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compounds have been of significant past interest to science and society, the recollection of
which can inform future strategies. Sal ammoniac (nūshādir, nao sha) is found to have been
extremely valuable in long-distance trade (ca AD 600–1150) from Egypt and China, where 6–
8 kg N could purchase a human life, while air pollution associated with nūshādir collection
was attributed to this nitrogen form. Ammonia was one of the keys to alchemy—seen as
an early experimental mesocosm to understand the world—and later became of interest
as ‘alkaline air’ within the eighteenth century development of pneumatic chemistry. The
same economic, chemical and environmental properties are found to make ammonia and
ammonium of huge relevance today. Successful control of acidifying SO2 and NOx emissions
leaves atmospheric NH3 in excess in many areas, contributing to particulate matter (PM2.5)
formation, while leading to a new significance of alkaline air, with adverse impacts on natural
ecosystems. Investigations of epiphytic lichens and bog ecosystems show how the alkalinity
effect of NH3 may explain its having three to five times the adverse effect of ammonium and
nitrate, respectively. It is concluded that future air pollution policy should no longer neglect
ammonia. Progress is likely to be mobilized by emphasizing the lost economic value of global
N emissions ($200 billion yr−1), as part of developing the circular economy for sustainable
nitrogen management.

This article is part of a discussion meeting issue ‘Air quality, past present and future’.

1. Introduction
Over recent decades ammonia (NH3) has often seemed like the Cinderella of air pollution, as it
has been given much less attention than other pollutants, such as sulfur dioxide (SO2), nitrogen
oxides (NOx), ozone (O3) and particulate matter (PM). In the 1980s, research focused on ‘acid
rain’, especially in the light of SO2 and NOx emissions [1–3] with only a few researchers at
that time examining the possible effects of NH3 and ammonium (NH4

+) on the environment,
including threats to soils, biodiversity and forest health [4–6]. The same can be said for European
air pollution policy, with successive international protocols on SO2 and NOx emissions [7,8],
preceding the multi-pollutant, multi-effect Gothenburg Protocol [9], which included NH3 for
the first time. Even then, the commitments for NH3 were much less ambitious than for other
air pollutants, requiring that little action be taken by most countries. The situation is similar
with the 2020 ceilings of the revised Gothenburg Protocol of 2012. With insufficient measures
implemented, several countries are unlikely to meet their legally binding NH3 ceilings for 2020,
while overall Europe-wide NH3 emissions have actually been increasing since 2013 [10]. The
barriers appear to be primarily political, as The Netherlands and Denmark have shown that it
is possible to reduce NH3 emissions substantially.

With this perspective in mind, it is appropriate to take stock of what ammonia has meant
to people in the past, what it means today, and what it might mean in the future. We rapidly
discover that NH3 and NH4

+ were historically far from insignificant, fulfilling several important
roles. Whereas recent efforts have focused on reducing NH3 emissions from agriculture, with the
main sources being livestock excreta and fertilizers, the historical picture helps to raise awareness
of the multi-dimensional relevance of ammonia for environment and society.

Considering the present, across much of Europe and North America we now inherit a world
where substantial emission controls have already been achieved for SO2 and NOx. We consider
in detail the implications of the changed ratio of NH3 to the acid gases, especially for some of the
most sensitive ecological receptors. Instead of acid rain, we now face challenges from ‘alkaline
air’, which was the original name given by Joseph Priestley [11] for gaseous ammonia. Today, we
may also define alkaline air more generally as air where alkaline gases (primarily NH3, but in
principle also including volatile amines) dominate over those that are acidic in nature.

Finally, we consider what might be expected for the future. What are the implications of current
legislation, of the slightly more ambitious emission reductions for 2030 under the revised EU
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National Emissions Ceilings Directive (2016/2284/EU)? We conclude by placing NH3 mitigation
in the context of the circular economy for nitrogen and United Nations actions on nitrogen to help
meet multiple Sustainable Development Goals (SDGs).

In the following sections, we show how a broad approach linking past, present and future
could help raise awareness about the importance of ammonia and nitrogen as a contribution to
catalysing action on the SDGs. We juxtapose the historical value of ammonium in international
trade and alchemy with current development of the nitrogen circular economy. The analysis is
underpinned with a more detailed examination of ecological datasets for epiphytic lichens and
bog ecosystems which together emphasize the emerging importance of alkaline air.

2. Ammonia in the past and implications for the present
While the popular historical narrative ascribes the discovery of ammonia to Priestley [11], his
achievement needs to be set in the context of at least two millennia of human exploration and
investigation into ammonia and ammonium.

(a) Ammonia in ancient times
By the start of the Tang Dynasty (AD 618–907), ammonium salts for use in metallurgy, medicine
and food were already being traded as a luxury product along the Silk Road in Central Asia [12].
Spontaneous combustion of near-surface coal deposits explains the development of fire caves,
some of which burn for hundreds of years. Nitrogen (N) in the burnt coal volatilizes as NH3,
reacting with co-emitted hydrochloric acid (HCl), sulfuric acid (H2SO4) and nitric acid (HNO3)
to form a mix of ammonium chloride, sulfate and nitrate salts [13]. Ammonium chloride tends
to dominate in the collected sublimate (also known as nūshādir, nao sha, sal ammoniac, the Eagle
(nasr) and a wealth of other names), presumably because it is more volatile than ammonium
sulfate, while ammonium nitrate formation may be limited by low HNO3 concentrations relative
to NOx (ammonium nitrate is also decomposed to N2, N2O and water at high temperatures).
Along with many other point sources, NH3 emissions from such fire caves can now be detected
from space [14], such as at Jharia in India [10] (figure 1).

The historical collection of the sal ammoniac sublimate around the cooler edge of fire caves,
as well as from a range of volcanic fumaroles (from Etna in Sicily to Mount Damavand in
Iran), allowed it to become a key commodity of long-distance trade up to the early nineteenth
century [12]. The importance and the stability of the sal ammoniac market can be illustrated by
comparing prices from AD 620 (Central Asia) with those from AD 1000–1140 (Mediterranean
trade) as shown in table 1. The estimates for Central Asia are based on transactions recorded in tax
records discovered near Turfan, in present-day Xinjiang province of China [15]. These values are
compared with documentary records recovered from a geniza or document repository, as uniquely
preserved in Cairo [16].

Table 1 shows impressive similarity for the prices of sal ammoniac and spice from these
independent datasets, while the price of silk and slaves had increased substantially in Cairo
compared with Central Asia. With today’s perspective, it is shocking to note that just 6–8 kg N
would purchase a human being. This reflects both a high price of nitrogen and a low value of
human life compared with the present. Relative to changing gold and silver prices (electronic
supplementary material, §2), N compounds are today around three orders of magnitude cheaper,
with prices decreasing rapidly during the twentieth century as large-scale manufacture, mainly
through the Haber–Bosch Process [17], has increased their availability.

The burning coal caves of Central Asia also provide the first recorded example of ammoniacal
air pollution. It appears that locals would encourage the natural coal burning specifically to
harvest sal ammoniac, as recorded by ibn-Hauqal:

Over the spot whence the vapour issues, they have erected a house, the doors and windows
of which are kept so closely shut and plastered over with clay that none of the vapour can
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Figure 1. Fire cave at Jharia, India, where spontaneous combustion of surface coal deposits has resulted in burning at this
location for over a century. Sites such as this across Central Asia, togetherwith volcanic fumaroles, represent the earliest recorded
sources of traded ammonium salts (Photo© Johnny Haglund). (Online version in colour.)

Table 1. Comparison of sal ammoniac prices with spice, silk and slaves for Central Asian and Mediterranean trade during the
seventh and eleventh to twelveth centuries. For calculations, see electronic supplementary material, §1.

prices in nuqra dirhams (pure silver dirhams, d)a

location (main
trade locations) date

sal
ammoniac
(d/kg)

spice
(d/kg)

silk
(d/kg) slaves (d/slave)

N cost of a
human
(kg
N/slave)b

Turfan (China, Central Asia) ca 620 6c 5 17 120 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Egypt (Sicily, Tunisia) 1000–1140 7.6(5.9–10.6)d 5 59 243 (208–278)d 8.4 (5.7–11.1)d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aDerived from data for Turfan [15] and Egypt [16].
bConverted based on N content of sal ammoniac of 26.2%.
cThe estimates for Turfan draw on six transactions for sal ammoniac, of which one includes the amount of tax paid, with a second combined
transaction of sal ammoniac and spice that agrees within 10%.
d95% confidence limits with n= 12 and 19 for sal ammoniac and slave price, respectively.

escape. On the upper part of this house the nūshādir rests. When the doors are to be opened,
a swiftly running man is chosen, who having his body covered over with clay, opens the
door; takes as much as he can of the nūshādir, and runs off; if he should delay, he would be
burnt (translated by Ouseley [18], p. 264, who renders nūshādir as ‘copperas’).
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Further details of the pollution threat are given by al-Mas’ūdı̄:

Travellers in summer take their road from Khorāsān to China by this mountain; for there is a
valley through it, which is forty or fifty miles long. At the entrance of the valley wait some
men who offer themselves to carry the baggage, if they are well paid. They use sticks to
drive the passengers on their journey; for any stoppage or rest would be fatal to the traveller,
in consequence of the irritation which the ammoniacal vapours of this valley produce on
the brain, and on account of the heat. The way becomes more and more narrow till the
travellers come to the end of their perilous passage. Here are pits with water, in which they
throw themselves, to obtain relief . . . When travellers arrive in the Chinese territories, they
are beaten as in passing (to counteract the congestion of blood in the brain) (translated by
Sprenger [19], pp. 359–360).

Caution is needed with regard to the comment of al-Mas’ūdı̄ about effects of nūshādir on the
brain. This may reflect the fact that the Chinese term, nao sha, includes a component referring to
the brain, so that nao sha was sometimes termed brain salt (see [20], pp. 446–447), for which there
are several possible explanations.

(b) Early ammonia science and philosophy
While the above examples illustrate the historic importance of ammonium in trade and air
pollution, these were probably not the earliest applications. Pliny the Elder (Natural History 28:
19, 149) was already familiar with use of the fumes of deer horn and hair to make people breathe
naturally when choking with hysteria. This use is directly analogous to the eighteenth century
popularity of ammonium carbonate as ‘smelling salts’; these liberate gaseous NH3, which acts as
a vasodilator in the airways. Ammonia and ammonium were also known in scientific circles, if
not always openly. In particular, they were at the heart of alchemy, well-known as a ‘reserved’
science (i.e. unspoken, secret, limited to the few), making it extremely difficult to trace how they
were used.

One of the most clear alchemical writers on nūshādir was the Persian physician al-Rāzı̄. It has
often been stated that earlier Greek alchemy used exclusively metals and other minerals, while
Islamic alchemy introduced the use of organic materials (e.g. [20], p. 435, [21]). The following
illustrates the methods of al-Rāzı̄:

Take of black cleaned hair, distil its water and oil and calcine its residue according to what
is [explained] further above, and put away each part of it separately . . . Then tie it [the
solidified oil] up in a linen cloth and hang it into distilled urine in a clay container on the
hook of the blind [cucurbit]. Place it on a small oven under which burns a fire of a lamp.
Leave it for 24 h, that the urine becomes red. Then pour it off and renew the urine. Repeat
this operation until all the colour is extracted. Then gather all and distil. Distil white urine,
but its redness remains. Then mix that what remained from the oil in a batch with the
distilled juice of a lemon and treat it with the urine with the help of the operation . . .

Then convert it into a hard state in a blind [cucurbit]; it solidifies it into white nuqra like
crystal . . . But if you want, that it [transmutes] into the red [into gold], thus put in it
before it solidifies, the red [residue] . . . it solidifies, transmuting into red nuqra, a dirham of
which transmutes 1800 dirham of any metal whichever you want into pure gold (trans. by
G. Fischer from [22], pp. 109–110).

Special caution is needed here, as al-Rāzı̄ uses so-called ‘cover names’ (Decknamen), referring to
the ammoniacal distillates as ‘urine’ (because of how it comes out of the alembic) or ‘lemon juice’
(because of its sharpness). Considering these processes, the Arab/Persian alchemist Jābir refers to
alchemy as a mesocosm or middle-world, which links understanding of the macrocosm (universe)
with the microcosm (humans) (cf. [23], p. 74). In experiments like this, ammonia and ammonium
were key to early experimental philosophy. As to the gold, even more caution is needed. In the
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margin of one manuscript, one of al-Rāzı̄’s readers commented: ‘Truly I have looked into this
book . . . Do not occupy yourself with them [the essences of Arsenic and Sulphur] unless you
already know the secret of the process . . . Only if you know the secret, God willing, will you
accomplish the work’ (translated by Heym [24], p. 191).

In fact, it looks likely that earlier Greek alchemists were already familiar with ammonia and
ammonium salts. For example, characteristic steps from the al-Rāzı̄ process given above can be
found in writings of the Greek alchemist Zosimus (e.g. [25], pp. 30–33; [26], pp. 486–492) and in
those attributed to Democritus (e.g. [27], p. S91; electronic supplementary material, §3). There is
also a question about the oldest name for sal ammoniac. The term nūshādir appears earliest in its
Chinese rendering as nao sha, but has a well-established Iranian etymology, meaning ‘immortal
fire’ [12]. It is a name that matches just as well to the macrocosmic fire caves as to the processing
of ‘elements’ in the mesocosmic analysis of earlier Greek alchemy, leaving open the question of
its origin.

Obscure as these beginnings may seem, they form the foundations on which modern science
was built. This is no more apparent than with Isaac Newton, who experimented and wrote
extensively on alchemy, but deliberately kept his findings secret (e.g. [28], p. 159) and encouraged
others to do so. Newton thus wrote to Henry Oldenburg, the Secretary of the Royal Society,
encouraging Robert Boyle not to reveal alchemical secrets:

[It] may possibly be an inlet to something more noble, not to be communicated without
immense dammage to ye world if there should be any verity in ye Hermetick writers,
therefore I question not but that ye great wisdom of ye noble Authour [Boyle] will sway him
to high silence till he shall be resolved of what consequence ye thing may be . . . there being
other things beside ye transmutation of metals . . . which none but they [the alchemists]
understand . . . but pray keep this letter private to your self [29].

The message was the traditional one of many alchemists over the centuries: not to reveal the
secrets of alchemy, which could otherwise lead to the destruction of society (cf. al-Jildakı̄ [30], p.
49). While Boyle may have engaged in the practice of advertising secrecy [31], Newton appears to
have recognized the ethical dilemma concerning open explanation of alchemy.

(c) The discovery of ‘alkaline air’
Ultimately, the scientific community turned away from the secrecy of alchemy, pushing towards
openness of scientific publication for practical benefit. As the experimentalist Stephen Hales wrote
in the year that Newton died:

If those who unhappily spent their time and substance in search after an imaginary
production, that was to reduce all things to gold, had, instead of that fruitless pursuit,
bestowed their labour in searching after this much neglected volatile Hermes, who has so
often escaped thro’ their burst receivers, in the disguise of a subtile spirit, a mere explosive
matter; they would then instead of reaping vanity, have found their researches rewarded
with very considerable and useful discoveries ([32], p. 180).

Hales’ experiments were to be decisive as a prelude to the scientific discovery of ammonia.
His work introduced the idea of ‘pneumatic chemistry’, distilling all sorts of products and then
collecting the resulting gases in an inverted vessel over a trough of water. In the case of ammonia
distilled from blood or harts-horn, this first filled the vessel, but then gradually dissolved in the
water, leaving Hales with no ammonia to collect (e.g. [32], p. 95, Experiment XLIX). Continuing
these kinds of experiments 50 years later, Joseph Priestly instead filled his pneumatic trough with
mercury in which the ammonia would not dissolve. This enabled him to isolate and characterize
pure ammonia gas [11]. Priestley’s first report was in a private letter to Benjamin Franklin in
September 1773, later presenting his findings to the Royal Society ([33], pp. 93–99).
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It was only in the 1790s that Priestley’s alkaline air started to become known as ‘ammonia
pura’, given its relationship to sal ammoniac. Subsequent chemical discoveries came quickly, with
Scheele [34] showing that it was present in the atmosphere, and Berthellot [35] demonstrating that
it consisted of one part nitrogen to three parts hydrogen.

3. Ammonia and present-day changes in air pollution climate
The reminder of ammonia as alkaline air is highly relevant to the present, as emissions of SO2
and NOx have decreased greatly over the last 30 years, leaving European and North American
atmospheres increasingly rich in NH3. This can be illustrated by the temporal evolution of
emissions, gas and aerosol concentrations and rainfall acidity across the UK. While SO2 emissions
have been almost entirely abated (97% reduction since 1970) and NOx emissions reduced by
70%, estimated NH3 emissions increased substantially up to 1990, decreased by 18% (1990–
2013), and then increased 9% (2013–2017; figure 2a). National mean NH3 concentrations have
not changed significantly since the National Ammonia Monitoring Network [37] was started in
1997 (though increasing in remote areas), while aerosol NH4

+ concentrations have decreased
significantly, consistent with declining SO2 and HNO3 (figure 2b). This has led to less formation
of ammonium sulfate and ammonium nitrate, which will have also helped maintain gaseous NH3
levels [38,39].

As a consequence, acid rain is now a thing of the past for UK conditions. Since 1986, volume-
weighted rain pH has increased from 4.62 to 5.48 (figure 2c), now being close to the value of
5.6 due to dissolution of atmospheric CO2. Together these changes demonstrate how alkaline
air is becoming increasingly important across the UK countryside, in a pattern that is reflected
across much of Europe and North America [40,41]. A corresponding trend is now occurring in
China, following implementation of SO2 emission controls from 2012 [42], while in India, NOx

emissions have been increasing even faster than NH3 emissions [43]. The gaseous alkaline fraction
(expressed as NH3 divided by the sum of NH3, 2SO2, HNO3 and HCl) is now at 88% in the UK
(electronic supplementary material, §4), while estimated global variation is shown in figure 3.
In many areas of the world, the gaseous alkaline fraction is over 60% (including NOx) or 80%
(excluding NOx).

The net result of these changes is that NH4
+ is now making an increasing relative contribution

to the composition of airborne particulate matter, relevant for effects on human health [45]. In
parallel, the increasingly alkaline, NH3-rich atmosphere is having substantial consequences for
the natural environment, as examined in detail below for lichens and other sensitive plants.

(a) Response of lichens to atmospheric ammonia
While lichens are well known to be sensitive to SO2 concentrations, here we emphasize that
NH3 is now the primary air pollution driver of lichen distributions in many areas of Europe. To
understand the dynamics, we first consider a local-scale transect from Scotland [46] that shows
how lichens can change in the vicinity of a poultry farm emitting NH3. Lichens on tree trunks
of both Scots pine (Pinus sylvestris) and Sitka spruce (Picea sitchensis), and on branches of birch
(Betula pubescens), which are all naturally acid-barked trees, were scored according to a standard
methodology [47,48]. In this approach, lichen species are categorized as ‘acidophytes’ (e.g.
Usnea, Hypogymnia, Pseudevernia, Bryoria), preferring naturally acidic bark, and ‘nitrophytes’ (e.g.
Xanthoria, Physcia), favouring higher levels of nitrogen air pollution (electronic supplementary
material, §3) [49]. Using this approach, frequency-based lichen indices for acidophytes (LA)
and nitrophytes (LN) were calculated (see electronic supplementary material, §5), where the
difference (LAN = LA–LN) distinguishes bark dominated by acidophytes (+ value) or nitrophytes
(− value).

Findings from the local transect are summarized in figure 4, showing how acidophyte
species were gradually eradicated between mean NH3 concentrations of 1 and 12 µg m−3, with
acidophytes on twigs being more sensitive to NH3 than those on trunks. Acidophytes on both
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Figure 2. (a) Emissions of SO2, NOx and NH3 from the UK relative to 1970, comparing the Defra National Atmospheric Emissions
Inventory (NAEI) including estimates from the Long-Term Large-Scale (LTLS) model for earlier years [36]. (b) Annual mean
concentrations of gaseous NH3, SO2 and HNO3 and of aerosol NH4+ (for 12 sites), from the UK monitoring network (for further
details and error analysis, see Tang et al. [37,38], compared with the earlier trend for five sites (SO2(a)), normalized to the UK
mean for 1999–2001. (c) Volume-weighted mean pH of precipitation across the UK based on spatial interpolation of measured
values.

twigs and trunks were already significantly reduced at the third cleanest location (approximately
1.7 µg m−3, two-sample t-test, two-tail assuming unequal variance, trunks: p < 0.001; twigs:
p < 0.01), where the first nitrophytes on twigs were also recorded. Highest nitrophyte occurrence
was recorded at 30 µg m−3, with a significant reduction at 70 µg m−3 for both trunks (p < 0.001)
and twigs (p = 0.01). Figure 4d shows that there was also a significant relationship between LAN
and measured bark pH. This effect can be largely explained by NH3 increasing bark pH nearer the
farm (see electronic supplementary material, §5). It is notable that there is no significant difference
in the relationship between LAN and bark pH for twigs versus trunks (figure 4d). This indicates
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Figure 3. Global distribution of the gaseous alkaline fraction for 2010 as estimated by the EMEP-WRF global model [44],
here calculated based on surface atmosphere mixing ratios (ppbv/ppbv) as NH3 / (NH3 + HNO3 + 2SO2 + NOx ): (a) including
NOx , (b) excluding NOx , since it is unclear to what extent NOx concentrations influence leaf surface acidity (see electronic
supplementary material, §4).

that the greater sensitivity of acidophyte lichens on twigs is consistent with the differences in bark
chemistry between twigs and trunks. One of the advantages of the local study shown in figure 4
is that it covers a wide range of pollution levels from 0.3 to 70 µg m−3 demonstrating its wide
relevance for different pollution conditions.

The lichen methodology was subsequently applied at 30 sites across the UK [50]. It must be
recognized that different tree species also have naturally different bark pH, and therefore the
analysis distinguished lichen communities on naturally acid-barked oak (Quercus robor, Q. petraea,
recorded where available) from communities on other tree species. LAN was generally not found
to be correlated with SO2 concentrations (except for a weak relationship for oak trunks, p = 0.04,
n = 11), with a lack of relationship with SO2 also found in a later survey [51].

At the UK-scale, trunks and twigs both show reducing LAN score with higher NH3 and with
higher bark pH, demonstrating the broad relevance of these relationships (figure 5). Substantial
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Figure 4. Response of epiphytic lichens on trunks and twigs of Betula pubescens to increasing NH3 concentrations in a farm
transect in South Scotland. (a) trunks and (b) twigs, for a cover index of lichen acidophytes (LA) and nitrophytes (LN). (c) Results
for the joint index LAN = LA – LN. (d) Combined relationship between LAN and bark pH for twigs and trunks: LAN = − 5.73
(bark pH)+ 32.1, with R2 = 0.91. Error bars are ±1 standard error for five replicate trees at each location. (Online version
in colour.)

scatter can be seen between NH3 concentration and LAN score, which is expected based on natural
variation in bark pH, even under clean conditions. In addition, variations with climate may
have introduced some scatter. For example, precipitation was found to have a weakly significant
effect for lichens on twigs (p < 0.05: R2 = 0.15 (all data), R2 = 0.35 (oak); electronic supplementary
material, figure S4), but was not significant for lichens on trunks.

However, an even higher correlation was found for the UK by relating the LAN scores to a
combined index of NH3 (µg m−3) + 4 (bark pH) (figure 6). This points to NH3 as potentially
having two effects. Firstly, NH3 has an alkaline effect, shown by its increasing bark pH (electronic
supplementary material, figure S3A). Secondly, there appears to be an effect that is not explained
by the changes in bark pH. If NH3 only had its effect by altering bark pH, then this would not
explain why a combined index of NH3 and bark pH gives an improved relationship with LAN
than with bark pH alone. Other diversity and nitrogen indicators are illustrated in electronic
supplementary material, §5 (electronic supplementary material, figure S3), with further statistical
comparisons and the full UK dataset given in electronic supplementary material, figure S4 and
table S6, respectively.

Comparable results have been recorded for The Netherlands [52], showing in particular a
long-term decline of acidophyte lichen species from 1991 to 2016, consistent with differences in
bark pH [49]. Since these datasets focus on the principles of lichen responses to acid and alkaline
gases, similar relationships can be expected in other parts of the world. For example, extremely
high levels of NH3 in the Indo-Gangetic Plain [14] can be expected to be adversely affecting
acidophyte epiphytic lichens in the oak forests of the Himalayan foothills, which have significant
economic importance, being traded to Arabic speaking countries to make valued-added products
like perfumes [53]. While data on NH3 responses have not been available until now, first analysis
as part of the GCRF South Asian Nitrogen Hub [54] shows major gradients in modelled NH3
and N wet deposition both N-S and W-E across sub-Himalayan forests and at levels that greatly
exceed the known impact thresholds for lichens in temperate biomes.
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(b) Ecological effects of ammonia versus ammonium and nitrate
Differential sensitivity of vegetation according to the form of N air pollution is also indicated by
the results of a long-term pollution manipulation experiment at Whim Bog in Southern Scotland
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[55,56]. In this globally unique experiment, the effects of gaseous NH3, assessed using free-air
enrichment from a line-source of NH3, are compared with the effects of wet deposited NH4

+ and
NO3

−, as delivered to replicated mesocosms (12.8 m2; four replicate plots for each N level/form
combination) through a misting system (see electronic supplementary material, §6). Treatments
at this site have been continuing for 18 years since 2002, allowing examination of the long-term
effects of different N forms. Background deposition to the site is estimated at 8 kg N ha−1 yr−1,
with treatments achieving total inputs of 16, 32 and 64 kg N ha−1 yr−1. Assessment of plant species
composition is based on recording at three permanent quadrats for each experimental plot, with
each quadrat divided into 16 sub-quadrats (see electronic supplementary material, §6).

The outcomes for changes in plant cover of the main species sensitive to N pollution are
summarized in figure 7. This provides an analysis of ‘Eradication Time 50’ (ET50), which is
defined here as the time taken to reduce species cover by 50% relative to cover at the start of
the experiment. This is shown together with the ‘Eradication Dose 50’ (ED50), the cumulative N
deposition over the period associated with a relative 50% reduction in cover of each species. The
values of ED50 are calculated as the product of ET50 and the annual nitrogen inputs for 2002–
2019 (see electronic supplementary material, figure S5 and table S6). Changes for other species
included hare’s-tail cotton grass (Eriophorum vaginatum), which benefited from NH3 relative to
other, more-sensitive species [56].

Considering the species shown in figure 7, reindeer lichen (Cladonia portentosa) was found to
be overall most sensitive, followed by red-stemmed feather-moss (Pleurozium schreberi) and red
bog-moss (Sphagnum capillifolium). ET50 for NH3 at 32 kg N ha−1 yr−1 for these species were all
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electronic supplementary material, table S7). Different letters show statistical significance with p< 0.05 (two-tail); (a,c) are
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estimated in the range of 0.6–1.6 years. By contrast, common heather (Calluna vulgaris) and heath
plait-moss (Hypnum jutlandicum) were less sensitive to NH3, with ET50 values of 3.8–4.9 years, for
the same N dose. Expressed as ED50, the most sensitive species had values of 19–51, while Calluna
and Hypnum had values of 122 and 157 kg N ha−1 (electronic supplementary material, table S7).

Overall, it is expected that ET50 values are larger at lower annual N dose rates, as shown by
the left side of figure 7. By contrast, it is expected that ED50 should be independent of annual N
dose rate, so the extent to which this expectation is not met indicates that the ecological response
is not directly proportional to accumulated N inputs.

As expected, ET50 values were larger at low N inputs and smaller at high N inputs. This is
shown for impacts of NH3 (all species) and for impacts of wet deposited NH4

+ and NO3
− for the

most sensitive species (Cladonia, Pleurozium). By contrast, significant scatter is seen for Calluna and
Hypnum in response to wet deposited N, reflective of longer and more uncertain ET50 estimates,
with values greater than 17 years based on extrapolation of linear fits (electronic supplementary
material, figure S5). Data for Cladonia, Pleurozium and to some extent Sphagnum give the best
evidence for the utility of the ED50 indicator, as the plots for these species all show little difference
between N dose rate, as expected compared with the ET50 indicator. By comparison, lower ED50
values for Hypnum, Sphagnum and Calluna for the NH3 treatments at 32 and 64 kg N ha−1 yr−1, as
compared with the 16 kg N ha−1 yr−1 NH3 treatment, suggest that these species are more-than-
proportionately vulnerable at the higher N rates. This could point to a toxic effect as a result of
higher NH3 concentrations rather than dose.

The most important observation from this dataset for the present analysis is that it further
demonstrates the higher sensitivity to NH3 compared with wet deposited NH4

+ and NO3
−. This

is most clearly seen by calculating statistics based on normalizing the data as 1/ED50, which also
allows inclusion of all treatments, with the data then plotted as ED50 (figure 8). Overall, it can be
seen that the reductions in cover of these five species occur three and five times faster for gaseous
NH3 than for the same N dose of wet deposited NH4

+ and NO3
−, respectively. Comparable

differences were also revealed by an independent assessment of physiological response for lichen
transplants (electronic supplementary material, figure S6).

Although it is widely assumed that effects on plant nutrition are governed by total N inputs,
our data thus show that reality is more complex, otherwise there would be no difference between
the wet NH4

+ and NO3
− treatments, as well as between the wet N and dry NH3 treatments.

Other experimental studies have mainly been conducted using increased wet deposited N or
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fertilizer addition [57,58]. Had such studies included NH3 enhancement, they may therefore have
found even larger adverse effects per unit N added. This is not to suggest that effects of wet
deposited N are unimportant, but rather to emphasize the need to consider N form. For example,
in agricultural areas subject to high NH3 concentrations, our results show that remaining bog
habitats will be more than proportionately at risk (based on estimated N deposition). Conversely,
wet deposited N may lead to larger effects on an area basis, since the largest areas of bogs are far
from agricultural sources, where wet N deposition dominates total N inputs [56].

(c) Recovery following reduction in ammonia concentrations
The preceding examples, showing higher sensitivity of plants to NH3 compared with NH4

+ and
NO3

−, raise the question of whether there are also different rates of recovery following reductions
in N pollution. It has been suggested that recovery in species composition and certain N pools
may take several decades after a reduction in wet deposition of N [59]. This may be especially the
case in slow-growing naturally acidic ecosystems, where N pools change slowly due to lack of
removal by harvests and inhibition of denitrification [60,61].

There are no known experimental studies of the simultaneous reduction in NH3, NH4
+

and NO3
− pollution for any ecosystem. However, field data from a site in Northern Ireland

illustrate the potential for surprisingly rapid recovery following a reduction in gaseous NH3
concentrations. In this case study, a poultry farm 50 m west of Moninea Bog Special Area of
Conservation (SAC) led to greatly increased concentrations of NH3 (10–40 µg m−3) compared
with local and regional background values of 1.5 and 0.5 µg m−3. The lichens Cladonia portentosa,
C. uncialis and Sphagnum species were largely eradicated on the bog within 400 m of the farm,
with excessive growth of algae on trunks of Betula pubescens (50–100 m from the farm) replacing
the natural acidophyte lichen flora [62].

As a consequence of legal requirements for the protection of Moninea Bog, the poultry
farm ceased operation in 2010, allowing examination of ecosystem recovery. Observations in
2017 showed mean atmospheric NH3 concentrations of 1.5 µg m−3, with substantial recovery
of Cladonia portentosa and Sphagnum spp. As all large clumps (ca 200–400 mm diameter) of C.
portentosa had been eradicated, only uniformly small specimens (ca 50–70 mm) were found in 2017
in the zone where they had been previously eradicated. The extent of Cladonia and Sphagnum
growth indicated that recovery must have started within 2–4 years of the reduction in NH3
concentrations. Conversely, it was not obvious whether the condition (i.e. overall health) of
Calluna had improved, while residual algae levels on Betula less than 100 m from the farm
indicated only partial recovery. An illustration of a potential ‘alternative stable state’ [59] was also
found (figure 9a). This showed continued colonization of a Sphagnum hummock by algae, 7 years
after NH3 concentrations reduced. It suggests ongoing competition, where a coating of gelatinous
algal slime restricts gas exchange and growth of the Sphagnum until the latter can manage to
grow over the algae. Monitoring across Moninea Bog by the Northern Ireland Environment
Agency confirmed the recovery of Sphagnum after 2010, with no evidence of any recovery in
Calluna (figure 9b). The latter effect may be age-dependent, where recovery of old Calluna plants
(weakened or dead) is limited, while ultimately conditions may favour recolonization by young
Calluna plants.

4. Discussion

(a) Mechanisms of ammonia impacts on vegetation
The examples presented highlight the increased sensitivity of lichens and bog vegetation to
gaseous NH3 compared with wet deposited NH4

+ and NO3
−, which appears to be at least partly

related to the alkaline effect of NH3. In this way, higher correlations were found between LAN and
NH3 in the UK-scale lichen survey than with total N deposition. In fact, the highest single-factor
correlation was found with the ratio of N to S deposition (electronic supplementary material,
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Figure 9. (a) Hummock of Sphagnum moss on Moninea Bog photographed in 2017, seven years after reduction in NH3
concentrations, showing a hummock still covered by algal slime characteristic of high NH3 levels (insert: partial cross-section).
(b) Statutory monitoring showed an overall tendency for recovery in Sphagnum populations at Moninea Bog, but not yet of
Calluna nor a return to previously lower levels of graminoids. These data confirm independent expert examination of the site by
the authors in 2007 and 2017. (Online version in colour.)

figure S4). This indicator is also closely correlated with NH3 concentrations (R2 = 0.87), and, like
NH3, also provides an indication of acid-base balance.

Both the national and local-scale lichen surveys showed that bark pH is positively correlated
with NH3 concentration, while LAN score is negatively correlated with bark pH. Hence, one of the
ways in which NH3 appears to affect epiphytic lichens is by increasing substrate pH. That this is
one of the driving variables is also shown by the differences between tree species, with nitrophytes
found to be more prevalent on trees with naturally higher bark pH. Natural differences in bark
pH can similarly explain differences in lichen communities between twigs and trunks (figures 4d
and 6). This raises the question of whether the NH3 effect on lichens is entirely mediated by its
effect on surface pH.

Examination of the UK-scale data suggests a more complex interaction. If NH3 has its effect
solely through changing bark pH, then differences in pH should fully explain the variation in
LAN with NH3. This would therefore not explain why a combined indicator of NH3 + 4 (bark pH)
gives a better relationship with LAN than with bark pH alone (figure 6; electronic supplementary
material, figure S4). It suggests that NH3 may be affecting lichens by both a pH effect and
another effect, such as that related to nutrient N (as more usually considered to drive N effects on
ecosystems [57]).

Possible relationships are summarized in figure 10: NH3 deposited on bark increases NH4
+

on the lichen thallus, uptake of which will be under control of cell membranes. Such altered
nutrient supply may affect competition between species. In parallel, the deposition adds NH3
to the bark/thallus surface, which increases bark pH because of the alkaline nature of NH3. The
bark pH is also affected by tree species and bark age (twig versus trunk). With NH3 increasing
bark pH, the chemical equilibrium favours NH3 rather than NH4

+, which further increases NH3
levels on the thallus. Two subsequent effects may then be expected. Firstly, that changed bark pH
affects apoplast pH of the lichen thallus (cf. electronic supplementary material, figure S7), which
could affect lichen health (e.g. by affecting the buffering systems of lichen acids characteristic of
different species). Secondly, NH3 may have a direct toxic effect, including that mediated by the
passive diffusion of NH3 across cell membranes, leading to disturbance of symplastic pH. That
plant sensitivity to NH3 and other forms of N deposition is partly due to different abilities of
species to manage cell pH homeostasis has been argued by Pearson & Soares [63], who elsewhere
demonstrated a positive correlation between leaf buffering capacity index and nitrate reductase
(NR) activity across 18 plant species [64]. This would offer another reason why acidophyte
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lichens, adapted to NH4
+ nutrition (with low NR activity expected), would be more vulnerable

to atmospheric NH3.
Effects of NH3 on lichen pH are also seen at Whim Bog. Electronic supplementary material,

figure S8 shows that NH3 increased the pH of transplanted Cladonia portentosa thalli, confirming
the thallus pH effect (figure 10), with responses seen within one month of transplantation. By
contrast, the surface pH of live Sphagnum capillifolium growing in-situ remained unaffected, which
may reflect a greater water-holding and buffering capacity of Sphagnum.

The importance of such pH effects may also explain the rapid recovery of Cladonia portentosa
and Sphagnum spp. following reduction in NH3 levels at Moninea Bog. Even though the peat
might still contain high N levels, reduced alkalinity from less NH3 would be expected to allow
rather rapid re-adjustment of surfaces, allowing colonization of acidophyte species.

While uncertainties remain over the exact mechanisms, the higher sensitivity to NH3
compared with wet deposited NH4

+ observed at Whim Bog tends to support this picture. Based
on the values of ED50 (with NH3 being three times more damaging than NH4

+), this suggests
that ¾ of the NH3 effect on peatland vegetation could be related to pH effects, while ¼ of the NH3
effect is attributable to the common effect of increased nutrient N supply. One of the implications
of our findings is therefore to pay more attention to the ‘critical level’ for NH3 concentrations
for which the UNECE has adopted a value of 1 µg m−3 for lichens, bryophytes and associated
habitats [65,66].

The extent to which such relationships can be generalized between species, habitats and world
regions remains an important question for further work. Each species responds individually
according to its nitrogen and pH preferences, sensitivity to NH3 toxicity and ability to compete
with other species for light and other resources. For example, investigations on Cladonia portentosa
from Whim Bog showed that different N forms affect different metabolic pathways [67,68], which
may have varying importance between species. It is also possible to identify useful functional
groups, as illustrated by the nitrophyte/acidophyte lichen groupings. Calluna vulgaris offers
another illustration as this is found to be more sensitive to NH3 at Whim Bog than Cross-
Leaved Heath (Erica tetralix) [56]. If it could be shown (according to [64]) that this reflects a
lower apoplastic buffering capacity of Calluna than Erica, then this would encourage further
use of buffering capacity as a predictive indicator. In the same way, species/group differences
in characteristic lichen acids may also point towards predictive capability with global relevance,
which may be tested by the GCRF South Asian Nitrogen Hub.
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(b) The future of alkaline air and nitrogen policy
The higher sensitivity of vegetation to gaseous NH3 compared with wet deposited NH4

+ and
NO3

− has direct implications for the success of past SO2 and NOx emission reductions in
protecting ecosystems. While the acid rain problem has now been addressed in the UK and most
of Europe, the modest reductions in NH3 emissions mean that alkaline air is emerging as a new
ecological challenge. The data presented here focus on naturally acidophyte species, which appear
to be especially vulnerable to alkaline air. It remains to be tested whether naturally basic habitats,
such as chalk grasslands, would be less vulnerable to ammonia.

Already there are indications that NH3 concentrations are actually increasing in some
parts of Europe rather than decreasing. While this is partly related to reduced SO2 and NOx

concentrations leading to increased NH3 lifetimes, as reflected in NH3 monitoring for remote
areas [38], there is also concern about climate change impacts on NH3 concentrations. As most
NH3 globally results from volatilization processes, climate warming will increase NH3 emissions
[69,70]. Strategies to address alkaline air therefore need to include measures that both reduce
NH3 emissions directly [71] and minimize climate change drivers. In addition to control of CO2
and CH4 emissions, decreasing losses of all N compounds (including N2O, NO and N2 to air,
and NO3

− losses to water) becomes critical to increasing economy-wide nitrogen use efficiency,
with multiple benefits for climate, air quality, water quality, biodiversity and stratospheric ozone
protection [54,72]. Such a perspective could help transform current efforts to meet the EU National
Emission Ceilings commitments for 2030, as well as many other policy goals.

This takes us closer to developing the big idea whereby ammonia becomes a key focus in an
emerging international strategy to manage the global nitrogen cycle. This is why the historical
perspective of §2 is so important, in raising awareness about ammonia. One of the lessons of
history is that ammonia has always been of significant societal importance. From its role as part
of the alchemists’ objective to prepare Gold and the Elixir of Life, to its economically high value as
a luxury product of international trade, ammonia continues today to be important in sustaining
humanity through nitrogen fertilizers and biological nitrogen fixation. If society is to learn to
manage nitrogen better, then these stories can help by raising wider awareness.

Ultimately, it may be the economic value of nitrogen that counts most. It has been estimated
that global N losses to the environment amount to around 200 million tonnes [73,74]. This means
that at a nominal market price of US$1 per kg N, a goal to ‘halve nitrogen waste’ from all sources
by 2030 would offer a circular economy opportunity worth US$100 billion per year, amounting
to an annual saving of approximately 12 kg N per person (cf. §2a). These issues have recently
been recognized in the first Resolution on Sustainable Nitrogen Management adopted at the
UN Environment Assembly (UNEP/EA.4/Res.14), with the ambition to halve nitrogen waste
adopted in the Colombo Declaration [75]. The follow-up to these activities is bringing ammonia
and air pollution together as part of the global nitrogen challenge, by working to establish
an Interconvention Nitrogen Coordination Mechanism (INCOM), with targeted science support
through the International Nitrogen Management System (INMS) [54,72]. Together these activities
can be expected to emphasize how ammonia and the wider nitrogen cycle must be at the heart of
the solutions needed for both environment and economy in working towards the UN Sustainable
Development Goals.
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