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Abstract The Transient Climate Response to Emissions (TCRE), the ratio of surface warming and
cumulative carbon emissions, is controlled by a product of thermal and carbon contributions. The carbon
contribution involves the airborne fraction and the ratio of ocean saturated and atmospheric carbon
inventories, with this ratio controlled by ocean carbonate chemistry. The evolution of the carbon
contribution to the TCRE is illustrated in a hierarchy of models: a box model of the atmosphere-ocean
and an Earth system model, both integrated for 1,000 years, and a suite of Earth system models integrated
for 140 years. For all models, there is the same generic carbonate chemistry response: An acidifying ocean
during emissions leads to a decrease in the ratio of the ocean saturated and atmospheric carbon inventories
and the carbon contribution to the TCRE. Hence, ocean carbonate chemistry is important in controlling the
magnitude of the TCRE and its evolution in time.

Plain Language Summary The increase in surface temperature with the amount of carbon
emitted to the atmosphere depends on the uptake and storage of heat and carbon. Ocean heat uptake
acts to strengthen surface warming, as the ocean becomes more stratified in time. Carbon uptake by the
ocean and terrestrial system acts to weaken surface warming by removing carbon from the atmosphere.
The proportionality of surface warming to carbon emissions may be written in terms of a thermal
contribution multiplied by a carbon contribution. The carbon contribution depends on the increase in
the atmospheric carbon inventory plus the maximum amount of carbon that the ocean may hold.
To understand the role of ocean chemistry, we diagnose the response of climate models of differing
complexity over centennial and millennial timescales. In all the models, there is a similar carbon response:
During emissions, the ocean surface acidifies and the maximum amount of carbon that the ocean can hold
decreases, which weakens the carbon contribution to the proportionality of surface warming to carbon
emissions. Hence, ocean carbonate chemistry is important in controlling the proportionality of surface
warming to carbon emissions and its evolution in time.

1. Introduction

Climate model projections reveal that surface global warming is nearly proportional to the cumulative car-
bon emission (Allen et al., 2009; Gillet et al., 2013; Matthews et al., 2009; Zickfeld et al., 2009). This relationship
is encapsulated in the near constancy of an empirical climate metric, the Transient Climate Response to
cumulative carbon Emissions (TCRE), which is defined by the ratio of the change in global mean, surface air
temperature since the preindustrial era, ΔT(t), to the cumulative carbon emissions, Iem(t),

TCRE = ΔT(t)
Iem(t)

. (1)

The TCRE is usually considered for radiative forcing only from atmospheric CO2, although this relationship may
be generalized to include the effects of non-CO2 radiative forcing (Williams et al., 2016). Two complementary
views have been invoked to understand the TCRE. In the first view, emphasizing the atmospheric response,
the TCRE is explained in terms of the airborne fraction, ΔIatm(t)∕Iem(t), and the ratio of surface warming to
changes in the atmospheric carbon inventory, ΔT(t)∕ΔIatm(t) (Matthews et al., 2009), which may be reex-
pressed in terms of a thermal contribution, ΔT(t)∕R(t), the airborne fraction, and the ratio of radiative forcing
and changes in the atmospheric carbon inventory, R(t)∕ΔIatm(t) (Ehlert & Zickfeld, 2017),
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TCRE = ΔT(t)
ΔIatm(t)

ΔIatm(t)
Iem(t)

= ΔT(t)
R(t)

R(t)
ΔIatm(t)

ΔIatm(t)
Iem(t)

. (2)

This view of the TCRE may be further extended by connecting with the ocean heat uptake efficiency and the
rate of emissions (MacDougall & Friedlingstein, 2015).

In the second view, emphasizing the ocean response, the TCRE is interpreted as the product of a thermal
contribution, ΔT(t)∕R(t), and a carbon contribution, R(t)∕Iem(t), (Williams et al., 2016), which may be written
in terms of the changes in the ocean carbon undersaturation, ΔIusat(t), and terrestrial carbon, ΔIter(t), since
the preindustrial era (Goodwin et al., 2015; Williams et al., 2016; Williams, Roussenov, Goodwin, et al., 2017):

TCRE = ΔT(t)
R(t)

R(t)
Iem(t)

= ΔT(t)
R(t)

a
IB

(
Iem(t) − ΔIter(t) + ΔIusat(t)

)
Iem(t)

; (3)

here a is a CO2 radiative forcing coefficient (Myhre et al., 1998), IB is the buffered carbon inventory and
represents the effective available carbon in the combined atmosphere and ocean in the preindustrial era
(Goodwin et al., 2007, 2009), Iusat(t) is the ocean carbon undersaturation and measures how much carbon
the entire ocean needs to take up to reach a carbon equilibrium with the atmosphere (Goodwin et al., 2015),
Iter(t) is the terrestrial carbon inventory, and Δ represents the change since the preindustrial era. The term
a(Iem(t)−ΔIter(t))∕IB represents the part of the radiative forcing driven by the net carbon emissions to the com-
bined atmosphere and ocean, while the term aΔIusat(t)∕IB represents the part of the radiative forcing driven
by the excess amount of carbon in the atmosphere due to the ocean not being in a carbon equilibrium with
the atmosphere (see supporting information).

In this study, we reconcile these two different perspectives of the TCRE. Our approach is to focus on the ratio of
the changes in the ocean saturated carbon inventory, defined by how much carbon the ocean may take up rel-
ative to the instantaneous atmospheric CO2, and the atmospheric carbon inventory. A new expression for the
TCRE is provided including both the airborne fraction and the ocean saturated carbon inventory, which high-
lights the effect of carbonate chemistry in controlling the ratio of changes in ocean saturated and atmospheric
carbon inventories (section 2). This new TCRE expression is applied to understand the climate response during
emissions and after emissions cease in a hierarchy of climate models: a box model of the atmosphere-ocean
and a realistic Earth system model (GFDL-ESM2M) responding to a carbon emission over nearly 100 years and
integrated for 1,000 years (Frölicher & Paynter, 2015; Williams, Roussenov, Frölicher, & Goodwin, 2017) and a
suite of Earth system models integrated for a 1% annual rise in CO2 for 140 years (section 3).

2. Theory
2.1. A Definition for the TCRE Including the Airborne Fraction and Ocean Saturation
To understand the link between the two formulations of TCRE in (2) and (3), consider the changes in the
global carbon inventory, where cumulative carbon emissions, Iem(t), drive changes in the sum of the global
carbon inventories for the atmosphere, ΔIatm(t), ocean, ΔIocean(t), and terrestrial, ΔIter(t), systems relative to
the preindustrial era,

Iem(t) = ΔIatm(t) + ΔIocean(t) + ΔIter(t). (4)

By connecting changes in the ocean carbon inventory,ΔIocean(t), to changes in the ocean saturated and ocean
undersaturated components (defined relative to the instantaneous atmospheric CO2), ΔIocean(t) = ΔIsat(t) −
ΔIusat(t), then the carbon inventory changes in (4) may be rearranged as

Iem(t) − ΔIter(t) + ΔIusat(t) = ΔIatm(t) + ΔIsat(t). (5)

For the present day, the atmospheric CO2 and the increase in the ocean carbon inventory, ΔIocean, are close
to 400 ppm and 100 PgC, respectively, so that the increase in the saturated ocean carbon inventory, ΔIsat, is
about 900 PgC and in the ocean carbon undersaturation, ΔIusat, is about 800 PgC.

Assuming that the changes in the radiative forcing, R(t), are driven only by changes in atmospheric CO2, the
radiative forcing is expressed in terms of changes in either the net carbon emission to the combined atmo-
sphere and ocean, Iem(t) − ΔIter(t), plus the ocean carbon undersaturation, ΔIusat(t) (Goodwin et al., 2015)
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(see supporting information), or equivalently from (5), in the atmospheric, ΔIatm(t), plus the ocean saturated
carbon, ΔIsat(t), inventories,

R(t) = a
IB

(
Iem(t) − ΔIter(t) + ΔIusat(t)

)
= a

IB

(
ΔIatm(t) + ΔIsat(t)

)
. (6)

By substituting (6) into either (2) or (3), a new theoretical expression is derived for the TCRE,

TCRE = ΔT(t)
R(t)

a
IB

(
ΔIatm(t) + ΔIsat(t)

Iem(t)

)
= ΔT(t)

R(t)
a
IB

ΔIatm(t)
Iem(t)

(
1 +

ΔIsat(t)
ΔIatm(t)

)
, (7)

where the ratio ΔIsat(t)∕ΔIatm(t) represents the sensitivity of changes in the saturated ocean carbon inven-
tory to changes in the atmospheric carbon inventory relative to the preindustrial era. This new expression
for the TCRE including the airborne fraction (7) is equivalent to the expression for the TCRE including ocean
carbon undersaturation (3). Next, we explore how the ratio of the ocean saturated and atmospheric carbon
inventories, ΔIsat(t)∕ΔIatm(t), is controlled by ocean carbonate chemistry.

2.2. Control of the Ratio of the Ocean Saturated and Atmospheric Carbon Inventories
In order to understand the evolution of the ratio ΔIsat(t)∕ΔIatm(t), consider an ocean buffer factor, B(t), where
the fractional changes in the atmospheric and ocean saturated carbon inventories are defined relative to the
preindustrial time, to, by

B(t) =
ΔIatm(t)∕Iatm(to)
ΔIsat(t)∕Isat(to)

. (8)

Rearranging (8), and drawing upon basic carbonate chemistry (see supporting information), the ratio of the
changes in the saturated ocean and atmospheric inventories, ΔIsat(t)∕ΔIatm(t), may be approximated by

ΔIsat(t)
ΔIatm(t)

≈
(
𝜌oVKo

Ma

)(
K1K2

[H+(zs, t)]2

)(
CO2(t)
CO2(to)

)
, (9)

where Ma is the moles of gas in the atmosphere, 𝜌o is a referenced ocean density, V is the ocean volume, and
the hydrogen ion concentration, H+, is evaluated at the sea surface, zs. The changes in carbonate chemistry
due to temperature are assumed relatively small compared with those changes due to atmospheric CO2, and
so the effect of changes in the solubility, Ko, and the equilibrium coefficients, K1 and K2, are neglected in (9).

In this approximation for the ratio ΔIsat(t)∕ΔIatm(t) in (9), each term has the following interpretation: The first
term on the right-hand side represents the value that this ratio would have if CO2 was nonreactive in seawater;
the second term is inversely associated with the abundance of H+ ions in the ocean and decreases due to the
increase in H+ ions when there is an addition of CO2 to seawater; and the third term is associated with the
increase in the atmospheric CO2 relative to its preindustrial value. This approximation for ΔIsat(t)∕ΔIatm(t) is
next used to understand the carbon control of the TCRE in a range of climate models (for the validity of this
approximation; see the supporting information).

3. Model Assessment of the TCRE Exploiting our Theory and Approximation

Our theory is used to interpret the control of the TCRE in a hierarchy of models forced by atmospheric CO2

changes: a box model of the atmosphere-ocean system and an Earth system model, both integrated for 1,000
years, and a suite of Earth system models, integrated for 140 years.

3.1. Experimental Design
The box model consists of three homogeneous layers: a well-mixed atmosphere, an ocean mixed layer with
100-m thickness, and an ocean interior with 3,900-m thickness, all assumed to have the same horizontal area.
The model solves for the heat and carbon exchange between these layers, including physical and chemical
transfers, but ignoring biological transfers, and sediment and weathering interactions. The model is forced
from an equilibrium by carbon emitted into the atmosphere with a constant rate of 20 PgC/year for 100 years
and integrated for 1,000 years. Ocean ventilation is represented by the ocean interior taking up the heat and
carbon properties of the mixed layer on an e-folding timescale of 200 years (see supporting information for
the model closures). The radiative forcing, R(t), varies according to the increase in atmospheric CO2: R(t) =
aΔ ln CO2(t) (Myhre et al., 1998), where a = 5.35 W/m2 and the preindustrial CO2(to) is 280 ppm. This radiative
forcing, R(t), is assumed to drive a global-mean radiative response, 𝜆(t)ΔT(t), plus a planetary heat uptake,
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N(t), such that R(t) = 𝜆(t)ΔT(t) + N(t) (Gregory & Forster, 2008; Gregory et al., 2004), where 𝜆(t) is the climate
feedback parameter.

The response of an Earth system model is diagnosed over a 1,000-years integration using the global cou-
pled, carbon-climate model developed at Geophysical Fluid Dynamics Laboratory (GFDL-ESM2M; Dunne et al.,
2012, 2013). The idealized warming simulation experiment of Frölicher and Paynter (2015) is examined: forced
by an annual 1% rise of atmospheric CO2 until the global-mean surface warming reaches 2 ∘C at year 98 of
the simulation and then the carbon emissions are set to 0. The non-CO2 greenhouse gases are kept at their
preindustrial levels.

The climate responses during emissions are also assessed for a suite of other Earth system models forced by an
annual 1% rise of atmospheric CO2 for 140 years: second-generation Canadian Earth System Model (CanESM2;
Arora et al., 2011), Hadley Centre Global Environment Model version 2 (HadGEM2-ES; Jones et al., 2011),
Institut Pierre Simon Laplace Model (IPSL-CM5A-LR; Dufresne et al., 2013), Max-Planck-Institute Earth System
Model (MPI-ESM-LR; Giorgetta et al., 2013), and Norwegian Earth System Model (NorESM1-ME; Tjiputra et al.,
2013). The selection of models samples the spread of responses within the Coupled Model Intercomparison
Project Phase 5 models (Goodwin et al., 2018; Williams, Roussenov, Goodwin, et al., 2017).

3.2. Model Diagnostics
3.2.1. Carbon Inventory Diagnostics
The atmosphere carbon inventory is estimated from atmospheric CO2(t), Iatm(t) = MaCO2(t). The ocean
carbon inventory is held as dissolved inorganic carbon, Iocean(t) = 𝜌oV DIC(t), where DIC(t) is the ocean
volume-weighted dissolved inorganic carbon in mol⋅C⋅kg−1. The atmosphere and ocean buffered carbon
inventory is defined by IB = Iatm(to) + Isat(to)∕Brev(to) (Goodwin et al., 2007), where Brev is the Revelle buffer
factor (Williams & Follows, 2011). The carbon inventories are further multiplied by 12 g/mol to be expressed
in grams of carbon. The partitioning of dissolved inorganic carbon into bicarbonate, carbonate, and dissolved
CO2 is solved for using the algorithm of Follows et al. (2006).

The ocean saturated carbon inventory is estimated as Isat(t) = 𝜌oV DICsat(t), where the saturated dissolved
inorganic carbon, DICsat(t), is diagnosed using the ocean potential temperature, salinity, alkalinity, and the
atmospheric CO2(t) (Ito & Follows, 2005; Lauderdale et al., 2013). The saturated carbon inventory represents
the amount of carbon the ocean would have if the ocean reached a chemical equilibrium with the instanta-
neous atmospheric CO2. The surface ocean equilibrates on an annual timescale with the atmosphere, so the
surface dissolved CO2 only slightly lags atmospheric CO2. However, much of the ocean interior has not been in
contact with the atmosphere since the preindustrial era when the atmospheric CO2 was 280 ppm. At present,
atmospheric CO2 is 400 ppm, which corresponds to an increase in the ocean saturated carbon inventory rela-
tive to the preindustrial era,ΔIsat, of about 900 PgC. In comparison, the increase in the ocean carbon inventory
relative to the preindustrial era, ΔIocean, is about 100 PgC so that a further 800 PgC is needed for the ocean to
become saturated to the present atmospheric CO2.
3.2.2. Heat Budget Diagnostics
The planetary heat uptake, N(t), is dominated by the ocean heat uptake (Church et al., 2011). In the box model,
more than 95% of heat passes into the ocean; henceforth, we refer to the planetary and the ocean heat uptakes
as being effectively equivalent. In the box model, the climate feedback parameter,𝜆, is assumed to be constant
and equal to 1 W⋅m−2⋅K−1. In the Earth system models, the climate feedback parameter is more realistically
taken to be time dependent, 𝜆(t) (Armour et al., 2013; Gregory & Andrews, 2016; Senior & Mitchell, 2000);
𝜆(t) is diagnosed from the radiative forcing, R(t), the surface warming, ΔT(t), and the ocean heat uptake, N(t),
using the empirical heat budget, R(t) = 𝜆(t)ΔT(t) + N(t) (see the supporting information). The equilibrium
climate feedback parameter, 𝜆eq, is diagnosed at the end of the 1,000 years model run in the GFDL-ESM2M
model. For other Earth system models without long integrations, 𝜆eq, is taken from Forster et al. (2013; Table
1 for net feedbacks).

In our diagnostics of the Earth system models, a 5-year filter is applied to remove higher-frequency variability
in the ocean heat uptake and surface warming, and diagnostics are not shown for the first 10 years when the
cumulative emissions are still small and the climate response is controlled by internal variability.

3.3. Analysis and Model Responses
Our aim is to understand the climate response to carbon emissions in terms of the carbon and thermal contri-
butions to the TCRE. The box model and the GFDL-ESM2M Earth system model, integrated over 1,000 years,
have broadly similar carbon and thermal responses, despite their different model complexity (Figures 1 and 3).
The small differences between their model responses are associated with the more complex Earth system

KATAVOUTA ET AL. 6208
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Figure 1. Carbon response for the box model (left panels) and the GFDL-ESM2M Earth system model (right panels)
integrated for 1,000 years: (a, b) cumulative carbon emissions, Iem(t), along with the carbon inventory changes relative
to the preindustrial era for the atmosphere, ΔIatm(t), the ocean, ΔIocean(t), the terrestrial system, ΔIter(t), and the ocean
saturated carbon, ΔIsat(t); (c, d) the airborne fraction, ΔIatm(t)∕Iem(t), the oceanborne fraction for saturated carbon,
ΔIsat(t)∕Iem(t), and their sum, (ΔIatm(t) + ΔIsat(t))∕Iem(t); and (e, f ) the ratio of the changes in the saturated ocean and
atmospheric carbon inventories, ΔIsat(t)∕ΔIatm(t), along with the three terms that control this ratio from (9): 𝜌oVKo∕Ma,
CO2(t)]∕CO2(to) and K1K2∕[H+(zs, t)]2. The thin black dotted line notes the cessation of the emissions.
GFDL = Geophysical Fluid Dynamics Laboratory.

model having a time-varying climate feedback parameter, terrestrial carbon uptake, ocean circulation
changes, and its carbon cycle including weathering and sediment interactions, and the effects of ocean biol-
ogy. The suite of Earth system models reveal some intermodel variability, although their model responses are
broadly similar to each other (Figures 2 and 3). Hence, the essential controls of the carbon and thermal contri-
butions to the TCRE are similar in this range of climate models despite differences in model complexity. The
details of the climate response are now worked through.

KATAVOUTA ET AL. 6209
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Figure 2. Carbon response for the suite of Earth system models integrated for 140 years: (a) the airborne fraction,
ΔIatm(t)∕Iem(t); (b) the oceanborne fraction for saturated carbon, ΔIsat(t)∕Iem(t); and (c) the ratio of the changes in the
saturated ocean and atmospheric carbon inventories, ΔIsat(t)∕ΔIatm(t).

3.3.1. Carbon Contribution
The carbon contribution to the TCRE from (6), R(t)∕Iem(t), is defined in terms of changes in the airborne
fraction, ΔIatm(t)∕Iem(t), and the saturated oceanborne fraction, ΔIsat(t)∕Iem(t),

R(t)
Iem(t)

= a
IB

(
ΔIatm(t)

Iem(t)
+

ΔIsat(t)
Iem(t)

)
= a

IB

ΔIatm(t)
Iem(t)

(
1 +

ΔIsat(t)
ΔIatm(t)

)
. (10)

In all the models, during emissions, there is an increase in the atmospheric carbon inventory, ΔIatm(t), and
in the ocean carbon inventory, ΔIocean(t), as some of the emitted carbon is transferred into the ocean (red
and blue lines in Figures 1a and 1b). The rise in atmospheric CO2 leads to an increase in the saturated
ocean carbon inventory, ΔIsat(t) (cyan lines in Figures 1a and 1b). After emissions cease, there is a decrease
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Figure 3. Transient climate response to emissions (TCRE) for the box model (left panels) and the GFDL-ESM2M Earth system model (middle panels),
integrated for 1,000 years, and the suite of Earth system models (right panels), integrated for 140 years: (a–c) the nondimensional, thermal contribution,
(𝜆eq∕𝜆(t))(1 − N(t)∕R(t)), and carbon contribution, (ΔIatm(t)∕ΔIem(t))(1 + ΔIsat(t)∕ΔIatm(t)), to the TCRE; (d, e) the TCRE diagnosed from (1) (black lines), using our
theory from (12) (blue lines) and using the carbonate approximation from (13) (red lines) for the box and the GFDL-ESM2M models; and (f ) the TCRE diagnosed
from (1) (solid lines), for the suite of Earth system models. In addition, estimates of the TCRE by artificially excluding the effect of the carbonate chemistry in
(13) are denoted in (d)–(f ) by dashed lines. The thin black dotted line notes the cessation of the emissions. GFDL = Geophysical Fluid Dynamics Laboratory.

in the atmospheric inventory and the saturated ocean carbon inventory, accompanied by a further increase
in the ocean carbon inventory.

These carbon inventory changes are often understood in terms of the airborne, oceanborne, and landborne
fractions of carbon, where ΔIatm(t)∕Iem(t) + ΔIocean(t)∕Iem(t) + ΔIter(t)∕Iem(t) = 1 (Jones et al., 2013). The
airborne fraction, ΔIatm(t)∕Iem(t), generally decreases as carbon is transferred from the atmosphere into the
ocean until an equilibrium is approached in the box and the GFDL-ESM2M models (red lines in Figures 1c and
1d). The Earth system models experience large intermodel variability in terms of the magnitude of the air-
borne fraction (Figure 2a), with smaller airborne fraction associated with larger terrestrial carbon uptake. The
trend in the airborne fraction, ΔIatm(t)∕Iem(t), is though similar in all the Earth system models: There is a rapid
decrease in the airborne fraction over the first 50 years, followed by a slight increase, primarily associated with
a slight decrease in the landborne fraction.

In all the models, there is also a decrease in the saturated oceanborne fraction, defined by ΔIsat(t)∕Iem(t)
(cyan lines in Figures 1c and 1d and colored lines in Figure 2b). Hence, there is a decrease in the sum of the
airborne and saturated oceanborne fractions, (ΔIatm(t) +ΔIsat(t))∕Iem(t) (black lines/shading in Figures 1c, 1d,
and 3a–3c), which is proportional to the carbon contribution, R(t)∕Iem(t), from (10). The rate of decrease in
the saturated oceanborne fraction, ΔIsat(t)∕Iem(t), is different to that of the airborne fraction, ΔIatm(t)∕Iem(t),
due to the effect of the carbonate chemistry.

The ratio of the changes in the saturated ocean and atmospheric carbon inventories, ΔIsat(t)∕ΔIatm(t), is
controlled by the carbonate chemistry: ΔIsat(t)∕ΔIatm(t) is proportional to (K1K2∕[H+(zs, t)]2)(CO2(t)∕CO2(to))
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from (9). The magnitude and time variability of the ratio ΔIsat(t)∕ΔIatm(t) is similar in all the models (black
lines in Figures 1e and 1f and colored lines in Figure 2c). During emissions, the ratioΔIsat(t)∕ΔIatm(t) decreases
(black lines in Figures 1e and 1f) from the increase in H+ ions (red dashed lines in Figures 1e and 1f) despite
the accompanying increase in atmospheric CO2 (red dashed-doted lines in Figures 1e and 1f). After emissions
cease, the ratio ΔIsat(t)∕ΔIatm(t) increases due to the decrease in H+ ions, dominating over the effect of the
decrease in atmospheric CO2. In comparison, if the effect of carbonate chemistry is artificially excluded, the
ratio ΔIsat(t)∕ΔIatm(t) is constant and equal to 𝜌oVKo∕Ma (red dotted lines in Figures 1e and 1f).

3.3.2. Thermal Contribution
The thermal contribution to the TCRE, ΔT(t)∕R(t), is understood via the empirical heat budget (Gregory &
Forster, 2008; Gregory et al., 2004), where radiative forcing drives a radiative response and a heat uptake,
R(t) = 𝜆(t)ΔT(t) + N(t), which may be reexpressed as

ΔT(t)
R(t)

= 1
𝜆eq

[
𝜆eq

𝜆(t)

(
1 − N(t)

R(t)

)]
, (11)

where the term in the square brackets is the realized-warming fraction (Frölicher & Paynter, 2015; Frölicher
et al., 2014; Solomon et al., 2009; red lines/shading in Figures 3a–3c).

In the box model, the realized-warming fraction, (𝜆eq∕𝜆(t))(1 − N(t)∕R(t)), is driven by the fraction of the
radiative forcing that warms the surface versus the fraction used to increase ocean heat content, N(t)∕R(t). In
the Earth system models, the time variation of 𝜆(t) also affects the realized-warming fraction. Initially, in all the
models, most of the radiative forcing is used to drive ocean heat uptake and warming of the ocean interior.
As the ocean interior becomes warmer, gradually a smaller fraction of the radiative forcing warms the ocean
interior and the realized-warming fraction increases (red lines/shading in Figures 3a–3c). The large decline of
the realized-warming fraction in the GFDL-ESM2M model during the first 20 years is associated with an initial
large increase in 𝜆(t).
3.3.3. Transient Climate Response to Carbon Emissions
The TCRE may be defined in terms of a product of thermal and carbon contributions by combining (7)
and (11),

TCRE = a
𝜆eqIB

[
𝜆eq

𝜆(t)

(
1 − N(t)

R(t)

)][
ΔIatm(t)

Iem(t)

(
1 +

ΔIsat(t)
ΔIatm(t)

)]
, (12)

where the time-independent term, a∕(𝜆eqIB), is the long-term equilibrium climate response to emissions
(Williams et al., 2012), and the terms in the square brackets represent the nondimensional, time-dependent
thermal and carbon contributions to the TCRE.

Our theoretical relationship for the TCRE diagnosed from (12) agrees well with the actual TCRE diagnosed
from (1) for both the box and the GFDL-ESM2M models integrated for 1,000 years (compare the black and
blue lines in Figures 3d and 3e); this agreement also holds for the other Earth system models integrated for
140 years (see the supporting information).

The TCRE is viewed as a product of the thermal and the carbon contributions. The carbon contribution follows
the decrease in (ΔIatm(t)∕Iem(t))(1 + ΔIsat(t)∕ΔIatm(t)), while the thermal contribution follows the increase
in the realized-warming fraction, (𝜆eq∕𝜆(t))(1−N(t)∕R(t)) (Figures 3a–3c). Thus, the thermal contribution acts
to increase the TCRE, while the carbon contribution acts to decrease the TCRE. The TCRE is constant when
changes in these thermal and carbon contributions compensate for each other. However, in all the models,
during emissions, there is a general decrease in the TCRE after about the first 30 years, with the rate of the
decrease being model dependent (Figures 3d–3f ). After emissions cease, there is an increase in the TCRE in
the box model and the GFDL-ESM2M (Figures 3d and 3e).

To gain further insight, now combine (9) and (12) to obtain a TCRE expression based on our carbonate
approximation,

TCRE ≈ a
𝜆eqIB

[
𝜆eq

𝜆(t)

(
1 − N(t)

R(t)

)][
ΔIatm(t)

Iem(t)

(
1 +

𝜌oVKo

Ma

K1K2

[H+(zs, t)]2

CO2(t)
CO2(to)

)]
. (13)

This carbonate approximation for the TCRE underestimates the TCRE in the box model and overestimates the
TCRE in the Earth system models but captures its variability in time in all the models (compare the black and
red lines in Figures 3d and 3e, for the suite of Earth system models see the supporting information).
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If the effect of carbonate chemistry is artificially excluded in (13), the contribution to the TCRE from
(a∕(𝜆(t)IB))(1−N(t)∕R(t))(ΔIatm(t)∕Iem(t))(1+𝜌oVKo∕Ma) is nearly constant (dashed lines in Figures 3d–3f ); in
the Earth system models, there is though a slight increase in the TCRE without the explicit effect of the carbon-
ate chemistry after about the first 20 years from the temporal evolution of 𝜆(t), changes in ocean circulation,
and changes in terrestrial carbon uptake. If the effect of carbonate chemistry is now included in (13), the term
involving carbonate chemistry, (K1K2∕[H+(zs, t)]2)(CO2(t)∕CO2(to)), increases the magnitude of the TCRE, and
modulates the carbon contribution to the TCRE in a consistent manner in all the models. Hence, the carbon-
ate chemistry leads to a long-term decrease in the TCRE during emissions and an increase in the TCRE after
emissions cease (Figures 3d–3f ).

4. Conclusions

The TCRE is a fundamental climate metric, measuring the surface warming increase for a cumulative carbon
emission (Gillet et al., 2013; Matthews et al., 2009). While the TCRE may simply be diagnosed from output of
climate model projections, theory may be exploited to understand how the TCRE is controlled in terms of
physical and biogeochemical mechanisms (Goodwin et al., 2015; MacDougall & Friedlingstein, 2015; Williams
et al., 2016; Williams, Roussenov, Frölicher, & Goodwin, 2017; Williams, Roussenov, Goodwin, et al., 2017). Our
new expression for the TCRE involves a product of two time-varying thermal and carbon contributions: The
thermal contribution involves ocean heat uptake and the climate feedback parameter, and the carbon con-
tribution involves the airborne fraction (depending on ocean and terrestrial carbon uptake) and the ratio of
ocean saturated and atmospheric carbon inventories (depending on ocean carbonate chemistry).

Our viewpoint of how the TCRE is controlled is assessed using a hierarchy of climate models: a box model
of the atmosphere-ocean and an Earth system model, both diagnosed for integrations for 1,000 years, and
a suite of Earth system models diagnosed over 140 years. For all models, there is the same ocean carbonate
chemistry response: During emissions, an increase in acidity at the ocean surface leads to a decrease in the
ratio of the ocean saturated and atmospheric carbon inventories, which decreases the carbon contribution
to the TCRE; and after emissions cease, a decrease in acidity at the ocean surface leads to an increase in this
ratio and an increase in the carbon contribution to the TCRE.

The TCRE need not remain constant in time (Krasting et al., 2014) due to changes in the time-dependent
thermal and carbon contributions. While the ocean ventilated heat and carbon uptake may act in a nearly
compensating manner (Solomon et al., 2009), the carbonate chemistry leads to a systematic decrease in the
TCRE with increasing acidity. If the effect of the carbonate chemistry is artificially excluded in the climate
model, the TCRE is smaller in magnitude and is nearly constant in time due to the compensating effects of
ocean heat and carbon uptake from ventilation.

In summary, ocean carbonate chemistry is important in controlling the magnitude of the TCRE and contribut-
ing to its temporal evolution. Reassuringly, in a range of climate models with differing complexity, carbonate
chemistry provides a similar control of the carbon contribution to the TCRE. Intermodel differences in the
TCRE are more likely due to other factors (Williams, Roussenov, Goodwin, et al., 2017), such as the thermal
contribution to the TCRE, involving the climate feedback parameter and ocean ventilation of heat, or the sep-
arate carbon contribution to the TCRE from the airborne fraction, altered by ocean ventilation of carbon and
terrestrial cycling of carbon.
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