distribution of rainfall over West
Africa and follows the migration of the intertropical discontinuity (ITD) [25]. Given that the region
receives maximum rainfall amounts during WAM months, we concentrated on the JJAS period in
this study.
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analysed for a 36-year period from 1981 to 2016 and were regridded using an area-weighted average 
to the reanalysis dataset with the coarsest resolution (2.5°), which was NCEP-R2 for comparison. 
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We used two gridded gauge-only and one satellite-based precipitation datasets. The gauge-only 
datasets were Climatic Research Unit (CRU-TS4.03; [26]), a long-term monthly gridded gauge 
product at 0.5° resolution spanning 1901–2018, and the Global Precipitation Climatology Centre 
(GPCC) Full Data Reanalysis (hereinafter GPCC; [27,28]). GPCC comes at monthly resolution from 
1891 to 2016 and is gridded to 0.5°. While gridded gauge datasets are frequently used as reference 
datasets in rainfall studies across West Africa (e.g., [11,29]), their accuracy strongly depends on the 
density of rain gauges. In most regions in West Africa, the gauge coverage tends to be low and is 
additionally affected by a significant decrease in gauge numbers over the last decades [30,31]. Such 
spatiotemporal inconsistencies can affect represented spatial rainfall variability, and trends in 
particular. Complementary to the gauge-only datasets, we therefore used the Climate Hazards Group 
InfraRed Precipitation with Stations (CHIRPS; [32]). The data input for the satellite dataset combines 
thermal infrared measurements with other data inputs like passive microwave retrievals and rain 
gauge measurements, and therefore, profits from rainfall information at high spatiotemporal 
resolution from various sources. It should be noted that CHIRPS blends rain gauge records from the 
Global Historical Climatological Network, the Global Summary of the Day, further private 
contributors, and meteorological agencies with satellite estimates and applies a final gauge-based 
bias adjustment. Hence, CHIRPS cannot be interpreted as an independent data source but is useful 
for evaluating spatial consistency with the gauge-only products. 

Figure 1. A map of West Africa showing topography and countries. Dark brown areas denote
mountainous regions.

2.2. Data

This study investigated how five global reanalysis datasets (Table 1) represent regional monthly
precipitation information over West Africa relative to observations. The global reanalysis datasets
selected are the products commonly used in climate monitoring and research. All datasets were
analysed for a 36-year period from 1981 to 2016 and were regridded using an area-weighted average to
the reanalysis dataset with the coarsest resolution (2.5◦), which was NCEP-R2 for comparison.

2.2.1. Observation Dataset

We used two gridded gauge-only and one satellite-based precipitation datasets. The gauge-only
datasets were Climatic Research Unit (CRU-TS4.03; [26]), a long-term monthly gridded gauge product
at 0.5◦ resolution spanning 1901–2018, and the Global Precipitation Climatology Centre (GPCC) Full
Data Reanalysis (hereinafter GPCC; [27,28]). GPCC comes at monthly resolution from 1891 to 2016 and
is gridded to 0.5◦. While gridded gauge datasets are frequently used as reference datasets in rainfall
studies across West Africa (e.g., [11,29]), their accuracy strongly depends on the density of rain gauges.
In most regions in West Africa, the gauge coverage tends to be low and is additionally affected by a
significant decrease in gauge numbers over the last decades [30,31]. Such spatiotemporal inconsistencies
can affect represented spatial rainfall variability, and trends in particular. Complementary to the
gauge-only datasets, we therefore used the Climate Hazards Group InfraRed Precipitation with Stations
(CHIRPS; [32]). The data input for the satellite dataset combines thermal infrared measurements with
other data inputs like passive microwave retrievals and rain gauge measurements, and therefore,
profits from rainfall information at high spatiotemporal resolution from various sources. It should
be noted that CHIRPS blends rain gauge records from the Global Historical Climatological Network,
the Global Summary of the Day, further private contributors, and meteorological agencies with satellite
estimates and applies a final gauge-based bias adjustment. Hence, CHIRPS cannot be interpreted as an
independent data source but is useful for evaluating spatial consistency with the gauge-only products.
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For presented analyses, we used CRU-TS4.03 (hereafter CRU) as a reference dataset for comparison
with the other observations and the reanalysis datasets for the study period.

2.2.2. Global Reanalysis Datasets

(a) ERA5

ERA5 is the latest high-resolution reanalysis produced by the European Centre for Medium-Range
Weather Forecast (ECMWF) Integrated Forecast System (IFS Cycle 41r2) to replace their ERA-Interim
product. The new reanalysis incorporates variables such as sea surface temperature (SST), sea ice, and
aerosols as inputs, making it suitable for climate simulation. The data have a spatial resolution of
31 km with 137 levels. ERA5 uses a 12-hourly 4D-Var data assimilation ensemble and additionally
uses a 10-member ensemble of data assimilations at 63km resolution for its uncertainty estimates [33].
ERA5 is available from 1979 to present, although there are plans to eventually extend the period well
into 1950.

(b) ERA-Interim

ERA-Interim is the version of reanalysis to be retired in August 2019. The dataset is produced
with the ECMWF Integrated Forecast System (IFS Cycle 31r2), which is a forecast model fully coupled
with components for the atmosphere, land surface, and ocean waves. ERA-Interim also has a 12-hourly
4D-Var data assimilation ensemble with a spatial resolution of about 79 km on 60 levels [34].

(c) JRA-55

JRA-55 is the second version of reanalysis from the Japanese Meteorological Agency (JMA). It is
based on a 4D-Var data assimilation with 60 atmospheric levels. It is currently the longest of the
reanalyses and has a horizontal resolution of 55km [35]. The sea-ice albedo of the model used is a
function of solar zenith angle and skin temperature [36].

Table 1. Details of the five global reanalyses used in the present study.

ERA5 ERA-Interim JRA-55 MERRA-2 NCEP-R2

Model Resolution TL639 L137 TL255 L60 TL319 L60 72 sigma
levels T62

Grid spacing
(lon × lat) 0.25◦ × 0.25◦ 0.75◦ × 0.75◦ 1.25◦ × 1.25◦ 0.625◦ × 0.5◦ 2.5◦ × 2.5◦

Assimilation method 4D-Var 4D-Var 4D-Var 3D-Var 3D-Var
Period Used 1981–2016 1981–2016 1981–2016 1981–2016 1981–2016

Reference [33] [34] [35] [37,38] [39]

(d) MERRA-2

MERRA-2 is a reanalysis from The National Aeronautics and Space Administration (NASA)
current version of the Goddard Earth Observing System Model, version 5 (GEOS-5), Data Assimilation
System, covering the modern satellite era. It uses a 3D-Var data assimilation on 72 sigma levels at
a resolution of 0.625◦. The MERRA-2 is an updated version of MERRA and consists primarily of
improvements on the dynamics and physics and incorporates more satellite observations [37,38].

(e) NCEP-R2

The National Centers for Environmental Prediction reanalysis version 2 (NCEP-R2) is available
from 1979 to the present day and has a resolution of 2.5◦ with 28 vertical sigma levels. It uses a 3D-Var
data assimilation technique with a fully coupled atmosphere–ocean–land model [39]. The data are an
improvement on its earlier version NCEP-R1.
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2.3. Methods

For the assessment of rainfall variability in the reanalysis datasets with reference to observations,
different methods were used. Firstly, the mean bias between the five reanalysis datasets and CRU, the
standard deviation, and linear trend over West Africa were calculated for the summer monsoon season
JJAS between 1981 and 2016. The non-parametric Mann–Kendall trend test [40,41] was employed
to explicitly locate significant linear trends in precipitation over the region. The Pearson correlation
coefficient was furthermore applied to evaluate interannual co-variability between CRU and the
other datasets. Rainfall variability in JJAS was correlated with SSTs in order to examine the relative
importance of SST anomalies for precipitation distribution over West Africa. All the tests were
implemented at the 5% significance level. We used the following open-source packages in Python
for the data processing and analysis presented in this study: NumPy [42], pandas [43], xarray [44],
Matplotlib [45], and Salem [46].

In order to ascertain the magnitude of variance in rainfall anomalies for the considered datasets,
an empirical orthogonal function (EOF) analysis was conducted to identify coherent patterns in the
summer rainfall season. In addition, we assessed the capacity of the reanalysis datasets to reproduce
the sensitivity of West African rainfall to the ENSO, based on composites of consensus dry (wet) years
as defined in [47] and shown in Table 2. Here, a consensus year was characterised by widespread dry
(wet) conditions that simultaneously overlap with an El Niño (La Niña) event for all reference datasets
over the period of this study (1981–2016). Since the West African area exhibits a rainy season with
an annual maximum precipitation occurring in August, the spatial structure of precipitation for this
month is analysed to investigate the effect of ENSO on the maximum seasonal rainband displacement.
The observation and reanalysis datasets were used to obtain a broader perspective of the rainfall
climatology and variability over West Africa during the summer monsoon (JJAS) season.

Table 2. The consensus years of strong and very strong El Niño (La Niña) as outlined in [47].

Consecutive Dry Years Consecutive Wet Years

1988, 1998, 1999, 2010 1983, 1987, 1997, 2002

3. Results

3.1. Rainfall Average and Seasonal Cycle

We examined precipitation characteristics in the monsoon rainfall season (JJAS) for West Africa
(Figure 2). The rainfall climatology from CRU (Figure 2a) displays two core regions with the highest
rainfall amounts, one over Liberia and Sierra Leone with a strong maximum of 14 mm day−1 and the
other maximum over the southern part of the border between Nigeria and Cameroon. Owing to the
wet climate, these two peak regions tend to be areas with dense vegetation cover. CRU displays a
zonal gradient with rainfall decreasing from the east and west sides towards the central part of the
region. The GPCC and CHIRPS datasets overall show a similar rainfall distribution, with only small
biases compared to CRU (Figure 2b,c), likely due to shared reference rain gauge data amongst the
compared products. Thus, all observation datasets show good agreement and from here on, we discuss
the reanalysis datasets in comparison to CRU.

All reanalyses, with the exception of JRA-55 (Figure 2f), exhibit a dipole pattern with rainfall
overestimation to the south and a widespread underestimation to the northern parts of West Africa,
which suggests an insufficient northward migration of the monsoon rainband. It can be noted that ERA5,
ERA-Interim, and NCEP-R2 (Figure 2d,e,h) reproduce the rainfall behaviour with an underestimation
over the two peak areas, with ERA5 showing the strongest underestimation to the reference dataset.
Although ERA5 and ERA-Interim (Figure 2d,e) exhibit comparably similar bias patterns, ERA5 shows
a high bias with a standard deviation of ±2.2 mm day−1 over large parts of the region as compared to a
standard deviation of ±1.3 mm day−1 for ERA-Interim.
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Figure 2. Spatial distribution of mean JJAS precipitation (mm day−1) over West Africa for three
observations (a–c); CRU, GPCC, and CHIRPS, and five reanalysis datasets (d–h). Plot shows mean
differences from CRU for the 1981–2016 period. Standard deviations of the mean rainfall bias are shown
in box brackets. JJAS—June–September; CRU—Climate Research Unit; GPCC—Global Precipitation
Climatology Centre; CHIRPS—Climate Hazards Group InfraRed Precipitation with Stations.

MERRA2, on the other hand, depicts an overestimation over these two maximum areas with a
higher standard deviation of ±3.3 mm day−1. It can be inferred that MERRA2 is too wet across the
southern/coastal belt of the region, which again suggests a southward-displaced monsoon band with
too high rainfall intensities (Figure 2g).

Likewise, there is a high bias in JRA-55 over Cameroon, Nigeria, southern Niger, and Ivory Coast
(Figure 2f). The NCEP-R2 (Figure 2h) shows a widespread negative bias over the entire region with
high biases over Sierra Leone and Liberia.

In a next step, we explore the interannual variability of the seasonal cycle averaged across
our West Africa domain. On the domain average, the monsoon precipitation depicts a unimodal
distribution pattern, which all reanalyses are able to reproduce (Figure 3d–h), as identified by CRU,
GPCC, and CHIRPS (Figure 3a–c). Likewise, the reanalysis accurately locates the peak precipitation
month (typically August) as in the observation datasets. However, there are some differences in the
estimation of the magnitude of the total precipitation. For instance, ERA5, ERA-Interim, and NCEP-R2
(Figure 3d,e,h) all show lower precipitation values during the peak precipitation month compared to
both gauge-only and satellite-based observations, as well as for the other reanalyses, where values
were ≥5.0 mm day−1.

There are also notable differences in how most reanalyses capture precipitation in the dry season
months November–February. While precipitation in these months are minimal in the observations,
most reanalyses exhibit rainfall between 0.5 and 1.0 mm day−1 on the domain average (e.g., ERA-Interim,
JRA-55, MERRA2; Figure 3e–g). This overestimation of dry season rain seems to have considerably
improved in ERA5 (Figure 3d).

Finally, outside of the main monsoon months JJAS, interannual precipitation variability tends to
be higher in the reanalyses than the observations, as indicated by a larger monthly spread. For the
relative interannual variability for the summer months among reanalyses, JRA-55 shows less variation
of ±13% from its long-term average rainfall bias, with NCEP-R2 recording the highest variation of
±22%. JRA-55 can be said to be more dependable, in terms of average rainfall bias estimates during the
summer in a given year than the other reanalysis datasets.
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Figure 3. Seasonal cycle with interannual variability of monthly mean precipitation for each dataset
over West Africa from 1981 to 2016. Letters on the x-axis represent calendar month. Percentage at the
top right depicts the mean relative standard deviation for JJAS. Boxes depict the median within the
interquartile range, the whiskers depict the lines that extend to the highest and lowest observations,
and the diamonds (outliers) represent values so far removed from other values in the distribution.
(a) CRU, (b) GPCC, (c) CHIRPS, (d) ERA5, (e) ERA-Interim, (f) JRA-55, (g) MERRA2, (h) NCEP-R2.

An intercomparison of the 36-year standard deviation of observations and reanalyses for the
mean summer precipitation highlights significant differences in the position and magnitude of the
maximum spatial variability (Figure 4). In CRU, the region of maximum variability is located along
the Liberia–Senegal coast (Figure 4a). This is particularly not surprising as precipitation along
the Liberia–Senegal coast is much higher than average precipitation for most parts of the region.
Precipitation variability over this area is much lower in ERA5, ERA-Interim, and JRA-55 (Figure 4d–f)
in comparison to MERRA2 and NCEP-R2 which show much higher variability along this region
(Figure 4g,h). In addition to high variability over the Liberia–Senegal coast, MERRA2 and NCEP-R2
also exhibit a pronounced variability along the Guinea Coast.
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Figure 4. Interannual standard deviation of mean JJAS precipitation (mm day−1) over West Africa for
three observations (a–c); CRU, GPCC, and CHIRPS, and five reanalysis datasets (d–h). Plot shows
mean differences from CRU for the 1981–2016 period.

Figure 5a,b clearly shows that the observation datasets agree in the spatial patterns of interannual
variability with significant positive correlation (≥0.80) over most parts of the region. Among the
reanalysis datasets (Figure 5c–g), ERA5 and MERRA2 reasonably reproduce the spatial variations,
depicting a significant positive spatial correlation (≥0.30) over most parts of West Africa. In comparison,
JRA-55 and NCEP-R2 show significant positive correlations (≥0.40) across the Sahel, while ERA-Interim
displays significant positive correlations (≥0.30) over the northwest and coastal parts of the region.
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denotes statistically significant correlations at the 5% significance level.
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As noted in earlier studies, precipitation variability over West Africa can primarily be grouped
into two (dipoles) large scale patterns. This variability is modulated in one part by oceanic (between 0
and 10◦ N) and in another part by continental (between 10 and 20◦ N) convergence, which occurs as a
result of the position of the monsoon rainband and land–atmosphere interactions [48–51]. The ability
of the reanalyses to represent the northward extent of the monsoon band is examined as this is an
important feature of the West African climate and crucial for rain distribution across the region.

Figure 6 shows total variance explained by the leading Empirical Orthogonal Function (hereafter
EOF1) mode. For CRU, about 55% of the total variance is explained by EOF1, which is characterized
by a dipole with a change in sign around 8◦ N (Figure 6a). The total variance explained by EOF1 for
GPCC and CHIRPS is 45% and 55%, respectively (Figure 6b,c). The leading EOFs of all reanalyses
(Figure 6d–h) show similar dipole patterns, although there are differences with its location and strength,
which implies the reanalyses representing varying meridional shifts of the monsoon band. In ERA5
(Figure 6d), EOF1 constitutes about 53% of the total variance, while it is 38% for ERA-Interim (Figure 6e).
Similarly, EOF1 constitutes 37%, 39%, and 68% of total variance in JRA-55, MERRA2, and NCEP-R2,
respectively (Figure 6f–h). There is a much stronger dipole pattern in all reanalyses except ERA5.
For NCEP-R2 (Figure 6h), the pattern along the Guinea coast is shifted to the west. The dipole pattern
in ERA5 is much similar to the observations, although it does not capture the strength along the
Liberia–Senegal coast. It is worth mentioning ERA-Interim has a stronger dipole strength when
compared with the ERA5, although the dipole location is similar. Other studies [24,29] have shown that
the precipitation band in the ERA-Interim stays further south during peak monsoon season, resulting
in a narrower rainfall band (e.g., Figure 6e) with increased rainfall during the little dry season (occurs
when the monsoon band migrates north) along the coast and less rain in the Sahelian parts of the
domain. It is observed generally that the explained variances of the EOF modes among reanalysis are
lower than that of CRU and CHIRPS, except for NCEP-R2 which shows an overestimation. There is
therefore an underestimation in rainfall variability over West Africa in ERA-Interim, JRA55, MERRA2,
and ERA5, although variability in ERA5 is very close to the reference dataset.
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3.2. Precipitation Trends and Bias Drift

As a next step, we consider the linear trend of mean summer precipitation for the reference
period for all reanalyses in comparison to observations. In the observations (Figure 7a–c), a mostly
insignificant decreasing trend is observed over the coastal regions, while a significant wetting tendency
is found in most parts of the region lying above 10◦ N in the Sahel. ERA5 (Figure 7d) produces a weak
dipole signal but without any significant trends except in the east of West Africa, over Cameroon.
A widespread significant drying is exhibited in ERA-interim (Figure 7e) across the West African
region with only a few patches of increased precipitation over southern Nigeria and the coast of Sierra
Leone and Liberia. JRA-55 (Figure 7f) reproduces the decline in rainfall over the south but with an
overestimation extending further east and west over the region and also an overestimated wetness
over the Sahel and central Guinea coast (Togo, Benin, and southern Nigeria). MERRA2 reanalysis
(Figure 7g) exhibits an inverse trend with significant wetting tendency over the south and a significant
dryness to the southeast part and north of Ivory Coast. NCEP-R2 (Figure 7h) captures a significant
wetting regime over the Sahel and Nigeria, with a patch of rainfall decline to the southwestern
part of West Africa. The large differences in precipitation trend patterns and magnitudes across the
datasets illustrate the limitations in inferring rainfall changes and associated atmospheric drivers from
reanalyses alone. Precipitation trends will be sensitive to changes in atmospheric moisture, which are
particularly uncertain in the reanalyses (e.g., [12,52]). A study by [31] illustrated that there can be large
discrepancies even amongst observational datasets, particularly between different satellite products.
However, although trend magnitudes vary, the positive rainfall trend in the Sahel seems to be a robust
feature across observations, which ERA-Interim and ERA5 do not reproduce.
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Since illustrated discrepancies in trends may be linked to temporal inhomogeneities in the datasets,
Figure 8 shows the differences between the mean rainfall time series of CRU gauge-based and the
other datasets, evaluating the temporal stability of biases. While the gauge-based dataset GPCC,
the satellite dataset CHIRPS, and the reanalysis dataset MERRA2 display relatively small deviations
from the CRU gauge analysis with a bias ≤0.5 mm day−1, all other datasets show a larger difference
and significant variations from the normal. The relatively good agreement of CRU with the GPCC,
CHIRPS, and MERRA2 datasets (bias of ±0.5 mm day−1) increases the confidence in the represented
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average temporal variability over the West African region of those datasets. On the contrary, the total
rainfall in ERA-Interim decreased notably over time, resulting in a negative bias after 1995 which is in
line with the widespread negative trend in Figure 7e. This inhomogeneity seems to have improved
in its successor ERA5. Such temporal changes observed among datasets can be related to changes
in observational systems and new assimilated data sources [20] as well as and also methodological
differences in the estimation algorithm and interpolation techniques, which can affect the variability in
rainfall records [31].
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3.3. Teleconnections of West African Rainfall

The particular usefulness of reanalysis datasets comes from their internal consistency between
variables, helping us understand the relationships between regional rainfall variability and large-scale
drivers. There is a well-documented non-stationary interannual relationship between anomalies of
tropical SSTs and WAM precipitation [48–50,53–55]. The first mode of variability of the Tropical Atlantic
(Atlantic Niño, [56]) is characterised by anomalously high SST in the eastern equatorial Atlantic basin
and the displacement of the WAM convective region southward and eastward, most pronounced in
summer, and leading to wetter conditions at the Guinea Coast [57,58]. At the same time, the authors
in [59] assert that the association between SSTs along the Guinea coast and rainfall is positive. It had
been suggested earlier by [55] that this relationship may on the other hand induce droughts in the
Sahel, creating a rainfall dipole. While until the 1970s, these tropical south Atlantic (TSA) SST (hereafter
TSA-SST) variability modes were most dominant in influencing the WAM, tropical Pacific SSTs have
gained importance since, with significantly related negative (positive) WAM anomalies to El Niño
(La Niña) events [57].

As a means to characterise this important feature of the region, we consider the correlation
between the TSA-SST index (hereafter TSA index) [60] and mean summer precipitation over West
Africa for observations and reanalyses (Figure 9). The TSA index is typically defined over a grid box of
30◦ W–10◦ E, 0◦–20◦ S and is based on the Reynolds OIv2 SST analysis [61].
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Both gauge-based and satellite-based observational datasets display similar distribution in
the correlation of SSTs to rainfall intensities over West Africa (Figure 9a–c): weak non-significant
correlations depict reduced rainfall in the Sahel during warmer TSA periods but coastal rainfall
increases dominate, as discussed above. Most reanalyses (e.g., Figure 9d–h) reproduce this pattern
albeit with stronger/weaker correlations over certain parts of the domain. Different from all other
datasets, JRA-55 exhibits a split in the correlation band along the coast, which spreads northwards to
the Sahel and as a result, leaves the entire eastern part of the region negatively correlated, although
weak. ERA-Interim (Figure 9e) also shows a stronger negative correlation around the Sahel, with a band
spreading from the Cameroon Mountains towards the Guinea Highlands. ERA5 (Figure 9d) shows an
improvement over ERA-Interim (Figure 9e) in its representation; however, positive correlations along
the coast are weaker compared to observations. ERA5, MERRA2, and NCEP-R2 reanalyses tend to
give a good representation of the correlation features in the reference dataset, albeit with the region of
positive rainfall correlation not reaching far enough inland.

Figure 10 displays the difference between wet and dry consensus years. By definition,
wet consensus years are associated with more rainfall north of 10◦ N in the observations, which
coincides with a slight decrease in rainfall along the coast compared to the dry consensus condition.
This suggests that during dry consensus years the centre of the rainband stayed further south below
10◦ N. The northernmost position in the rainband shift between La Niña and El Niño years is
approximately captured by JRA-55, NCEP-R2, and to a lesser degree, MERRA2 (Figure 10f–h), while
ERA5 clearly underestimates the northward extent in the west and depicts a strongly zonal behaviour.
Yet, it shows clear improvement over ERA-Interim, which does not seem to produce a coherent
rainband displacement (Figure 10e). On the other hand, drier coastal conditions are not visible in
NCEP-R2 (Figure 10h). The amplitude of maximum rainfall intensity in the reanalysis datasets spreads
more to the east, especially in MERRA2. These consensus wet years therefore tend to record more
rains over the Sahel, leading to some of the massive flooding observed over the Sahel region [5].
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4. Summary and Conclusions

Climatology and variability of monthly rainfall observed in 1981–2016 are analysed using multiple
observational datasets and five reanalysis datasets over West Africa, a region with an important lack
of adequate in situ observations. The comparison of reanalysis products to gridded observational
datasets demonstrates a coherence in capturing major features of the seasonal evolution of mean
rainfall over the region, although the spread can be larger locally, in particular in mountainous regions
and with respect to the northernmost position of the monsoon rainband. Not much difference is
observed among observational datasets as they all display similar patterns in rainfall climatology
and interannual variability. For domain average rainfall, the MERRA2 reanalysis dataset has the
best performance in the summer monsoon rainfall estimates due to its relatively small bias from
observational datasets. The largest rainfall variability in CRU is located over the western part of our
domain, which also holds true for the other observational datasets and ERA-Interim, ERA5, and JRA55
reanalysis, since they all show relatively small differences in standard deviation over the region.
In NCEP-R2, the maximum variation shifts to the central part of the region, while MERRA2 observes a
long stretch of its peak variation over the central belt. On spatial characteristics, all reanalysis datasets,
except ERA-Interim, capture the wetting trend in the Sahel, though generally over- or underestimating
its magnitude. Other local trend patterns do not reflect the observational datasets and show large
differences amongst reanalyses, in line with subregional studies in Ghana [21], and southern West
Africa [62]. This highlights even larger uncertainties in reanalysis rainfall trends than were previously
found amongst observational datasets over Africa [16], strongly discouraging the use of reanalysis
rainfall fore trend studies. Considering the representation of interannual rainfall variability over West
Africa, we further look at rainfall correlation with SSTs in the tropical Atlantic. ERA5, MERRA2,
and NCEP-R2 closely reproduce the observed relationship of a negative correlation corresponding to a
wetter Sahel when the tropical Atlantic is cooler, while the coast receives more rainfall with warm SSTs.
ERA-Interim on the other hand, overestimates the negative correlation over the Sahel.

The JJAS precipitation patterns in all reanalysis datasets are consistent with the observed datasets.
However, in large scale dry and wet years, defined here as El Niño-driven drought years and La
Niña-driven wet years in the Sahel, differences in the corresponding displacement of the monsoon
rainband become apparent in the reanalyses. Compared to observed characteristics, the rainband
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of MERRA2 stays a little south during consensus dry years, while JRA-55 shifts too far north.
The maximum of the rainband stays south of the Sahel during very strong El Niño years, therefore
leaving the Sahel region drier. During consensus wet years (when La Niña events are strong),
the rainband over West Africa shifts further north to about 15◦ N, thereby leaving the Sahel region
wetter. JRA-55 and NCEP-R2 capture the northward shift in the rainband during these years, with
ERA5 and MERRA2 showing a weak northward shift in the rainband, although it stays above 10◦ N,
while ERA-Interim shows little coherence. Maximum precipitation is underestimated by ERA5 in the
western parts and by NCEP-R2 on the eastern end of the region.

The tendency towards incorrect positioning of the rainband, in particular too far south, is a
longstanding problem of WAM representation in NCEP and ECMWF reanalyses and has been identified
in the past (e.g., [63,64]). Our results indicate the persistence of this bias in the newer reanalyses
MERRA2 and ERA5.

In the evaluation of how well reanalysis datasets represent the West African precipitation,
there is a difficulty in attributing discrepancies, since each reanalysis is limited by its own physical
parameterizations and SST boundary conditions [65]. Since the hydrological cycle is a key driver of
the resulting rainfall, large systematic differences in the representation of hydrological processes [66]
can lead to discrepancies in reanalysis datasets. The study by [62] attributed rainfall biases over
Central Africa predominantly to errors in moisture distribution, while they found circulations to
be well represented in comparison to radiosonde data. Weak constraints for humidity in the data
assimilation process are therefore likely to similarly hamper reanalysis skills for West African rainfall.
Nevertheless, we find that some reanalyses do well in capturing the temporal interannual variability
and seasonal spread in rainfall behaviour over West Africa (e.g., MERRA2, ERA5). Others like JRA-55
and NCEP-R2 better represent the northward meridional shift of the rainband, but performance
remains spatially variable.

Overall, the considerable uncertainties in regional rainfall distribution in the reanalyses
significantly reduce their usefulness for impact-oriented analyses and applications, for which
observation-based datasets should be the first choice. However, reanalysis rainfall biases can be
understood as the accumulated errors in the driving atmospheric fields, making it a valuable indicator
for model performance and shortcomings.
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