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Highlight 

Acquisition of HCO3
-
 in Ottelia alismoides, relies on co-diffusion of CO2 and HCO3

-
 through

the boundary-layer, conversion of HCO3
-
 to CO2 at the plasmalemma by α-CA1 and transport

by SLC4. 



Acc
ep

ted
 M

an
us

cri
pt

3 

Abstract 

The freshwater monocot Ottelia alismoides is the only known species to operate three CO2 

concentrating mechanisms (CCMs): constitutive HCO3
-
-use and C4 photosynthesis, and

facultative Crassulacean acid metabolism, but the mechanism of HCO3
-
 use is unknown. We

found that the inhibitor of an anion exchange (AE) protein, 4,4‟-diisothio-cyanatostilbene-

2,2‟-disulfonate (DIDS), prevented HCO3
-
-use but also had a small effect on CO2 uptake. An

inhibitor of external carbonic anhydrase (CA), acetazolamide (AZ), reduced the affinity for 

CO2 uptake but also prevented HCO3
- 
use via an effect on the AE protein. Analysis of mRNA

transcripts identified a homologue of solute carrier 4 (SLC4) responsible for HCO3
--
transport,

likely to be the target of DIDS, and a periplasmic α-CA1. A model to quantify the 

contribution of the three different pathways involved in inorganic carbon uptake showed that 

passive CO2 diffusion dominates inorganic carbon uptake at high CO2 concentrations. 

However, as CO2 concentrations fall, two other pathways become predominant: conversion 

of HCO3
-
 to CO2 at the plasmalemma by α-CA1 and, transport of HCO3

- 
across the

plasmalemma by SLC4. These mechanisms allow access to a much larger proportion of the 

inorganic carbon pool and continued photosynthesis during periods of strong carbon 

depletion in productive ecosystems. 

Keywords 

anion exchange protein, bicarbonate, carbonic anhydrase (CA), CO2 concentrating 

mechanisms (CCMs), inorganic carbon acquisition, Ottelia alismoides, pH drift, 

photosynthesis, solute carrier 4 (SLC4) 
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Introduction 

Macrophytes form the base of the freshwater food web and are major contributors to primary 

production, especially in shallow systems (Silva et al., 2013; Maberly and Gontero, 2018). 

However, the supply of CO2 for photosynthesis in water is potentially limited by the 

approximately 10,000 lower rate of diffusion compared to that in air (Raven, 1970). This 

imposes a large external transport resistance through the boundary layer (Black et al., 1981), 

that results in the K½ for CO2 uptake by macrophytes to be 100-200 μM, roughly 6-11 times 

air-equilibrium concentrations (Maberly and Madsen, 1998). Furthermore, in productive 

systems the concentration of CO2 can be depleted close to zero (Maberly and Gontero, 2017). 

Freshwater plants have evolved diverse strategies to minimize inorganic carbon (Ci) 

limitation (Klavsen et al., 2011) including the active concentration of CO2 at the active site of 

ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), collectively known as CO2 

concentrating mechanisms (CCMs). The most frequent CCM in freshwater plants is based on 

the biophysical uptake of bicarbonate (HCO3
-
), which is present in ~50% of the species tested

(Maberly and Gontero, 2017; Iversen et al., 2019). While CO2 can diffuse through the cell 

membrane passively, HCO3
-
 use requires active transport because the plasmalemma is

impermeable to HCO3
-
 and the negative internal membrane potential (Denny and Weeks,

1970) produces a large electrochemical gradient resisting passive HCO3
- 
entry (Maberly and

Gontero, 2018).  

Detailed studies of the mechanisms of HCO3
-
 use have been carried out in microalgae,

marine macroalgae, seagrasses and to a lesser extent, freshwater macrophytes (Giordano et 

al., 2005). Direct uptake/transport of HCO3
-
 can occur via an anion exchange protein (AE)

located at the plasmalemma (Sharkia et al., 1994). Inhibition of this protein by the membrane 

impermeable and highly specific compound, 4,4‟-diisothiocyanatostilbene-2,2‟-disulfonate 

(DIDS), has confirmed its effect in a range of marine macroalgae and seagrasses (Drechsler 

et al., 1993; Björk et al., 1997; Fernández et al., 2014). Genomic studies have found that 

probable AE proteins, from the solute carrier 4 (SLC4) family bicarbonate transporters 

(Romero et al., 2013), also exist in marine microalgae (Nakajima et al., 2013; Poliner et al., 

2015). 

Carbonic anhydrase (CA) is a ubiquitous enzyme and is present in photosynthetic 

organisms. It interconverts CO2 and HCO3
-
, maintaining equilibrium concentrations when

rates of carbon transformation are high (Moroney et al., 2001; Dimario et al., 2018). External 
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carbonic anhydrase (CAext) is inhibited by the impermeable inhibitor acetazolamide (AZ). 

The widespread nature of CAext is demonstrated by the inhibition of rates of photosynthesis in 

a range of aquatic photoautotrophs (James and Larkum, 1996; Larsson and Axelsson, 1999; 

Moroney et al., 2011; Tachibana et al., 2011; van Hille et al., 2014; Fernández et al., 2018). 

In many marine species, both CAext and an AE protein are implicated in the uptake of HCO3
-

but very little is known about freshwater macrophytes (Millhouse and Strother, 1986; Beer 

and Rehnberg, 1997; Björk et al., 1997; Gravot et al., 2010; Tsuji et al., 2017).  

Ottelia alismoides (L.) Pers., a member of the monocot family Hydrocharitaceae, 

possesses two biochemical CCMs: constitutive C4 photosynthesis and facultative 

Crassulacean Acid Metabolism (CAM; Zhang et al., 2014; Shao et al., 2017; Huang et al., 

2018). The leaves of O. alismoides comprise epidermal and mesophyll cells that contain 

chloroplasts and large air spaces but lack Kranz anatomy (Han et al., 2020). Although it is 

known that it can use HCO3
-
 in addition to CO2, little is known about the mechanisms

responsible for HCO3
-
 uptake. We have addressed this issue, with Ci uptake measurements

using the pH-drift technique, experiments with inhibitors of CA and AE and analysis of 

transcriptomic data based on RNA analyzed from leaves acclimated at low and high CO2 

concentration. We hypothesize that external carbonic anhydrase and an AE protein will both 

be involved in HCO3
- 
uptake and that the contribution of these two mechanisms will alter as

concentrations of CO2 and HCO3
- 
change.

Materials and methods 

Plant material 

O. alismoides seeds were sown in soil from Donghu Lake, adjacent to the laboratory in 

Wuhan, that had been autoclaved to kill snail eggs and algae and covered with tap water, that 

had also been autoclaved, with an alkalinity of about 2.2 mequiv L
-1

 and concentrations of

Total Phosphorus and Total Nitrogen of about 0.05 and 1.35 mg L
-1

 as described previously

(Huang et al., 2018). After a month, seedlings were placed in three 400 L tanks (64 cm deep) 

receiving natural daylight in a glasshouse on the flat roof of the laboratory. The tap water in 

the tank was changed weekly and snails were removed daily. After nearly two months, the 

plants in the tanks had produced many mature leaves (see Supplementary Fig. S1).  
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Experimental design and generation of low and high concentrations of CO2 

There were three separate experiments. In one “pH-drift experiments”, only a low-CO2 

treatment was used but in the two others (“Inhibitor experiments” and “Transcriptomic 

analyses”) low- and high-CO2 treatments were involved (Supplementary Fig. S1; 

Supplementary Table S1). In all the experiments, pH and temperature were measured every 

day with a combination pH electrode (E-201F, Shanghai Electronics Science Instrument Co., 

China) connected to a Thermo Orion Dual Star Benchtop pH/ISE Meter. The alkalinity was 

measured by Gran titration with a standard solution of HCl. CO2 concentrations were 

calculated from pH, alkalinity, ionic strength and temperature using the equations in Maberly 

(1996). 

Three series of experiment were performed. In the first experiment „low CO2‟, plants 

were grown in the large tanks in the glasshouse. Because of their high biomass, the plants 

generated high pH values (8.3-9.7) and low concentrations of CO2 (0.1-6.2, mean 1.3 μM) in 

the tanks. Information of the conditions in the tanks is shown in Supplementary Table S1. In 

the second experiment „low vs high CO2‟, O. alismoides was incubated at high and low CO2 

concentration for 40 days in plastic containers within two of the tanks in the glasshouse as 

described previously (Zhang et al., 2014). The pH in the low CO2 treatment (LC) ranged 

from 8.0 to over 9.8 and the CO2 concentration ranged from 0.1 to 13 μM
 
with a mean of 2.4 

μM. For the high CO2 treatment (HC), CO2-saturated tap water was added to the buckets 

twice each day in order to keep the pH between 6.7-6.8, producing CO2 concentrations 

between 481-1110 μM with a mean of 720 μM (Supplementary Table S1). pH-drifts were 

performed in the presence or absence of inhibitors AZ and DIDS on leaves from both 

experiments (see below) to determine their capacity to utilize HCO3
-
. In the third experiment,

„Transcriptomic analyses‟ changes in the transcription level of genes related to carbon 

acquisition were made on O. alismoides acclimated to LC and HC. O. alismoides plants were 

incubated in small containers in a growth room at 23.1-23.7 °C, 140-150 µmol photon m
-2

 s
-1

and a 14 hour photoperiod as previously described (Huang et al., 2018). Low and high CO2 

were generated as described above; the concentration of CO2 ranged between 0.1 and 5.1 μM 

with a mean of 1.1 μM in the LC treatment and between 301 and 604 μM with a mean of 307 

μM in the HC treatment (Supplementary Table S1). 
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pH-drift 

The pH-drift technique was used to determine the capacity of O. alismoides to utilize HCO3
-
,

and the effects of inhibitors (AZ and DIDS) on photosynthetic Ci uptake. The method allows 

carbon uptake ability to be assessed by measuring pH over time and using it to calculate the 

concentration of the different inorganic carbon species as they become depleted by 

photosynthesis in a closed container (Maberly and Spence, 1983).. Prior to the start of the pH 

drift experiments, the leaves were collected from the glasshouse in the morning to avoid 

possible physiological differences caused by a light:dark rhythm of the plant, and then pieces 

of ~1.1 g fresh weight (FW) (roughly 0.1 g DW) of leaf tissue were cut and rinsed in the 

medium placed in a constant temperature room at 25 ± 2°C for around 1-4 hours before use. 

pH-drift experiments were made in a glass and plastic chamber (Maberly, 1990) containing 

121 mL of 1 mM HCO3
- 
comprising

 
equimolar concentration of NaHCO3 and KHCO3, a pH

electrode (model IP-600-9 Jenco Instruments, USA) and an oxygen electrode (Unisense OX-

13298). The chamber was placed in a water bath maintained at 25 ℃ and illuminated from the 

side by fluorescent tubes that provided 75 μmol photon m
-2 

s
-1

 (400-700 nm, Li-Cor sensor

connected to a Li-Cor LI-1400 data logger) that was adequate to prevent light limitation at 

the low CO2 concentrations studied in this experiment. The medium in the incubation 

chamber was initially bubbled with N2 to reduce O2 concentration ~100 ± 20 μM (about 40% 

air-equilibrium), which was detected by the oxygen electrode connected to an Unisense 

microsensor multimeter (Version 2.01) and recorded on a laptop computer. At the start of all 

drift experiments, the pH of the medium was set to 7.6 with CO2-bubbled medium, and the 

subsequent changes were measured with the pH electrode connected to a pH meter (model 

6311, Jenco Instruments, USA), and recorded on a monitor (TP-LINK, TL-IPC42A-4). The 

pH-drifts, undertaken at least in triplicate, with leaves from different tanks, took 6-23 h to 

reach an end point value (final pH), which was deemed to be achieved when the pH changed 

less than 0.01 unit in one hour (Maberly, 1990). After each drift, the dry weight of the plant 

material and the alkalinity of the medium were measured. The concentration of Ci was 

calculated as described above and Ci uptake rates calculated from changes in Ci 

concentration over time, chamber volume and plant mass (Maberly and Spence, 1983). When 

photosynthetic Ci uptake rates were plotted against the total carbon concentration (CT) at 

which the rate occurred, a two-phased response curve was observed. The linear response at 

higher CT concentration was the consequence of CO2 use, and the extrapolated intercept with 
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the CT axis corresponded to the CO2 compensation point (Maberly and Spence, 1983). An 

example is shown in Supplementary Fig. S2. 

Inhibitor experiments 

For the inhibition experiments, a stock solution of AZ (20 mM) was prepared by dissolving 

the solid in 20 mM NaOH and 0.61 or 1.21 mL was injected into the chamber to produce 

final concentration of 0.1 or 0.2 mM respectively. Stock solutions of 30 mM DIDS, were 

prepared daily by dissolving the powder in distilled water (Cabantchik and Greger, 1992), 

and 1.21 mL was injected into the chamber to produce a final concentration of 0.3 mM. Both 

stock solutions were kept in the dark at 4°C.  

To check if the inhibitory effect of AZ on HCO3
- 
uptake was reversible, we performed

three consecutive drifts using the same O. alismoides leaf cut longitudinally into two halves. 

The first half was used as a control (first drift) without AZ. The second half was treated with 

AZ (second drift). Subsequently, this leaf and chamber were thoroughly rinsed with clean 

medium three times over ten minutes, and finally a post-control (third drift), was performed 

without the inhibitor. All the pH-drifts were started at pH 7.6 and stopped at pH 8.5 and 

replicated at least in triplicate. 

CAext activity was measured as in Fernández et al. (2018) with small modifications, 

using commercial CA (Sigma, C4396) as a positive control and to check activity linearity 

(Supplementary Fig. S3). A 50 mL plastic tube was placed inside a container filled with ice 

that maintained the temperature at 0-4°C. Approximately 60 mg FW leaf was placed in the 

tube containing 10 mL of buffer (pH 8.5): 50 mM Tris, 2 mM dithiothreitol, 15 mM ascorbic 

acid, 5 mM Na2-EDTA and 0.3% w/v polyvinylpyrrolidone (PVP). Temperature and pH were 

simultaneously measured using a pH meter. The reaction was started by rapidly introducing 5 

mL of ice-cold CO2 saturated water and pH was recorded over time. The relative enzyme 

activity (REA) was determined using the equation below: 

REA= (Tb/Ts)-1 (1) 

where Tb and Ts are the times in seconds required for the pH to drop from pH 8.3 to 7.9 

in the non-catalyzed (without sample) and catalyzed reactions, respectively. The REA was 
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expressed on a fresh weight basis. In the leaves grown at LC and HC, external CA activity 

was measured in the presence of 0.1 mM and 0.2 mM AZ as well as 0.3 mM DIDS. 

Transcriptomic analyses 

Six samples (three HC and three LC acclimated mature leaves) were used for second-

generation sequencing (SGS) for short but high-accuracy reads (Hackl et al., 2014). Six other 

samples were used for the third-generation sequencing (TGS) for longer sequences but lower-

quality reads (Roberts et al., 2013). CAext and AE proteins were searched for within the 

transcriptome dataset obtained from O. alismoides acclimated to LC and HC. 

Around 0.3 g FW leaves were collected 30 minutes before the end of the photoperiod, 

flash frozen in liquid N2 and stored at -80°C before use. Total RNA was extracted using a 

commercial kit RNAiso (Takara Biotechnology, Dalian, China). The purified RNA was 

dissolved in RNase-free water, with genomic DNA contamination removed using TURBO 

DNase I (Promega, Beijing, China). RNA quality was checked with the Agilent 2100 

Bioanalyzer (Agilent Technologies, Palo Alto, California). Only the total RNA samples with 

RNA integrity numbers ≥8 were used to construct the cDNA libraries in PacBio or Illumina 

Hiseq sequencing. 

For TGS analysis, total RNA (2 μg) was reversely transcribed into cDNA using the 

SMARTer PCR cDNA Synthesis Kit that has been optimized for preparing high-quality, full-

length cDNAs (Takara Biotechnology, Dalian, China), followed by size fractionation using 

the BluePippin™ Size Selection System (Sage Science, Beverly, MA). Each SMRT bell 

library was constructed using 1-2 μg size-selected cDNA with the Pacific Biosciences DNA 

Template Prep Kit 2.0. SMRT sequencing was then performed on the Pacific Bioscience 

sequel platform using the manufacturer‟s protocol. 

For SGS analysis, cDNA libraries were constructed using a NEBNext® Ultra™ RNA 

Library Prep Kit for Illumina® (NEB, Beverly, MA, USA), following the manufacturer‟s 

protocol. Qualified libraries were sequenced, and 150 bp paired-end reads were generated 

(Illumina Hiseq 2500, San Diego, CA, USA). 

The TGS subreads were filtered using the standard protocols in the SMRT analysis 

software suite (http://www.pacificbiosciences.com) and reads of insert (ROIs) were 
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generated. Full-length non-chimeric reads (FLNC) and non-full-length cDNA reads (NFL) 

were recognized through the identification of poly(A) signal and 5‟ and 3‟ adaptors. The 

FLNC reads were clustered and polished by the Quiver program with the assistance of NFL 

reads, producing high-quality isoforms (HQ) and low-quality isoforms (LQ). The raw 

Illumina reads were filtered to remove ambiguous reads with „N‟ bases, adaptor sequences 

and low-quality reads. Filtered Illumina data were then used to polish the LQ reads using the 

proovread 213.841 software. The redundant isoforms were then removed to generate a high-

quality transcript dataset for O. alismoides, using the program CD-HIT. 

TransDecoder v2.0.1 (https://transdecoder.github.io/ ) was used to define the putative 

coding sequence (CDS) of these transcripts. The predicted CDS were then functional 

annotated and confirmed by BLAST, which was conducted against the following databases: 

NR, NT, KOG, COG, KEGG, Swissprot and GO. For each transcript in each database 

searched, the functional information of the best matched sequence was assigned to the query 

transcript. The phylogenetic tree of α-CA1 and SLC4 isoforms based on deduced CA and 

HCO3
-
 transporters peptide sequences from the NCBI, was analyzed with Geneious software

(Windows version 11.0, Biomatters Ltd, New Zealand). The location of the protein was 

analyzed using TargetP 1 (Emanuelsson et al., 2007; http://www.cbs.dtu.dk/services/TargetP/ 

).  

Statistical analysis 

All data presented in this study are the mean ± SD. Mean final pH values were calculated 

geometrically because pH is on a log scale. One-way ANOVA was used to test for significant 

variation, after homogeneity and normality were satisfied. Duncan‟s and Tukey‟s post-hoc 

tests were used to test for significance among treatments while percentage data were 

compared using a non-parametric Mann–Whitney test. The threshold of statistical 

significance was set at P<0.05. The data were analyzed using SPSS 16.0 (SPSS Inc., 

Chicago, IL, USA). 

https://transdecoder.github.io/
http://www.cbs.dtu.dk/services/TargetP/


Acc
ep

ted
 M

an
us

cri
pt

11 

Results 

In control leaves, the pH drift end point was reached after nearly 24 hours at a mean pH of 

10.2 (Fig. 1A, Supplementary Fig. S4) and a very low final CO2 concentration of ~0.03 µM 

(about 0.2% of air-equilibrium) and at an oxygen concentration of about 353 µM (about 

137% of air-equilibrium; Fig. 1B). This indicates that HCO3
-
 had been used, driving down the

final CO2 concentration, because the CO2 compensation point of C3 and C4 plants would be 

about 40 and 5 times higher than this. In leaves treated with AZ or DIDS, the pH drift 

stopped after 6 to 12 hours and the end point did not exceed pH 9.3; final CO2 concentrations 

were between 0.8 and 1.6 µM (Fig. 1A, 1B, Supplementary Fig. S4), indicating that HCO3
- 

use had been inhibited. As a consequence of HCO3
-
 use in control leaves, rates of Ci uptake

were about 40 µmol g
-1

 dry weight (DW) h
-1

 even at the very low CO2 concentrations

(Supplementary Fig. S5). The slope of Ci uptake vs concentration of CO2 between 15 and 40 

µM in leaves treated with AZ was between 46% and 29% of the control (P<0.05) and in 

leaves treated with DIDS, it was about 65% of the control (P<0.05; Fig. 1C). In contrast, the 

intercept CO2 compensation points increased significantly as a result of the addition of AZ 

(Fig. 1D). The higher AZ concentration treatments had a CO2 compensation concentration 

close to 20 µM (at an oxygen concentration of 163 µM) suggesting that CCM is absent. 

These results suggest that AZ not only inhibited CAext but also inhibited the AE protein. The 

CO2 compensation concentration in the presence of DIDS, at about 5 µM (at an oxygen 

concentration of 232 µM, about 90% of air-equilibrium), was not significantly different from 

the control but substantially lower than in the two AZ treatments (Fig. 1D). The CT/alkalinity 

quotient (the remaining total Ci at the end of the drift, CT related to the alkalinity) is a 

measure of the effectiveness of Ci depletion (Maberly and Spence, 1983). A low quotient 

indicates that a large proportion of the Ci pool is available for acquisition and vice versa. 

While HCO3
-
 use in control leaves allowed about half of the available inorganic carbon to be

accessible, in the AZ and DIDS treated leaves, a high quotient was obtained and only 

between 11 and 16% of the available inorganic carbon was accessible (Fig. 1E). 

Figure 2 shows the Ci uptake rates at different CO2 concentrations calculated from the 

pH-drift experiments over a pH range from about 7.7 to 9.3. AZ inhibited Ci-uptake at all the 

CO2 concentrations (Fig. 2A), and both AZ concentrations inhibited Ci uptake by between 70 

and 76% when the concentrations of CO2 were between 2.6 and 11 µM (Fig. 2B). In contrast, 

DIDS did not affect Ci uptake at CO2 concentrations of 7 µM and above, but inhibited Ci 

uptake by about 40% at CO2 concentrations between about 1 and 4 µM (Fig. 2B). The 
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inhibitory effect caused by AZ at both concentrations, can be completely reversed by washing 

since the post-control rates of Ci uptake were not significantly different from the initial 

control (P>0.05; Fig. 3). This confirms that AZ does not penetrate the plasmalemma 

(Moroney et al., 1985) and thus that the observed effects are linked to inhibition of CAext.  

The inhibition of Ci uptake rates in the presence of 0.1 mM AZ and 0.3 mM DIDS were 

not significantly different in leaves acclimated to HC vs LC, although there was a slightly 

greater inhibition by 0.2 mM AZ in HC compared to LC leaves (P<0.05; Fig. 4A, 4B). CAext 

activity was present in both HC and LC leaves but it was greater in LC leaves (P<0.01; Fig. 

4C). CAext activity was inhibited by AZ: the 0.2 mM treatment caused a greater inhibition 

than 0.1 mM AZ (Fig. 4D). DIDS had no effect on CAext activity neither in HC nor in LC 

leaves. Moreover, the Ci uptake rates, from the control as well as the inhibitors-treated leaves 

at an initial CO2 concentration of 12 µM (Fig. 4A), were broadly positively related to the 

activity of CAext (Fig. 4C; R
2
 = 0.84 and 0.74 for HC and LC leaves respectively, P<0.01).

The inhibition of Ci uptake in O. alismoides by AZ and DIDS implied that both CAext 

and anion exchange protein were present. This was characterized further using transcriptomic 

analysis: mRNA for putative alpha carbonic anhydrase 1 (α-CA1) and HCO3
-
 transporters

were expressed. Fifty-three transcripts were functionally annotated to CA according to 

sequence similarity and translated into 66 peptides. Six of these peptides were homologous 

with α-CA1, based on a comparison of amino acid sequences with the NCBI database, 

corresponding to four CA isoforms (Supplementary Fig. S6A, S7A). Isoform 1 in O. 

alismoides shows 60% and 61% identity with the chloroplastic isoform X1 and X2 of α-CA1 

from the monocot Musa acuminata. Isoforms 2, 3 and 4 show 58%, 55% and 56% identity 

with the isoform X1 from this species, respectively, as well as 59%, 57% and 58% identity 

with the isoform X2. However, according to TargetP 1 software, all the isoforms from O. 

alismoides were predicted to be localized in the secretory pathway (Table 1). The expression 

of the four isoforms of putative α-CA1, was not significantly different in HC and LC 

acclimated leaves (P>0.05, Fig. 5A). Three other internally-located types of CA were 

detected (data not shown), but since they are not linked to the inhibition by AZ they were not 

analyzed further here. 

Thirty-two peptides sequences from the SGS dataset were functionally annotated as a 

„HCO3
-
 transporter‟ or a „boron transporter‟. When these were analyzed using BLASTP,

seven transcripts contained a Band 3 anion exchange domain, known to exist in anion 
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exchange protein 1 or SLC4 member 1 (Supplementary Fig. S6B) and corresponded to seven 

isoforms (Supplementary Fig. S7B). Of these, only one transcript, 27032, with 726 amino 

acid residues could be analyzed and TargetP 1 software predicted its location in the „other‟ 

category that includes the plasmalemma (Table 1). Transcript 27032 had high identities with 

boron transporters that belong to the SLC4 family (Thurtle-Schmid and Stroud, 2016): for 

example, we found 84.8% identity in the monocot Oryza sativa, 80.0% identity in the dicot 

Camellia sinensis, 73.7% identity in the monocot seagrass Zostera marina, and 54.6% 

identity in the chlorophyte Tetrabaena socialis. Transcript 27032 also had high identities 

with HCO3
-
 transporters: for example, 79.4% in the dicot Theobroma cacao, 43.9% in the

prasinophyte Chloropicon primus, 30.6% in the diatom Fragilariopsis cylindrus and 29.2% 

in the rhodophyte Chondrus crispus. Finally, transcript 27032 had high identities with 

uncharacterized proteins in diatoms: for example, 42.4% in Thalassiosira oceanica, 39.0% in 

Thalassiosira pseudonana, 36.3% in Fistulifera solaria and 29.6% in Phaeodactylum 

tricornutum. The mRNA expression of all the transcripts for putative SLC4 were not 

significantly different in HC and LC acclimated leaves of O. alismoides (P>0.05, Fig. 5B). 

Discussion 

O. alismoides possesses three CCMs, including constitutive abilities to (i) use HCO3
-
 and (ii)

operate C4 photosynthesis, and (iii) a facultative ability to perform CAM when acclimated to 

low CO2 concentrations (Zhang et al., 2014; Shao et al., 2017; Huang et al., 2018). This 

confirms our hypothesis that O. alismoides has a constitutive ability to use HCO3
-
, that relies

on the action of an external carbonic anhydrase, α-CA1, and an anion exchange protein, 

SLC4 in the plasmalemma that together allows this species to exploit a large proportion of 

the Ci pool and drive CO2 to very low concentrations. 

In this study, multiple lines of evidence show that an external CA, putative α-CA1, plays 

a major role in Ci uptake in O. alismoides: (i) external CA activity was measured, (ii) AZ 

inhibited Ci uptake with the slope of Ci uptake vs the concentration of CO2 between 15 and 

40 µM being about a quarter of the control after treatment with 0.2 mM AZ, (iii) transcripts 

of putative α-CA1 were detected. The CA was confirmed to be external since (i) washing of 

leaves treated with AZ, restored CA activity and (ii) its sequence bears a signal peptide 
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consistent with a periplasmic location. External CA is indeed widespread in photoautotrophs 

from marine and freshwater environments (Moroney et al., 2001; Dimario et al., 2018). The 

green microalga Chlamydomonas reinhardtii has three α-CAs, of which two (Cah1 and Cah2) 

are localized in the periplasmic space and one (Cah3) in the thylakoid membrane (Fujiwara et 

al., 1990; Karlsson et al., 1998; Moroney and Chen, 1998). Eight classes of CA are currently 

known and although they all catalyze the same reaction, their primary amino acid sequence 

can be very different and as low as 7% (Jensen et al., 2019, 2020). The α-CA1 from O. 

alismoides has around 30% sequence identity with the periplasmic Cah1 from C. reinhardtii. 

The activity and transcript expression of many CAs are up-regulated at low concentrations of 

CO2. The diatom P. tricornutum does not possess external CA, but the internal CA (-type 

CA) is CO2 responsive and crucial for its CCM operation (Satoh et al., 2001; Harada et al., 

2005; Harada and Matsuda, 2005; Tsuji et al., 2017). In the marine diatom, T. pseudonana, 

the two external CAs, δ-CA and ζ-CA, as well as a recently identified chloroplastic ι-CA are 

induced by carbon limitation (Samukawa et al., 2014; Clement et al., 2017; Jensen et al., 

2019). In contrast, the putative α-CA1 in O. alismoides is constitutive and its expression was 

unaffected by the CO2 concentration that is consistent with HCO3
-
-use also being constitutive.

This is also true for Cah3 in the thylakoid lumen of C. reinhardtii (Karlsson et al., 1998; 

Moroney and Chen, 1998). The expression of the periplasmic CA (Cah1) and the 

mitochondrial CAs (-CA1 and -CA2) are highly induced at low CO2 (Moroney and Chen, 

1998). However, in the case of Cah1, a knock-out mutant of C. reinhardtii had growth and 

photosynthesis characteristics that were similar to the wild type, suggesting it is not an 

essential component of the CCM (Van and Spalding, 1999). 

We show that the anion exchange proteins, one group of the SLC4 family HCO3
-

transporters (Romero et al., 2013), is involved in HCO3
-
 uptake in O. alismoides. DIDS, a

commonly-used inhibitor of AE/SLC-type HCO3
-
 transporters (Romero et al., 2013)

significantly decreased the final pH of a drift, and increased the final CO2 concentration to 

about 0.8 µM which is not substantially less than that expected in the absence of a CCM: a 

terrestrial C3 plant CO2 compensation point of 36 µL L
-1

 (Bauer and Martha, 1981) is

equivalent to about 1.2 µM. Furthermore, transcripts of putative HCO3
-
 transporter family in

O. alismoides were found to contain Band 3 anion exchange proteins (SLC4 member 1). 

More broad evidence from physiological data has demonstrated that anion exchange proteins 

play a role in HCO3
-
 uptake in green, red and brown marine macroalgae (Drechsler et al.,

1993; Granbom and Pedersén, 1999; Larsson and Axelsson, 1999; Fernández et al., 2014). 
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Although HCO3
-
 use by seagrasses is known to involve an anion exchange protein, to our

knowledge, this is the first report that provides evidence of the presence of direct HCO3
-

uptake via DIDS-sensitive SLC4 HCO3
-
 transporters in an aquatic angiosperm.

Another strategy to use HCO3
-
 occurs in some species of freshwater macrophytes

involving „polar leaves‟ (Steemann-Nielsen, 1947). At the lower surface of these leaves, 

proton extrusion generates low pH that converts HCO3
-
 to CO2 near the plasmalemma

facilitating the passive uptake of Ci (Prins et al., 1980). It is unclear if O. alismoides has 

polar leaves as it does not produce dense marl layers on its upper surface. There is also some 

indirect evidence for a lack of polar leaves in O. alismoides since the limited data suggest that 

species with polar leaves, such as Potamogeton lucens, lack external CA (Staal et al., 1989) 

or in the case of Elodea canadensis, have CA activity that is not influenced by the CO2 

concentration (Elzenga and Prins, 1988) unlike O. alismoides.  

It was initially surprising that AZ completely inhibited HCO3
-
 use. However, Sterling et

al. (2001) also found that AZ inhibited AE1-mediated chloride-bicarbonate exchange. This 

result could be explained by the binding of CA to the AE resulting in the formation of a 

transport metabolon, where there was a direct transfer of HCO3
-
 from CA active site to the

HCO3
-
 transporter (Sowah and Casey, 2011; Thornell and Bevensee, 2015). Thus, when CA

is inhibited, then the transport of HCO3
-
 is inhibited. The putative SLC4 in O. alismoides has

a C-terminus that is predicted to be exposed outside the plasma membrane using the 

TMHMM server v2 (Supplementary Fig. S8), in contrast to P. tricornutum with a SDDV 

sequence (Nakajima et al., 2013) orientated inside the cell. Since the internal C-terminus in 

P. tricornutum has been suggested to interact with internal CA, we hypothesize that the 

external SLC4 C-terminus could interact with external CA, but further work is required to 

test this and determine the residues involved.  

O. alismoides can perform C4 photosynthesis, however the final CO2 concentration at the 

end of pH-drift, when HCO3
-
-use was abolished by the inhibitors, was 0.8-1.6 µM, which

could be supported by passive entry of CO2 without the need to invoke a CCM. These are 

slightly higher than the CO2 compensation point in the freshwater C4 macrophyte Hydrilla 

verticillata at less than 10 ppm (Bowes, 2010), which is equivalent to a dissolved CO2 ~0.3 

µM at 25 °C. If this difference between the species is real and not methodological, it could 

suggest that in O. alismoides C4 photosynthesis is more important to suppress 

photorespiration than to uptake carbon. 
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A simple model of carbon acquisition (Fig. 6A) was constructed to quantify the 

contribution of the three pathways involved in Ci uptake in O. alismoides: passive diffusion 

of CO2, HCO3
-
-use involving α-CA1 and HCO3

-
-use involving SLC4 HCO3

-
 transporters.

Using the Ci uptake rates at different CO2 concentrations in Figure 2, and assuming that 0.3 

mM DIDS completely inhibited HCO3
-
 transporters and that 0.2 mM AZ completely inhibited

α-CA1 and HCO3
-
 transporters, we calculated: i) passive diffusion of CO2 as the rate in the

0.2 mM AZ treatment that inhibited both α-CA1 and SLC4 HCO3
-
 transporters; ii) diffusion

of HCO3
-
 and conversion to CO2 by α-CA1 at the plasmalemma as the difference between the

rate in the presence of 0.3 mM DIDS and that in the presence of 0.2 mM AZ; and iii) 

diffusion of HCO3
-
 and transfer across the plasmalemma by SLC4 HCO3

-
 transporters as the

difference in the rate between the control and the 0.3 mM DIDS treatment. Unlike models for 

microalgae (e.g. Badger et al., 1994; Nakajima et al., 2013) where both the ratio of surface 

area to volume (Han et al., 2020), and the ratio of internal to external Ci concentration 

(Reiskind et al., 1997) are greater than in submerged macrophytes, we did not include Ci 

leakage in the model or distinguish between net and gross photosynthesis. At a CO2 

concentration of about 50 µM, passive diffusion of CO2 contributed 55.7% to total Ci uptake, 

diffusion of HCO3
-
 and conversion to CO2 by α-CA1 contributed 42.7% and transfer of

HCO3
-
 across the plasmalemma by SLC4 HCO3

-
 transporters contributed 1.6% (Fig. 6B). At

~9 µM (about 66% of equilibrium with air at 400 ppm CO2) the contribution to total Ci 

uptake of CO2-diffusion, HCO3
-
 diffusion and conversion to CO2 by α-CA1 and transfer by

SLC4 HCO3
-
 transporters was 24.0%, 64.4% and 11.5% respectively and at about 1 µM CO2

(close to a typical C3 CO2 compensation point) diffusion was zero and α-CA1 and SLC4 

HCO3
-
 transporters contributed equally to carbon uptake. So, as CO2 concentrations fall,

passive CO2 diffusion can no longer support Ci uptake and indirect and direct use of HCO3
-

allows Ci uptake to continue. The stimulation of absolute rates of SLC4 HCO3
-
 transporters-

dependent Ci uptake is consistent with patterns seen for a number of freshwater macrophytes 

during pH-drift experiments, where rates increase as CO2 approaches zero before declining as 

Ci is strongly depleted (Maberly and Spence, 1983). This could be caused by regulation or by 

direct effects of pH on HCO3
-
 transporter activity.

The model suggests that external CA is important in Ci uptake in O. alismoides and this 

is similar to results from seagrasses. External CA contributed 25% to Ci uptake in Posidonia 

australis (James and Larkum, 1996) and ~60% in Zostera marina (approximately 2.2 mM Ci 

at pH 8.2, equivalent to a dissolved CO2 ~23 µM at 25 °C; Beer and Rehnberg, 1997), albeit 
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in the presence of Tricine buffer that might inhibit the photosynthesis rate. The contribution 

of external CA reported here for O. alismoides at a CO2 concentration of 23 µM, 56%, is 

similar to that for Z. marina.  

In conclusion, O. alismoides has developed a „jack of all trades‟ CCM, the master of 

which, either external CA or SLC4 HCO3
-
 transporters, is the CO2 concentration. There are

several future lines of work that need to be pursued. The distribution of HCO3
-
 transporters in

freshwater species should be determined. The apparent relationship between polar leaves and 

low or absent external CA activity could be tested using a range of species, especially within 

the genus Ottelia where calcite precipitation differs among species (Cao et al., 2019). The Ci 

acquisition mechanisms of more freshwater species should be examined. The cause of the 

increasing rate of HCO3
-
 transporters-dependent HCO3

-
 uptake as Ci becomes depleted needs

to be understood. Finally, production and analysis of genome sequences for freshwater 

macrophytes will be a powerful tool to answer these and future questions concerning the 

strategies used by freshwater macrophytes to optimize photosynthesis. 
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Table 1. Predicted location of isoforms of α-CA1 and SLC4 in O. alismoides. 

Putative protein Isoform Transcript Length cTP mTP SP Other Loc RC 

α-CA1 1 25043 273 0.077 0.025 0.885 0.013 SP 1 

α-CA1 2 21823, 32613
*

266, 235 0.023 0.023 0.951 0.050 SP 1 

α-CA1 3 27301, 31599
**

266, 266 0.021 0.025 0.952 0.054 SP 1 

α-CA1 4 14247 234 0.023 0.023 0.951 0.050 SP 1 

SLC4
***

1 27032 726 0.021 0.110 0.108 0.957 Other 1 

Output from the TargetP 1 server using default settings. cTP, chloroplast transit peptide; mTP, 

mitochondrial targeting peptide; SP, secretory pathway; Other, other locations; Loc, final prediction; RC, 

reliability class (from 1 to 5), where 1 indicates the strongest prediction. 
*
Transcript lacks a transit peptide

at the N-terminus so it was not long enough to be analyzed; 
**

Two identical transcripts; 
***

Isoform 1 of

SLC4 was the only SLC4 transcript long enough to be analyzed. 
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Figure legends 

Fig. 1. Analysis of pH drift experiments without (control) or with inhibitors (AZ and 

DIDS) in O. alismoides. (A) Final pH; (B) Final CO2 concentration; (C) Initial slope 

of Ci uptake rate vs concentration of CO2 (between 15~40 µM), αC; (D) CO2 

compensation point (CP(CO2)); (E) CT/Alk. Values represent means ± SD, n=3. 

Letters indicate statistical differences between control and treatments (one-way 

ANOVA, Duncan‟s and Tukey‟s post-hoc tests P<0.05). 

Fig. 2. Effect of AZ or DIDS on the Ci uptake rate at different CO2 concentrations in 

O. alismoides. (A) Ci uptake rate; (B) Ci uptake inhibition. Values represent means ± 

SD, n=3. Letters in (A) indicate statistical differences among control and inhibitor 

treatments within CO2 concentrations (one-way ANOVA, Duncan‟s and Tukey‟s 

post-hoc tests P<0.05). Letters and symbols in (B) indicate statistical differences 

among different CO2 concentrations within inhibitor treatment (Mann–Whitney test 

P<0.05). 

Fig. 3. Effect of removal of AZ on Ci uptake rate in O. alismoides leaves at different 

CO2 concentrations. Values represent means ± SD, n=3. (A) 0.1 mM AZ; (B) 0.2 mM 

AZ. The inhibitor was removed by washing the treated leaves in the post-control (see 

Methods). Letters indicate statistical differences between the control and inhibitor 

treatments of AZ for each CO2 concentration (one-way ANOVA, Duncan‟s and 

Tukey‟s post-hoc tests P<0.05). 

Fig. 4. Effect of AZ and DIDS on Ci uptake rate and external CA activity in leaves of 

O. alismoides acclimated to high CO2 (HC) or low CO2 (LC) and measured at an 
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initial CO2 concentration of 12 µM. (A) Ci uptake rate; (B) Inhibition of Ci uptake 

rate; (C) External CA activity and (D) Inhibition of external CA activity. Values 

represent means ± SD, n=3. For panels (A) and (C), letters indicate statistical 

differences between the control and different treatments at HC and LC acclimated 

leaves using one-way ANOVA, Duncan‟s and Tukey‟s post-hoc tests P<0.05. For 

panels (B) and (D), uppercase and lowercase letters indicate statistical differences 

among inhibitor treatments at HC and LC respectively using the Mann–Whitney test 

P<0.05; the line above the two columns indicates the statistical differences between 

HC and LC treatments (Mann–Whitney test, P<0.05; NS not significant).  

Fig. 5. Expression of mRNA encoding proteins implicated in carbon uptake in leaves 

of O. alismoides acclimated to high CO2 (HC) or low CO2 (LC). (A) α-CA1 isoforms; 

(B) SLC4 isoforms. Values represent the mean ± SD, n=3. The lines above the two 

columns indicate the statistical differences between LC and HC treatment (one-way 

ANOVA, P<0.05; NS not significant). 

Fig. 6. A model of inorganic carbon acquisition in O. alismoides. (A) Model structure. 

① passive diffusion of CO2; ② diffusion of HCO3
- 
and conversion to CO2 by α-CA1

at the plasmalemma; ③ diffusion of HCO3
-
 and transfer across the plasmalemma by

SLC4 HCO3
- 
transporters. (B) The contribution of CO2-diffusion, diffusion of HCO3

-

and conversion to CO2 via α-CA1 and transfer of HCO3
-
 by SLC4 HCO3

- 
transporters

to total Ci uptake at different CO2 concentrations. 
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Figure 1 
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Figure 2 



Acc
ep

ted
 M

an
us

cri
pt

31 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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