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The potential to capture additional air pollutants by introducing more vegetation or changing
existing short vegetation to woodland on first sight provides an attractive route for lowering
urban pollution. Here, an atmospheric chemistry and transport model was run with a range of
landcover scenarios to quantify pollutant removal by the existing total UK vegetation as well as
the UK urban vegetation and to quantify the effect of large-scale urban tree planting on urban
air pollution. UK vegetation as a whole reduces area (population)-weighted concentrations
significantly, by 10% (9%) for PM2.5, 30% (22%) for SO2, 24% (19%) for NH3 and 15% (13%)
for O3, compared with a desert scenario. By contrast, urban vegetation reduces average urban
PM2.5 by only approximately 1%. Even large-scale conversion of half of existing open urban
greenspace to forest would lower urban PM2.5 by only another 1%, suggesting that the effect
on air quality needs to be considered in the context of the wider benefits of urban tree planting,
e.g. on physical and mental health. The net benefits of UK vegetation for NO2 are small, and
urban tree planting is even forecast to increase urban NO2 and NOx concentrations, due to the
chemical interaction with changes in BVOC emissions and O3, but the details depend on tree
species selection. By extrapolation, green infrastructure projects focusing on non-greenspace
(roadside trees, green walls, roof-top gardens) would have to be implemented at very large
scales to match this effect. Downscaling of the results to micro-interventions solely aimed at
pollutant removal suggests that their impact is too limited for their cost–benefit analysis to
compare favourably with emission abatement measures. Urban vegetation planting is less
effective for lowering pollution than measures to reduce emissions at source. The results
highlight interactions that cannot be captured if benefits are quantified via deposition models
using prescribed concentrations, and emission damage costs.

This article is part of a discussion meeting issue ‘Air quality, past present and future’.

1. Introduction

(a) Motivation
Air pollution is considered a key environmental threat to human health. The World Health
Organisation (WHO) attributes some 7 million premature deaths to ambient and indoor air
pollution annually, with many of these occurring in the urban centres of the developing world
[1,2]. Few countries achieve WHO air quality guideline values, recommending, e.g. PM2.5
concentrations <10 µg m−3 and NO2 <40 µg m−3 at the annual mean, and instead, interim air
quality policy targets have been adopted that provide a realistic medium-term ambition and
promote progress towards cleaner air. For example, as emissions have decreased across Europe,
successive editions of the European Air Quality Directive [3] and national implementations have
set increasingly stringent Air Quality (AQ) objectives that have continued to drive improvements
in air quality and motivated the implementation of increasingly stricter emission standards to
achieve these objectives. However, despite air quality improving in many developed countries
in the past decades [4], both developing and developed countries still struggle to adhere to the
AQ objectives whether set by themselves or in international negotiations, based on the WHO
recommendations.

Over the past years, there have been setbacks in the attempts to reduce emissions. A prominent
example is the failure of many diesel vehicles complying with EURO5 and early EURO6 European
emission standards to achieve the required reduction in NOx emissions under real-world driving
conditions [5]. In other cases, especially in the developing world, gains of increased emission
control have been offset by increased activity, e.g. car ownership and annual distance travelled
(e.g. [6]). As legal AQ targets are being missed through emission control, national, regional and
local governments are forced to look for alternative interventions for reducing air concentrations
and human exposure. This includes the introduction of low emission zones and increasingly also
the targeted use of vegetation to lower concentration levels. In the UK, several local authorities
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have embarked on efforts to increase urban forest cover in recent years, with air pollution
reduction being one of the motivators. At the same time, there is an increasing interest in valuing
the air pollution removal by vegetation [7,8] as part of the overall ecosystem service it provides
and to include this valuation in national accounts.

In this paper, we investigate the effectiveness of existing vegetation and potential green
infrastructure interventions in relation to their spatial scale and critically assess the cost/benefit
of micro-interventions by considering the basic physical constraints on pollutant uptake. The
paper quantifies the effect of UK-wide vegetation on lowering air pollution levels and assesses
the current role of UK urban vegetation as a whole. This work was done as part of the UK national
accounts compiled by the UK Office for National Statistics [9]. The paper continues, by looking
at the potential effects of large-scale city-wide interventions, converting significant fractions (25
and 50%) of the available urban open greenspace into urban woodland, again for the UK. It then
scales down the results to discuss the potential of smaller green infrastructure interventions and
the effect they could possibly have on air pollution levels, with focus on the urban environment.

(b) Approaches for quantifying pollutant removal by vegetation at large spatial scales
(i) The deposition-based approach to quantifying forest ecosystem services

Several approaches have been used in the past to quantify pollutant removal by extensive
vegetation areas and to value this ecosystem service. Most of these value the benefit of
pollutant removal via the equivalent emission damage costs, i.e. the same damage cost that
governments ascribe to emissions of pollutants can be used to valued air pollution removal (as
a negative emission). These emission damage costs have been tabulated from offline calculations
using atmospheric chemistry and transport models (ACTMs) to assess the consequences of the
emissions in terms of population exposure and outcomes [10]. They often vary by degree of
urbanization reflecting the proximity and size of exposed population.

The pollutant removal is then quantified with models such as the Urban Forest Effects Model
(UFORE) [11] and its descendant i-Tree Eco [12], which is based on modelling the uptake of
individual trees. While computationally simple, there are several disadvantages to this method:
(i) the approach is indirect in its evaluation as it relies on modelling of emission–exposure
relationships to quantify the underlying emission damage costs in the first place, (ii) it is not
mass conserved in the sense that it is driven with prescribed concentrations with no feedback
of the deposition on concentrations, and (iii) it, therefore, does not take other interactions and
processes into account that respond to concentration changes such as atmospheric chemistry and
wet deposition. By contrast, one advantage is that the deposition-based approach allows for a
detailed description of the vegetation, in the case of i-Tree Eco the trees or tree canopy.

(ii) Atmospheric chemistry and transport modelling

Full application of a three-dimensional ACTM overcomes the shortcomings described above, but
in turn tends to rely on a simplified representation of the vegetation during the analysis and
its spatial resolution is limited to the model grid size, in this case approximately 5 × 6 km2. An
ACTM tracks the pollutant emissions, their chemical transformations and deposition in a three-
dimensional meteorological (flow) field. Rather than prescribing the pollutant concentrations,
they are predicted by the model as influenced by the dry deposition to the underlying landcover
in the model. With this modelling framework, the effect of vegetation can be quantified by
comparing two model runs with modified landcover description. This approach not only
quantifies the additional dry deposition induced by the vegetation, but also directly the influence
on the concentration. From this concentration field, human exposure and health impacts can be
derived more directly than via the emission damage costs. In addition, this approach accounts
for the full range of chemical and spatial interaction. For example, the enhanced removal of PM
precursor gases (NH3, SO2, NO2, VOCs) and also oxidants (e.g. O3) by vegetation reduces their
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contribution to secondary PM formation and thus reduces PM2.5 through a route that is additional
to enhanced PM2.5 dry deposition.

A crucial additional step for this approach is the decision on the baseline scenario: removal-
based approaches such as iTrees Eco normally derive the benefit from the quantification of the dry
deposition to the vegetation, without consideration that some, although reduced, dry deposition
would also occur to a non-vegetated surface. In the ACTM approach, the non-vegetated landcover
needs to be prescribed explicitly and the choice affects the results.

This paper uses this ACTM-based approach to evaluate the effect of vegetation and in doing
so also quantifies explicitly some of the interactions in the model that would be missed with the
deposition-based approach.

2. Methods

(a) Modelling the impact of vegetation on air pollution at large spatial scales
In this study, an implementation of the European EMEP Eulerian ACTM [13] was used with a
nested higher resolution UK domain at a scale of approximately 5 × 6 km2 (EMEP4UK) [14–17].
The current baseline reference (UKBASE) UK landcover definition was derived by remapping the
UKCEH Landcover Map 2007 (LCM2007) [18] to the seven existing landcover classes of the EMEP
model (deciduous forest, coniferous forest, crops, semi-natural land, water, desert and urban).
For the urban scenario runs, LCM2015 was used and three new landcover classes (urban forest,
urban open greenspace, urban water) were derived from the Ordnance Survey MasterMap for
areas lying within the urban morphology layer of the UK as described in detail by Jones et al.
[8]. Briefly, first land was classified as ‘urban’ based on the existing urban morphology layer
from the UK Office for National Statistics, supplemented by a variable buffer. In a second step,
this urban layer was intersected with the OSMasterMap ‘natural surface’ category, and of the
resulting urban vegetation map all OSMasterMap objects with the term ‘trees’ or ‘woodland’ in
the main descriptor were assigned to the ‘urban forest’ class and the remainder to the ‘urban open
greenspace’ class, which thus contains e.g. open parkland, gardens and playing fields.

The EMEP4UK model uses a tiled approach, in which the landcover fractions of the seven
types are specified for each grid cell. The meteorological input was generated with the community
weather research and forecasting (WRF) model v. 3.7.1 (www.wrf-model.org) which included
data assimilation (Newtonian nudging) of the numerical weather prediction (NWP) model
to the meteorological reanalysis from the US National Center for Environmental Protection
(NCEP)/National Center for Atmospheric Research (NCAR) Global Forecast System (GFS) at
1° resolution [19] at 6-hourly intervals. The performance of this model combination (WRF-
EMEP4UK) for the UK has been thoroughly established elsewhere [14–17].

Alternative landcover maps were created: in the first, no-vegetation (NoVEG) scenario, all
vegetation landcover (i.e. deciduous, coniferous, crops and semi-natural; urban and non-urban)
within the UK was replaced by desert, representing bare soil. In addition, a no-urban-vegetation
(NoUrbanVEG) landcover map was created by replacing only urban vegetation (urban forest and
open urban greenspace) with desert, and two tree planting scenarios were created by converting
25 and 50% of the open urban greenspace category into urban forest, referred to as 25OGSC and
50OGSC (open green space conversion), respectively. The total land area of the urban landcover
classes in the various scenarios is summarized in table 1. Together, the urban landcover types
represent 7.1% of the UK land area.

The effect of the choice of the baseline scenario/non-vegetated landcover has implications
for the results. Theoretical choices could include sealed land (concrete/asphalt) or bare soil.
In the EMEP modelling system, only two terrestrial non-vegetated terrestrial landcover types
exist: urban (with the aerodynamic roughness of the built-up environment) and desert (with
the properties of sand). Under the assumption that desert comes closest to bare soil in terms
of aerodynamic properties and its affinity for pollutant uptake, but that its grain size distribution
results in large resuspension, a decision was made to use desert as a reference, but to completely

www.wrf-model.org
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Table 1. Summary of the landcover statistics of the various urban planting scenarios (water bodies not included), stating the
land area for each landcover class with their fractional contribution to total urban landcover in parentheses.

status quo
‘UrbanBASE’
(km2)

no urban
vegetation
‘NoUrbanVEG’
(km2)

25% planting
‘25OGSC’ (km2)

50% planting
‘50OGSC’ (km2)

urban woodland 976 (5.5%) 0 2007 (11.4%) 3038 (17.2%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

open urban greenspace 4124 (23.4%) 0 3093 (17.5%) 2062 (11.7%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

urban bare soil 0 (0%) 510.0 (30.0%) 0 (0%) 0 (0%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

urban sealed 12 362 (70.0%) 12 362 (70.0%) 12 362 (70.0%) 12 362 (70.0%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Summary of the scenario runs performed for this study.

scenario
WRF model
version

EMEP model
version

landcover
scenario

soil NO
emission

UK current vegetation
(UKBASE)

3.7.1 4.10 UKCEH landcover-dependent

LCM2007
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UK no vegetation (NoVEG) 3.7.1 4.10 NoVEG landcover-dependent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

urban current vegetation
(UrbanBASE)

3.7.1 4.17 UKCEH prescribed

LCM2015
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no urban vegetation
(NoUrbanVEG)

3.7.1 4.17 NoUrbanVEG prescribed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

urban 25% open
greenspace conversion
(25OGSC)

3.7.1 4.17 25OGSC prescribed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

urban 50% open
greenspace conversion
(50OGSC)

3.7.1 4.17 50OGSC prescribed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

discount the contribution of desert dust to PM2.5 in all runs and/or to report it separately. It
should be borne in mind, however, that some of the effect of increased resuspension is real.

The model set-up and landcover scenario use is summarized in table 2. The UK vegetation
simulations were carried out with EMEP4UK implementation of EMEP rv4.10, while the urban
vegetation simulations were based on the more recent version EMEP rv4.17. Differences between
the two versions are small, but one additional significant difference needs to be considered: in
the UK vegetation simulations, soil NO emissions were calculated as a function of landcover
and changed with vegetation cover, while in the urban vegetation simulations, NO emissions
were prescribed and fixed between scenarios. Two different current-vegetation reference runs
(UKBASE and UrbanBASE) were used to match the model set-ups of each set of simulations. All
runs were performed with the same driving meteorology for the year in question, based on status
quo landcover, i.e. WRF was not rerun for the various landcover scenarios, the rationale being that
(i) the impact of landcover on the meteorology which drives advection (bottom layer is at 45 m)
is a second-order effect and (ii) the modelled meteorology would then become incompatible with
the observation-derived dataset against which it is constrained. In the tiled approach deployed
for deposition in the EMEP model, the windspeed at a reference height is then extrapolated
individually to the different landcover types, depending on landcover-specific roughness height
and heat flux, weighted by the landcover scenarios.
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The effect of current UK total vegetation cover on annual total pollutant deposition, annual
average concentration fields and annual average human exposure was then derived by comparing
an annual model run using the UKBASE or UrbanBASE landcover to a run based on the modified
landcover scenarios. Effects were assessed for total PM2.5, SO2, NO2, O3 and NH3. UK national
runs were performed for a range of meteorological years (2007, 2011 and 2015). For these baseline,
gridded emissions of the UK National Atmospheric Emissions Inventory (NAEI) for 2014 were
used for the 2015 run, and emissions for 2007 and 2011 were created by rescaling the 2014 gridded
emissions according to the NAEI totals. All these UK runs were based on 2007 landcover. The
urban runs were based on 2015 meteorology and the NAEI gridded emissions for 2015. Here,
landcover was based on 2015.

3. Results

(a) Quantification of pollutant removal at the UK national scale
The total changes in PM concentrations are summarized for 2015 in table 3, with other years (2007
and 2011) shown in electronic supplementary material, table S1. Concentration and changes in
concentrations were averaged both over the entire UK and over the predominantly urban grid
cells (see the next section for details). In these summaries, the effect on the PM contribution from
wind-blown dust has been listed individually. As mentioned above, due to the choice of desert as
the reference surface, vegetation not only has the effect of capturing PM and its precursors, but
also suppresses desert sand resuspension. The two effects are similar in magnitude for PM2.5 and
the dust suppression is the larger effect for PM10, bearing in mind that resuspension shows large
inter-annual variability, presumably linked to the statistics of extreme wind speeds and rainfall.
Although vegetation does suppress resuspension from bare soil, desert sand is likely a poor proxy
for UK soils when it comes to resuspension and the effect is likely overestimated by the model. For
the non-dust PM components, vegetation lowers concentrations by about 10% for PM2.5 and 6%
for PM10 as a UK spatial average, with the values being slightly smaller if averaged by population
density. The benefit is predicted to have decreased with time both in absolute and relative terms
(electronic supplementary material, table S1). Possible reasons are changes in the contribution of
UK versus non-UK or primary versus secondary sources as emissions evolve over time. Biogenic
secondary organic aerosol (BSOA) is the only component of the PM that is increased through the
presence of vegetation. As a UK spatial average, about 55% of the BSOA is due to BVOC emissions
from UK vegetation, the remainder presumably originating from BVOC sources outside the UK
as the ACTM does not ascribe any BVOC emission to desert soil. As explained in §2a, values of
PM2.5 and PM10 provided throughout the remainder of this paper do not include the wind-blown
dust component.

The estimates of the change in dry deposition and surface concentration caused by the UK’s
total vegetation are shown in figure 1 for 2015 for PM2.5 (i.e. now without wind-blown dust) as
an example. Urban areas show up in the deposition field of the no-vegetation run (figure 1a) not
only because here PM2.5 concentrations are locally elevated, but also because urban buildings are
aerodynamically rough and capture PM2.5 more effectively than smooth desert soils. The relative
change in dry deposition between the two scenarios is particularly pronounced in the areas with
woodland vegetation and elevated wind speeds because the dry deposition velocity (Vd) of PM
scales with wind speed in addition to being enhanced to forest.

The effect of vegetation on the concentrations of the gaseous pollutants is summarized in
table 4 for 2015 with additional years in electronic supplementary material, table S2. Spatially
averaged relative reductions are largest for SO2 (30% overall), followed by NH3 (25%) and O3
(13%), with somewhat smaller reductions if weighted by population and for the urban grid cells.
Surprisingly, the UK average effect is very small for NO2; the spatial pattern of figure 2 reveals
that vegetation suppresses NO2 in source areas which is approximately balanced by increases
in NO2 in rural areas, especially in areas with large forest cover. This is partly due to the fact
that forest soils are associated with larger NO emissions than desert sand, but other interactions
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Table 3. Annual average concentrations of PM under current and no-vegetation landcover scenarios and effect of change in
concentration relative to national no vegetation scenario for 2015 meteorology (and 2014 emissions). Concentrations are in
µg m−3 and averages are shown as UK area average, UK population-weighted (PW) average and as an area average over urban
areas only. The urban area average is also derived for the national no-vegetation runs, but calculated over all grid cells for which
the urban landcover types jointly account for at least 50%.wb dust: windblown dust from desert soil. BSOA: biogenic secondary
organic aerosol.

pollutant scenario UK average
UK PW
average

urban
average

non-dust PM10 current vegetation (UKBASE) 9.90 11.77 11.84
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 10.55 12.53 12.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration −0.65 −0.76 −0.77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −6.15% −6.09% −6.07%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

non-dust PM2.5 current vegetation (UKBASE) 4.85 6.69 6.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 5.40 7.35 7.46
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration −0.55 −0.66 −0.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −10.2% −9.03% −8.94%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wb dust PM10 current vegetation (UKBASE) 0.11 0.097 0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 2.00 1.73 1.87
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration −1.89 −1.64 −1.77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −94.6% −94.4% −94.4%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wb dust PM2.5 current vegetation (UKBASE) 0.026 0.023 0.025
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 0.46 0.40 0.43
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration −0.44 −0.38 −0.40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −94.3% −94.1% −94.2%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PM2.5 BSOA current vegetation (UKBASE) 0.16 0.18 0.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 0.10 0.10 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration +0.056 +0.076 +0.056
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) +54.6% +73.2% +44.8%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

also contribute as also found in the urban landcover scenarios described below, in which NO
emissions do not respond to landcover change and the reason is explored in §3c(iii).

(b) Quantification of total pollutant removal by UK urban vegetation and urban tree
planting

Table 5 summarizes the effect of all current (2015) urban vegetation on annual average UK
concentrations and the additional effect large-scale conversion from open urban greenspace to
urban woodland could have. Also shown are the reductions averaged over all grid cells that
are dominated by urban landcover, where most of the effect is expected and at which such
intervention would be targeted. These ‘urban’ concentrations were very similar to UK population-
weighted and urban population-weighted concentration changes which were explored as a
further metric (electronic supplementary material, table S3). For PM2.5, the current urban
vegetation is calculated to be responsible for reductions in PM2.5 of −0.95%, compared with
−0.84 and −0.93%, depending on the averaging method. Overall, the model results indicate that
current urban vegetation (5100 km2) reduces average urban PM2.5 concentration by about 1%,
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Figure 1. Model simulations for PM2.5 for 2015, showing (a) the annual total PM2.5 dry deposition to a vegetation-less UK
(NoVEG) (mg m−2), together with the (b) absolute (mg m−2) and (c) relative (%) changes in deposition caused by the
vegetation (UKBASE-NoVEG), with positive (red) values indicating an increase in deposition to vegetation compared with no
vegetation. (d) The annual averagePM2.5 surface concentration for a vegetation-less UK (µg m−3), togetherwith its (e) absolute
and (f ) relative change due to vegetation (UKBASE-NoVEG), with negative (blue) values indicating a decrease in concentration
above vegetation compared with no vegetation. The dust component is not included in these figures (see text).

with a similar additional reduction (0.8%) expected from large-scale conversion of open urban
greenspaces to additional woodland. The effect of existing vegetation is somewhat larger for
the PM precursors SO2 and NH3, but the conversion to woodland has a comparably smaller
effect than on PM because the deposition rate of the gases is less sensitive to the vegetation type.
Interestingly, for both O3 and NO2, the current urban vegetation cover decreases concentrations
as may be expected due to the additional dry deposition, but the additional conversion of open
urban greenspace to woodland is forecast to increase concentrations in urban areas, although
slight reductions are seen away from sources (figure 3). This would imply that tree planting,
aimed at reducing NO2 emissions, may in fact increase urban NO2 concentrations through
processes that are explored in §3c(iii).

(c) Assessment of interactions
(i) Wet deposition

The modelling of the pollutant capture by vegetation through the ACTM approach allows some
interesting interactions to be identified and quantified that may not be entirely obvious initially.
The reduction in pollutant concentration due to the enhanced dry deposition to vegetation results
in a reduction in wet deposition, which to some extent counteracts the benefit (table 6). The
relative effect is largest for compounds that are primarily deposited via wet deposition such as
PM. In the national vegetation scenarios, for example, an increase in PM2.5 dry deposition of
19.9 kt yr−1 is accompanied by a decrease in wet deposition by 10.4 kt yr−1. Thus, the net removal
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Figure 2. Model simulations for NO2 for 2015, showing (a) the annual average NO2 surface concentration for a vegetation-less
UK (µg m−3), together with its (b) absolute (µg m−3) and (c) relative (%) change due to UK vegetation (UKBASE-NoVEG), with
red (blue) values indicating an increase (decrease) in concentration above vegetation compared with no vegetation.

Table 4. Average annual concentrations of a range of gaseous pollutants under current and no-vegetation landcover scenarios
for 2015, and effect of change in concentration relative to no-vegetation scenario. Absolute concentrations are inµg m−3, and
averages are shown as UK area average, UK population-weighted (PW) average and as an area average over urban areas only.

pollutant scenario
UK area
average

UK PW
average

urban area
average

SO2 current vegetation (UKBASE) 0.85 1.79 2.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 1.21 2.28 2.49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration −0.36 −0.49 −0.49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −29.8% −21.6% −19.8%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NH3 current vegetation (UKBASE) 1.33 2.06 2.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 1.74 2.55 2.48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration −0.41 −0.49 −0.46
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −23.6% −19.2% −18.5%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO2 current vegetation (UKBASE) 5.80 15.7 17.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 5.80 16.0 17.41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration 0.00 −0.30 −0.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) 0.00% −1.89% −2.00%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O3 current vegetation (UKBASE) 70.58 64.68 64.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no vegetation (NoVEG) 82.83 74.69 73.33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in concentration −12.24 −10.01 −9.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −14.8% −13.4% −12.7%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is actually only half of what would be estimated by considering dry deposition in isolation, e.g.
through the i-Tree approach. For PM10, the net removal is only two-thirds of what would be
expected. The interaction with wet deposition is to some extent accounted for in the calculation
of the Emission Damage Costs that underpin the deposition-based evaluation. This is derived
by modelling the increase in concentration and exposure for changes in concentrations and wet
deposition is presumably considered in this evaluation. However, precipitation varies between
years both in magnitude and spatial distribution, and the importance of the interaction, therefore,
highlights an important uncertainty in the deposition-based approach.
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Table 5. Summary of the effect of current vegetation on concentrations averaged over entire UK and grid cells dominated by
urban landcover (calculated as current vegetation versus no urban vegetation) for 2015, together with the additional effect of 25
or 50%conversion of urban greenspace to urbanwoodland (calculated as additional urban tree cover versus current vegetation).
Absolute concentrations are inµg m−3.

reduction by current
urban vegetation
(UrbanBASE–
NoUrbanVEG)

additional reduction by
25% urban tree planting
(25OGSC–UrbanBASE)

additional reduction by
50% urban tree planting
(50OGSC–UrbanBASE)

UK urban UK urban UK urban

PM10 current vegetation 13.43 16.42 13.43 16.42 13.43 16.42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in
concentration

−0.036 −0.11 −0.013 −0.049 −0.025 −0.10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −0.27% −0.69% −0.093% −0.30% −0.18% −0.59%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PM2.5 current vegetation 6.05 8.78 6.05 8.78 6.05 8.78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in
concentration

−0.025 −0.084 −0.0098 −0.036 −0.019 −0.070

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −0.42% −0.95% −0.16% −0.41% −0.32% −0.80%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSOA current vegetation 0.19 0.20 0.19 0.20 0.19 0.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in
concentration

+0.00077 +0.0018 +0.00025 +0.00045 +0.00050 +0.00091

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) +0.41% +0.90% +0.13% +0.23% +0.26% +0.45%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SO2 current vegetation 0.74 1.61 0.74 1.61 0.74 1.61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in
concentration

−0.013 −0.098 −0.0016 −0.0083 −0.0032 −0.016

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −1.70% −5.77% −0.22% −0.52% −0.44% −1.02%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NH3 current vegetation 1.46 1.89 1.46 1.89 1.46 1.89
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in
concentration

−0.012 −0.080 −0.00069 −0.0023 −0.0014 −0.0044

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −0.80% −4.07% −0.047% −0.12% −0.092% −0.23%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO2 current vegetation 4.39 13.87 4.39 13.87 4.39 13.87
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in
concentration

−0.026 −0.20 +0.0011 +0.021 +0.0022 +0.043

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −0.61% −1.41% +0.025% +0.15% +0.051% +0.31%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O3 current vegetation 71.52 64.30 71.52 64.30 71.52 64.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

change in
concentration

−0.16 −0.94 +0.025 +0.12 +0.051 +0.24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

difference (%) −0.23% −1.44% +0.035% +0.18% +0.071% +0.37%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Emissions

An increase in vegetation cover is associated with an increase in emissions of biogenic volatile
organic compounds (BVOC) which themselves are a precursor for ozone and PM2.5 formation.
This is a recognized negative side effect of tree planting [20–22]. However, vegetated soils also
tend to emit more NO than bare soil and this contributes to the net effect of vegetation on NO2
concentrations being negligible. In a world devoid of vegetation, soil resuspension would be
increased. This effect adds to the benefits of vegetation for PM2.5 and PM10.
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Figure 3. Maps for NO2 for the urban vegetation runs for 2015, showing the absolute (a) and relative (d) change in NO2 caused
by current urban vegetation (UrbanBASE–NoUrbanVEG), as well as the associated results for the 25% (b,e) and 50% (c,f ) urban
woodland conversions (e.g. 25OGSC–UrbanBASE). The blue values in the current urban vegetation run (a,d) show the decrease
in the concentrations caused by the present vegetation (relative to no vegetation). The red (blue) values in the tree planting
scenario runs (b, c, e and f ) indicate an increase (decrease) in the concentration due to the additional urban vegetation (relative
to current urban vegetation).

Table 6. Summary of the dry and wet deposition under the national UKBASE and NoVEG (no vegetation) scenarios, together
with the net change in deposition and the fractional importance of the wet deposition correction, for 2015. All absolute
deposition amounts are in kt yr−1.

dry deposition wet deposition

NoVEG UKBASE � dry NoVEG UKBASE �wet � net dep

PM10 236.4 275.6 +39.2 1317.3 1304.3 −13.0 +26.1 (−33%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PM2.5 40.7 60.6 +19.9 241.4 231.0 −10.4 +9.5 (−52%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SO2 10.7 29.3 +18.6 12.0 11.3 −0.7 +17.9 (−4%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NH3 19.9 55.2 +35.3 29.4 25.9 −3.5 +31.8 (−10%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Chemistry

Chemical interactions occur at various places in the modelled atmospheric system. Changes in
the chemical pollution climate affect the dry deposition rates of pollutants. This tends to be only
crudely represented by current deposition modelling approaches. The dry deposition of SO2 and
NH3 in the EMEP model depends on the annual average NH3/SO2 ratio [23,24], i.e. in highly
alkaline environments, SO2 deposition is enhanced and NH3 deposition is limited and vice versa
[13]. Thus, chemical interactions not only occur in the atmosphere, but also on leaf surfaces.
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Another route of chemical interactions is through air chemistry. For example, because
vegetation enhances the terrestrial sink for all pollutants (except BVOCs and soil NO), many
secondary pollutants tend to be decreased not only through their increased removal, but also due
to the increased removal of their chemical precursors, exacerbating the vegetation’s overall effect.

The response of NO2 to vegetation changes seen in the simulations is less intuitive and requires
further consideration: UK vegetation decreases NO2 in urban areas, but increases it in more
remote regions. For the urban runs, current urban vegetation again decreases NO2 in urban areas,
but additional conversion to urban forest is simulated to increase NO2. As mentioned before, at
the UK scale, conversion to forest in the EMEP4UK model was configured to increase the soil NO
emission in the model, and, although this increased total NOx emission by only a small amount,
this is a possible reason why NO2 increases in the rural environment by vegetation. However, in
the urban runs, this increase in soil NO emission was deactivated and still additional tree planting
increased NO2. In addition to sources and deposition sinks, NO2 concentrations depend on the
photo-stationary equilibrium between NO, O3 and NO2.

For the urban scenarios, current total urban vegetation has the effect of reducing O3, while the
conversion of open urban greenspace to urban woodland is simulated to increase O3 everywhere
in the UK (electronic supplementary material, figure S1; table 5). The reason is found in the
relative magnitudes of the increased terrestrial sink compared with the increase in O3 production
due to larger BVOC emissions from trees. Total urban vegetation includes trees that emit BVOCs,
but the increase in the dry deposition sink has the larger impact on O3 concentrations. Additional
conversion of open urban greenspace to urban forest increases O3 production (through increased
BVOC emissions) more than it reduces O3 through more efficient dry deposition. The increased
O3 concentration in the tree planting scenarios results in increased titration of NO as can be seen
in reduced NO concentrations across the country (electronic supplementary material, figure S2)
and this is partly responsible for the increase in the NO2 concentration. However, the maps of
total NOx (=NO + NO2) (electronic supplementary material, figure S3) show almost exactly the
same pattern as NO2, suggesting that the re-partitioning between NO and NO2 via O3 interaction
cannot be the sole or even main reason for the increase in NO2. An additional two model scenario
runs were performed to shed light on the underlying processes: these were a current vegetation
base run and a 50% open urban greenspace conversion run in both of which BVOC emissions
were switched off. The results show that without the change in BVOC emissions associated with
tree planting, the increase in urban tree cover causes a very small (less than 0.3%) reduction in
NOx concentrations in urban areas, which is due to the only small difference in deposition rates
between grassland and forest in the model (electronic supplementary material, table S4). At the
same time, the NO/NO2 partitioning changes slightly in response to changes in O3 deposition
and concentration. Thus, it is the additional BVOC emission in the urban tree planting scenarios
which causes the increase in NO2 in the model through two additive effects: firstly, the BVOC
emissions increase NOx concentrations (presumably by competing for OH and reducing NOx
oxidation to HNO3), and secondly, they also increase O3, which in turn modifies the NO/NO2
partitioning in favour of NO2.

4. Discussion

(a) Magnitude of air pollution removal
The scope for pollution removal by vegetation is of particular interest for PM, which tends to
dominate the health impacts of air pollution, and for O3, which causes health impacts in particular
in polluted, warmer regions. While the current health burden of NO2 is estimated to be lower, this
compound is currently in the spotlight because many cities across Europe are out of compliance
with target values. Several studies have attempted to quantify the removal of air pollution by
vegetation and, in particular, urban trees and vegetation, including in the UK, and estimates differ
widely. Here, we show that this is in large part a question of scale. The (UK) national vegetation
as a whole reduces air pollution levels significantly, estimated here at 10% for PM2.5, 30% for
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SO2, 24% for NH3 and 13% for O3. Importantly, this includes the cumulative effect of pollutant
removal during transport from source to receptor. For example, the concentration in London is
lowered also by the uptake of some of the pollutants transported long range from continental
Europe by vegetation encountered en route, e.g. in Kent. It also includes the secondary effect of
reducing precursor gases involved in secondary PM and O3 formation.

By contrast, the effect of localized vegetation on local concentrations is limited: the overall
effect of urban vegetation on urban PM2.5 is a reduction of the order of 1% and a conversion
of 50% of available open urban greenspace to urban forest would add a further reduction of
similar magnitude. By comparison, applying a simpler model in which total PM had to be scaled
up from the primary fraction to two example UK conurbations, McDonald et al. [25] estimated
that a 50% planting scenario might lower PM10 deposition by 4% in the English Midlands
and 0.7% in Glasgow, which compares to an average urban reduction of 0.6% derived here.
In the earlier study, the urban cells were defined via the city boundary and in the Midlands
scenario included agricultural areas situated between the cities of Birmingham and Coventry,
with an increased potential for planting, and this explains the higher gain. Litschke & Kuttler
[26] similarly estimated a typical PM10 reduction by 1% due to trees in urban areas, while
Nowak [27] estimated that current vegetation removed less than 1% of PM10 and NO2 in
Chicago and would only remove less than 5% if the city was fully covered by trees. The new
study is also consistent with conclusions of the UK’s Air Quality Expert Group that, while
beneficial, urban tree planting is not a solution for reducing urban air pollution at the city
scale [28].

Many alternative studies of valuing air pollutant removal by vegetation have been based on
quantifying the benefit via the quantification of dry deposition rather than through modelling the
effect on the concentration itself, including, for example, for the vegetation in London [29,30], but
few studies appear to have taken the ACTM approach adopted here.

The assessment of the human health benefit is not the primary topic of this paper, but these can
be estimated using the results of an assessment based on the total urban vegetation by Jones et al.
[8]. According to that study, existing UK urban woodland removes 0.7 kt PM2.5 yr−1, reducing
the health burden from PM2.5 by about 1900 life years lost/year, with a similar gain achievable
through the 50% planting action. The PM2.5 removal of a single mature tree would then equate to
1.7 life hours/year saved.

(b) Implications for micro-intervention and green infrastructure
Although the pollutant collection properties of small green infrastructure interventions depend
on the exact set-up and location, the country-level model results enable some approximate
downscaling to investigate the efficacy that may be expected.

(i) Approximate PM2.5 collection efficiency of a single tree

Commercial forests are typically planted at a density of 1000–2000 trees ha−1, but a fully mature
woodland has a final density of closer to 100 trees ha−1 [31]. Tree surveys for London and other
cities suggest that most urban trees have a diameter at breast height (DBH) of less than 20 cm [30].
At this DBH, one might expect a higher planting density, more like 400 trees ha−1, for a closed
forest stand.

The current UK urban woodland extent was estimated here to be 976 km2 and to take up 0.70 kt
PM2.5 yr−1 (electronic supplementary material, table S5) [8]. Assuming full maturity, this equates
to a removal of 71 g PM2.5 mature tree−1 yr−1, about 64 g yr−1 more than if the same area were
covered by grassland.

To put this into context, the UK National Atmospheric Emissions Inventory implies a total (i.e.
exhaust plus non-exhaust) fleet average combined (all road types) emission factor for diesel cars
of 0.023 g PM2.5 km−1 [32]. At a typical annual travel distance of about 15 000 km yr−1 [33], a car
emits 350 g PM2.5 yr−1, probably somewhat more under urban driving conditions, similar to the
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uptake of five properly mature trees. A taxi on average covers almost three times this mileage
(14 mature tree equivalents). For buses, the total fleet average emission is 0.094 g PM2.5 km−1. In
London, 490 million km are covered annually by local buses with a total fleet of about 10 000
vehicles [34]. Thus, based on these average figures, each London bus travels on average about
50 000 km yr−1, thus generating an emission of 4.7 kg PM2.5 yr−1, the offsetting of which would
require 73 mature trees, or about 3/4 ha of mature urban woodland.

The emission from domestic solid fuel burning has recently come under increased scrutiny.
In the UK, larger biomass boilers have a strict emission limit of 30 g PM/GJ in order to be
eligible for government subsidy under the UK’s Renewable Heat Incentive (RHI) [35]. At a
domestic heat requirement of 5000–30 000 kWh (18–108 GJ), such appliances might emit up to
0.54–3.2 kg PM yr−1, mainly as PM2.5. Older appliances and those not covered by the RHI may
emit significantly more [36]. Room heaters are generally less efficient: even the EC Ecodesign
Directive (2009/125/EC) allows a maximum emission of 5 g PM kg−1 dry matter burnt for log
stoves [37]. Assuming a room heater burns 1 tonne of dry wood a year, it would cause an emission
of up to 5 kg PM yr−1, mainly in the form of PM2.5, similar to the average bus above, but emitted
over a much smaller fraction of the year (and concentrated on individual days of the week and
hours of the day). This emission is again equivalent to the PM removal of some 78 trees or 0.78 ha
of woodland. Older appliances and open fireplaces not adhering to the Ecodesign standard are
likely to emit significantly more, and so does the use of non-ideal fuels (e.g. wood with high
moisture content) [38].

(ii) Artificial trees

A number of solutions have been developed as green infrastructure solutions to reducing air
pollution. These range from passive uptake such as green walls or green lampposts to active
filtering devices such as the commercial CityTree [39,40]. According to the advertising material on
the company website, the CityTree may be run with an airflow rate of 5.5 m3 min−1 and removes
15 ± 5, 23 or 26–64% of PM2.5, depending on the study. The absolute amount removed from the
air scales with air concentration. In the UK, the modelled annual average urban concentration
of PM2.5 was 8.8 µg m−3. Even at a significantly more polluted UK location with an average
PM2.5 concentration of 25 µg m−3, the device would remove just over 20 g PM2.5 yr−1, based
on an average efficiency value of 28%, about one-quarter of what is estimated here for a single
mature tree. Of course, in a highly polluted location, e.g. in some Asian cities, the concentrations
are much larger and the CityTree would remove much more material, but then so would
a tree.

(iii) Large-scale green infrastructure projects

Because it would be lacking the mechanical aspiration of the CityTree, a passively collecting
green infrastructure element of similar size, such as a green wall or a green lamppost, would
likely remove significantly fewer pollutants. Turbulent transport limitations would hamper the
pollutant uptake. Green walls and roof gardens have been suggested as features for large-scale
introduction of green infrastructure into urban areas. In China, first cities are planned as green
cities from inception. The 50% urban woodland simulation has shown that conversion of 12% of
the total urban area (table 1) from open urban greenspace into urban woodland would reduce
urban emissions of PM2.5 by about 0.8% on average (table 5). Given that roads, car parks and
other sealed areas that cannot be converted to green infrastructure make up a significant fraction
of the urban space, even a large-scale implementation of green infrastructure would be unlikely
to make a much larger impact than the 50% tree planting scenario and this assumes that the PM2.5
capture efficiency of the green infrastructure matches that of mature trees.

It should be noted, however, that the pollutant removal by green infrastructure depends
on the exact positioning of the infrastructure and that ACTM modelling cannot simulate
the intricacies between individual surface elements and ground-level concentration. Using an
atmospheric chemistry model expanded with an extension to simulate street canyon mixing
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and dry deposition, Pugh et al. [41] suggested that continuous green wall cover within street
canyons in particular may be effective in reducing street-level concentrations of PM by up to 60%
while highlighting the need to get the design right to avoid concentration increases. This is a
very extreme value for 100% vegetation cover, assuming deep canyons, very low wind speeds
(1 m s−1 at roof level) and relatively large deposition velocities that are likely to be inconsistent
with these low wind speeds. Furthermore, this green infrastructure would ameliorate mainly
the concentration build-up deriving from in-canyon sources rather than the contribution from
background concentrations and will, therefore, mainly aid the reduction in roadside increments.
Nevertheless, that study highlights that certain infrastructure options may offer opportunities to
reduce local source contributions. Consistent with our study, Pugh et al. [41] found that green
rooftops were relatively ineffective in reducing street-level concentrations. Overall, our findings
mirror those of Vos et al. [42] who argue that localized urban vegetation cannot be expected to be
a solution for alleviating local air pollution hot-spots.

(c) Implications for deposition-based approaches of valuing air pollution removal by
vegetation

This study reveals important interactions and feedbacks that can be quantified by the full ACTM
approach, but which are not taken into account when the pollutant removal benefit is quantified
via quantifying the deposition via approaches based on prescribed concentrations that do not
account for deposition-concentration feedbacks. The negative side effect of BVOC emissions
through tree planting on air pollution has been widely recognized through their role in increasing
O3 concentrations [20]. The present study highlights an additional, secondary effect on NO2 levels
and shows that if tree species are not carefully selected, urban tree planting could even increase
concentrations of NO2 and, therefore, one of the key pollutants they are often meant to reduce.
This implies a greater than 100% error in static deposition-based approaches which would predict
a benefit while the real net effect may actually be negative.

Clearly, the exact magnitude of the chemical effect on urban NO2 depends on the additional
BVOC emission associated with the landcover change. In the EMEP model, the additional urban
tree cover is ascribed the same isoprene and monoterpene emission factors as is thought to be
representative for the average existing UK vegetation. If trees were selected to minimize BVOC
emissions (e.g. [20,21,43]), it may be possible to control the effect on O3 and NO2.

Furthermore, the results highlight the magnitude of the counteracting effects on wet
deposition. As increased dry deposition removal lowers air concentration, this in turn reduces wet
deposition. This offsetting effect is here found to be large (50%) for slowly depositing compounds
such as PM2.5, and introduces considerable uncertainty when quantifying the benefit via the
deposition term and emission damage costs. Clearly, the relative magnitude depends on the
amount of precipitation in the area and is likely to be larger in the UK than in some other
parts of the world. This is an issue that does not appear to have so far been fully recognized
in deposition-based approaches like i-Tree Eco. For local-scale interventions, the enhancement
in dry deposition and reduction in wet deposition become spatially decoupled, adding to the
uncertainty in assigning geographically varying damage costs to deposition increases.

(d) Wider impacts of urban vegetation
(i) Co-benefits of vegetation

Overall, the scope of reducing pollution levels through urban vegetation is shown to be very
limited. Nevertheless, it may be worthwhile considering and valuing this effect within the context
of the multiple other (ecosystem) services provided by vegetation in general and urban vegetation
in particular. The benefit of vegetation for air pollution removal, even if modest, might provide
one of several elements for the decision to go ahead with green infrastructure measures.
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The overall benefits and disbenefits of tree planting have been summarized in several review
papers [22,44,45]. For example, the i-Tree Eco model also ascribes a value to the role of urban trees
for carbon sequestration, their assistance in water management by reducing storm-water run-off
and their effect on heating/cooling [12,30]. This latter effect can be beneficial or detrimental: trees
generally reduce the heat-island effect, which in summer potentially increases labour productivity
and reduces adverse health outcomes (morbidity and mortality) and/or reduces air conditioning
needs; but trees may increase heating bills in winter [46]. Similarly, at the local level, trees
can shelter houses from wind or they can shade buildings with contrasting effects on energy
requirements in winter. Green spaces reduce noise, promote physical activity and contribute
significantly to the wellbeing of the society and provide long-term benefits to physical and mental
health [47,48], which have also been speculated to improve the immune response to air pollution
[48,49] and may, therefore, be beneficial in combating air pollution effects through a second route.

Semi-natural ecosystems and especially also urban vegetation such as gardens support a large
number of plant and animal species. However, the benefits of vegetation for biodiversity are
more difficult to value economically as there is little consensus on the value society ascribes to
biodiversity per se, beyond its role in ecosystem provisioning [50].

(ii) Disbenefits of vegetation

Where urban vegetation is targeted at reducing air pollution, negative side effects also need to be
considered as well as the positives:

Other pollutant emissions. Some pollutant emissions associated with vegetation (e.g. pollen)
and its management are not considered in this study: wounding of leaves and branches due
to grass cutting or pruning emits leaf alcohols and other VOCs with potentially large ozone
and BSOA forming potential, even for plant species that are generally low VOC emitters [51].
Fertilizer application may result in increased emissions of ammonia (NH3) which is involved
in secondary aerosol formation and has detrimental effects on biodiversity and plant species
adapted to low-nitrogen growing conditions, nitric oxide (NO) as well as nitrous oxide (N2O),
a potent greenhouse gas [52]. Potential application of fungicides and pesticides has its own
environmental impacts and an increase in the emissions of allergens like pollen need to be
considered when evaluating the overall health impact of vegetation for the population [53].

Safety. There are costs involved in the management of vegetation to reduce dangers to the
public. Road safety can be a significant concern when it comes to green infrastructure: if poorly
managed, leaf fall can render roads, pavements and paths slippery and increase the risk of
road accidents and falls. Falling trees and branches can cause injury to passersby, property and
residents, and are one of the main cause of storm-related deaths [54]. In addition, UK city councils
have expressed their concerns about the potential effect the increase of tree cover in urban parks
might have on crime and personal safety, and leaf fall from deciduous trees can clog up drainage
of urban run-off.

Thoughtful species selection and careful management can reduce many of these disbenefits.
In addition to taking up air pollutants, trees can affect local turbulence and wind speed,

which can also have adverse effects on concentrations. Above forests, the increased aerodynamic
roughness of trees compared with short vegetation and asphalt/concrete tends to increase vertical
mixing and dispersion of pollutants and this tends to reduce surface concentrations. The situation
is very different within the tree canopy and within the built-up environment: street canyon
trees can significantly lower the air flow and dispersion of local emissions, depending on local
conditions and meteorology [55]. As a result, urban trees can increase ground-level concentrations
and human exposure to air pollutants at the same time as promoting their removal through
enhanced dry deposition. For example, using CFD simulations, Jeanjean et al. [56] found for a
4 km2 city area in Leicester, UK, that dispersion had a negative effect that exceeded the enhanced
deposition by an order of magnitude at low wind speed, while at higher wind speeds, it had a
positive effect that again exceeded the positive effect of dry deposition. Trees can, at the same
time, increase the accumulation of pollutants on one side of the street canyon, while lowering
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concentration on the other [22,45]. Trees are sometimes planted to protect individual receptor
sites, e.g. at school carparks. Here, again, the effect can be positive or negative, depending on
geometry and meteorology [42]. The literature is more consistent about the use of trees for
separating people from sources, e.g. through hedge-like features between roads and pavements
[21,22]. In this situation, the trees increase the line of travel of pollutants from source to
receptor and promote dispersion and dilution en route. While such interventions might increase
concentrations at the source side, they are highly likely to reduce concentration at the receptor
side, independent of meteorology [22]. The use of vegetation to spatially separate people from
sources appears to be their least controversial and most effective use. However, it should be
mentioned that non-vegetation features such as walls would physically have the same effect.

(e) Uncertainties
Uncertainties in the modelling work are significant and difficult to quantify. Both the ACTM- and
deposition-based approaches are sensitive to the parametrization of the dry deposition process
used. These are uncertain and vary significantly. For example, Flechard et al. [57] compared
the results from four deposition models, including the EMEP parametrization, to derive dry
deposition of reactive nitrogen compounds from time-integrated concentration measurements
across 55 European sites. This exercise indicated an intra-model variability in the deposition
velocities (Vd) of a factor of 3 for NH3 and 5 for NO2. For fine aerosol components (NH4

+,
NO3

−), relative good consistency (within a factor of 2) was found for grass and semi-natural
short vegetation (shrubland), but values varied by more than a factor of 10 for forest. This
variability reflected not only the parametrization of the deposition mechanism, but also the model
assumptions on tree height and leaf area index. The EMEP model tends to fall into the middle of
the range for most compounds, but it is one of two models that predicts significantly lower aerosol
Vd to forest than the other two models, whose values look unreasonably large in the light of more
recent reviews of aerosol dry deposition [58].

Additional uncertainty arises from the limitations of the chemistry scheme in the model. In
particular, many aspects of the mechanisms leading to BSOA formation are uncertain: as is typical
for ACSMs the EMEP emissions model and chemical scheme only treats some key BVOCs. In
particular, very rapid BSOA formation from sesquiterpenes and some monoterpenes may be
missing [59]. In addition, as mentioned before, the simulations here assume the same average
tree species mix as currently implemented in the EMEP model, while in the urban scenarios, in
particular the BVOC emissions will depend on the tree species that exist or are planted in the
urban context.

5. Conclusion
Quantification of the benefits of vegetation appears to be an emotive subject and estimates of the
efficacy of vegetation and in particular trees to combat air pollution vary greatly in the literature.
This study shows that this is at least in part a question of scale of the vegetation extent. While
total national vegetation together significantly reduces pollution levels (e.g. about 10% for PM2.5),
urban vegetation is estimated to account for only a small reduction in pollution levels and even
very large-scale conversion of available open urban greenspace to urban forest would reduce
urban air concentrations by only about 1% overall. The impact of small-scale green infrastructure
implementations on air quality is very small, except where the vegetation acts as a barrier between
source and receptor, and in most cases far less economic than implementing measures to reduce
emissions in the first place. Thus, the benefit of urban tree planting for air pollution should in
general only be considered as one of multiple benefits within the natural capital approach.

The use of an ACTM to estimate reductions in concentrations, exposure and associated health
impacts, while more computationally cumbersome, has key advantages over the more commonly
used deposition approach in which air pollution removal by vegetation is valued via the damage
cost of the equivalent emission (e.g. i-Tree Eco): it is mass conserved and accounts for physical and
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chemical interactions. The UK-wide simulations identified that a purely dry-deposition-based
approach would overestimate the PM2.5 uptake by UK vegetation by a factor of 2, if the associated
reduction in wet deposition is ignored. Increased natural BVOC and soil NO emission from forest
ecosystems further counteract the benefit of the vegetation for PM2.5 (via BSOA formation), NOx

and also O3. The simulations suggest that vegetation only has a small effect on NO2 (and NOx) at
the national scale and that conversion of urban green space to urban forest may even increase NO2
levels. This could be traced to the combined impact of increased BVOC emissions on increasing
NOx levels and, by also increasing O3, sustaining more of the NOx as NO2. Thus, the magnitude
of the increase depends on the BVOC emission potential of the tree species selected, but even for
non-emitters, the potential of NO2 removal through urban forests was found to be negligible.
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