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Abstract: Study of the potential of Antarctic microorganisms for use in bioremediation is of increasing
interest due to their adaptations to harsh environmental conditions and their metabolic potential in
removing a wide variety of organic pollutants at low temperature. In this study, the psychrotolerant
bacterium Rhodococcus sp. strain AQ5-07, originally isolated from soil from King George Island
(South Shetland Islands, maritime Antarctic), was found to be capable of utilizing phenol as sole carbon
and energy source. The bacterium achieved 92.91% degradation of 0.5 g/L phenol under conditions
predicted by response surface methodology (RSM) within 84 h at 14.8 ◦C, pH 7.05, and 0.41 g/L
ammonium sulphate. The assembled draft genome sequence (6.75 Mbp) of strain AQ5-07 was
obtained through whole genome sequencing (WGS) using the Illumina Hiseq platform. The genome
analysis identified a complete gene cluster containing catA, catB, catC, catR, pheR, pheA2, and pheA1.
The genome harbours the complete enzyme systems required for phenol and catechol degradation
while suggesting phenol degradation occurs via the β-ketoadipate pathway. Enzymatic assay using
cell-free crude extract revealed catechol 1,2-dioxygenase activity while no catechol 2,3-dioxygenase
activity was detected, supporting this suggestion. The genomic sequence data provide information
on gene candidates responsible for phenol and catechol degradation by indigenous Antarctic bacteria
and contribute to knowledge of microbial aromatic metabolism and genetic biodiversity in Antarctica.
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1. Introduction

The last largely pristine and remote wilderness on Earth, Antarctica is facing a variety of
anthropogenic impacts associated with rapidly increasing human activities. The first arrival of
explorers and extraction of marine living resources in Antarctica and the Southern Ocean region
date back to the 18th Century [1,2]. Today, while the focus of human presence has shifted from
imperialism and exploitation to scientific research and tourism, the number of visitors continues
to increase, leading to multiple visible human impacts on the Antarctic environment [1,3,4]. Of all
“local” impacts within Antarctica, oil spills have been considered amongst the most damaging through
the persistence of petroleum products in this cold environment [5,6]. Recent studies have reported
instances of pollution by hydrocarbons and associated compounds, including polycyclic aromatic
hydrocarbons, chlorinated biphenyls, and phenols [7–9]. Due to the chronically low temperatures and
dry or frozen conditions across much of Antarctica, the continent’s ecosystems are very sensitive to
even small environmental changes, and aromatic hydrocarbon products such as phenol and phenolic
compounds (PCs) can have considerable detrimental impacts on terrestrial and aquatic life [10–12].

Phenol is a component present in diesel, petrol, and lubricant oils, as well as being used in
the preparation of pesticides, herbicides, bactericides, and fungicides [13]. Due to its anti-microbial
properties, phenol is also often used as an antiseptic in medical and cosmetic industries. Phenol poses
serious environmental concerns due to its toxicity towards living organisms (including humans) even
at low concentration [14,15].

The process of bioremediation utilises microorganisms to transform toxic compounds into less or
non-toxic toxic forms. Bioremediation is generally more efficient in degrading organic compounds,
often completely, in comparison with physicochemical treatments [16,17]. Members of the bacterial
genera Pseudomonas, Arthrobacter, Rhodococcus, and Acinetobacter, capable of degrading phenol, have been
reported [18–21].

About 90% of the Earth’s ocean volume has a temperature of 5 ◦C or less, and over 80% of the
Earth’s surface is permanently cold when the terrestrial habitats of the polar regions and areas such as
the Tibetan plateau are included [22,23]. Numerous phenol-contaminated sites are characterised by low
temperature [24,25]. Biodegradation of phenol in cold regions requires cold-adapted or cold-tolerant
microorganisms, but the metabolic activities of most mesophilic phenol-degrading microorganisms
studied to date are severely limited by low temperature [19,26,27]. Antarctic microorganisms are
known to be adapted to the harsh conditions of Antarctica, including low temperature, high solar
radiation, and low nutrient availability [10]. The identification of indigenous microorganisms capable of
degrading pollutants, including hydrocarbons, could be particularly important for future environmental
management and bioremediation procedures in Antarctica, particularly because the very strict
environmental regulations applied under the Antarctic Treaty are likely to prevent the introduction of
non-native species for this purpose [2,28,29].

Rhodococcus sp. strain AQ5-07, originally isolated from non-human-impacted soil obtained on
King George Island (South Shetland Islands), is capable of degrading 0.5 g/L of phenol within 96 h
at 10 ◦C [30]. In this study, we report that the optimum temperature predicted by response surface
methodology (RSM) was in the range of optimum temperature revealed by one-factor-at-a-time (OFAT)
analysis. The highest phenol degradation of 94.11% was achieved under conditions predicted by RSM
within 84 h at 12.5 ◦C. We additionally report the draft genome of strain AQ5-07 and identify gene
candidates responsible for phenol degradation. We also verified ring cleavage activities in the catechol
degradation pathway to support the involvement of gene candidates in complete phenol metabolism.
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2. Results

2.1. Plackett-Burman Design

The Plackett–Burman design applied to strain AQ5-07 (Table 1) generated phenol degradation
levels from 44.12% to 61.08% in the 12 runs. Maximum phenol degradation was achieved at 25 ◦C,
pH 6, and NaCl and ammonium sulphate concentrations of 0.3 and 0.5 g/L, respectively. The lowest
phenol degradation was observed at 5 ◦C, pH 8, and NaCl and ammonium sulphate concentrations at
0.30 and 0.1 g/L, respectively.

Table 1. Plackett–Burman experimental design matrix with phenol degradation by strain AQ5-07.

Run A B C D Phenol Degradation (%)

1 25 0.30 8 0.1 53.04
2 5 0.05 8 0.5 49.31
3 5 0.30 6 0.1 49.08
4 25 0.30 6 0.5 61.08
5 5 0.30 8 0.1 44.12
6 5 0.05 6 0.5 50.34
7 25 0.05 8 0.5 56.64
8 5 0.05 6 0.1 46.43
9 25 0.30 6 0.5 59.36

10 25 0.05 8 0.1 52.68
11 25 0.05 6 0.1 56.52
12 5 0.30 8 0.5 44.58

A: temperature; B: concentration of NaCl; C: pH; D: concentration of (NH4)2SO4.

ANOVA (Table 2) confirmed that the model was significant (p = 0.034) and highly reliable.
Temperature (A), pH (C), and ammonium sulphate concentration (D) were the significant factors
affecting phenol degradation by strain AQ5-07, while NaCl concentration (and all interaction terms)
had no significant (p > 0.05) influence and was excluded in the subsequent central composition design
(CCD) experiment.

Table 2. Analysis of variance (ANOVA) for phenol degradation by strain AQ5-07 with
Plackett–Burman design.

Source Sum of Squares Degree of Freedom Mean Square F Value Prob > F

Model 344.5220 8 43.0653 57.7867 0.0034 **
A 129.9352 1 129.9352 174.3524 0.0009 ***
B 3.0380 1 3.0380 4.0765 0.1368
C 37.8766 1 37.8766 50.8245 0.0057 **
D 11.7988 1 11.7988 15.8322 0.0284 *

AC 2.5548 1 2.5548 3.4281 0.1612
AD 0.0870 1 0.0870 0.1168 0.7551
BC 5.6012 1 5.6012 7.5159 0.0712
BD 7.2682 1 7.2682 9.7528 0.0524

Residual 2.2357 3 0.7452
Lack of Fit 0.7565 2 0.3783 0.2557 0.8134
Pure Error 1.4792 1 1.4792
Cor Total 346.7578 11
Std dev 0.86 R2 0.9936
Mean 51.93 Adjusted R2 0.9764
C.V 1.66 Predicted R2 0.9290

PRESS 24.63 Adeq Precision 21.1694

A: temperature; B: concentration of NaCl; C: pH; D: concentration of (NH4)2SO4; * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.2. CCD

CCD was employed to study the interactions between the three significant factors and to determine
the optimum conditions for phenol degradation by strain AQ5-07. Table 3 shows the experimental
matrix of CCD with the corresponding experimental and predicted values of phenol degradation by
strain AQ5-07. The highest experimental and predicted values of phenol degradation were 94.10% and
93.45%, respectively, at 12.5 ◦C, pH 7, and 0.4 g/L ammonium sulphate. The lowest phenol degradation
values (experimental, 2.76%, predicted 3.43%) were obtained at 0 ◦C, pH 7, and 0.4 g/L ammonium
sulphate. ANOVA (Table 4) revealed that the model was highly significant (p < 0.0001).

Table 3. Central composition design (CCD) experimental matrix with corresponding experimental and
predicted values of phenol degradation for strain AQ5-07.

Run Order A C D
Phenol Degradation (%)

Experimental Value Predicted Value

1 12.5 7.0 0.40 93.91 93.45
2 12.5 7.0 0.40 94.10 93.45
3 12.5 7.0 0.23 69.72 69.42
4 25.0 7.0 0.40 47.40 46.21
5 20.0 6.0 0.50 63.48 64.11
6 12.5 7.0 0.40 92.53 93.45
7 20.0 8.0 0.30 60.60 61.10
8 12.5 5.3 0.40 73.56 73.10
9 12.5 8.7 0.40 62.64 62.60

10 5.0 8.0 0.30 33.96 33.69
11 12.5 7.0 0.57 67.20 67.00
12 12.5 7.0 0.40 93.52 93.45
13 12.5 7.0 0.40 93.72 93.45
14 5.0 6.0 0.30 43.32 43.23
15 0 7.0 0.40 2.76 3.43
16 20.0 6.0 0.30 68.76 69.44
17 12.5 7.0 0.40 92.82 93.45
18 5.0 8.0 0.50 36.48 36.16
19 20.0 8.0 0.50 60.84 61.30
20 5.0 6.0 0.50 40.32 40.18

A: temperature; C: pH; D: concentration of (NH4)2SO4.

Table 4. Analysis of variance (ANOVA) for phenol degradation by strain AQ5-07 with CCD.

Source Sum of Squares DF Mean Square F Value Prob > F

Model 12,042.1628 9 1338.0181 2358.7788 <0.0001 ***
A 2233.4754 1 2233.4754 3937.3716 <0.0001 ***
C 131.4727 1 131.4727 231.7720 <0.0001 ***
D 6.9752 1 6.9752 12.2965 0.0057 **
A2 8534.5562 1 8534.5562 15,045.4843 <0.0001 ***
C2 1169.5896 1 1169.5896 2061.8578 <0.0001 ***
D2 1136.9217 1 1136.9217 2004.2680 <0.0001 ***
AC 0.7200 1 0.7200 1.2693 0.2862
AD 2.5992 1 2.5992 4.5821 0.0580
CD 15.2352 1 15.2352 26.8580 0.0004 ***

Residual 5.6725 10 0.5673
Lack of Fit 3.7190 5 0.7438 1.9037 0.2484
Pure Error 1.9535 5 0.3907
Cor Total 12,047.8353 19
Std dev 0.75 R2 0.9995
Mean 64.58 Adjusted R2 0.9991

Coefficient of Variance 1.17 Predicted R2 0.9975
PRESS 30.56 Adeq Precision 169.0312

A: temperature; C: pH; D: concentration of (NH4)2SO4; ** p < 0.01, *** p < 0.001.
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The 3D response surface was plotted using Design-Expert software version 6 to visualise the
interaction effects of the significant variables. Each figure represents the interaction effects between
two independent variables while holding the other variable at constant level. Figure 1 illustrates
the interaction of temperature and pH, Figure 2 that between temperature and ammonium sulphate
concentration, and Figure 3 the interaction between pH and ammonium sulphate concentration.
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Figure 1 shows that the optimum conditions for phenol degradation by strain AQ5-07 were a
temperature between 12.5 and 16.25 ◦C and pH between 6.5 and 7.5. Based on Figure 2, optimum phenol
degradation was again achieved between 12.5 and 16.25 ◦C and ammonium sulphate concentration
between 0.35 and 0.45 g/L. Figure 3 indicates optimum degradation between pH 6.5 and pH 7.5 and
ammonium sulphate concentration between 0.35 and 0.45 g/L.

2.3. Validation Experiment

The three significant variables were maintained at optimum values of 14.8 ◦C, pH 7.05, and 0.41 g/L
ammonium sulphate in order to experimentally test the predicted value of phenol degradation.
The experimental value obtained was 92.91% phenol degradation, close to the model’s predicted value
(94.61%), supporting the validity of the model.

2.4. Genomic Features of Rhodococcus sp. Strain AQ5-07

The genome of strain AQ5-07 was sequenced using the Illumina HiSeq 2500-PE125 platform.
The draft genome obtained was 6,749,221 bp long with GC content of 62.4%. Key genomic features of
strain AQ5-07 are summarised in Table 5. The assembled genome was arranged in 34 contigs, with the
length of the longest contig being 1,378,314 bp. A total of 6545 coding sequences (CDSs), four rRNAs,
and 75 tRNAs were predicted using the Rapid Annotations using Subsystems Technology (RAST)
server with the SEED database, which contains accurate and up-to-date annotations for microbial
genomes. The Whole Genome Shotgun project was annotated using NCBI Prokaryotic Genome
Annotation Pipeline.

Table 5. Genomic features of Rhodococcus sp. strain AQ5-07.

Feature Count/Value

Genome size (bp) 6,749,221
GC content (%) 62.4

Number of contigs 34
Length of the longest contig (bp) 1,378,316

Number of Subsystems 436
Number of coding sequences (CDSs) 6545

Number of rRNAs 4
Number of tRNAs 75
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Based on RAST annotation of the draft complete genome, coding sequences were grouped into
415 subsystems. The number of genes in each subsystem and the subsystem coverage are shown in
Figure 4, with overall 35% of the total CDSs classified into subsystems and 65% of CDSs excluded.
The subsystem of amino acids and derivatives contained the highest number of coding sequence
(686 counts), followed by 574 counts in the subsystem of carbohydrates and 438 counts in the subsystem
of cofactors, vitamins, prosthetic groups, and pigments. The genome also included one antifreeze
protein, six cold shock proteins, and 88 genes associated with the metabolism of aromatic compounds.
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2.5. Identification of Gene Candidates for Phenol Degradation

Bioinformatics analyses were carried out to identify the gene candidates responsible for phenol
degradation. The gene-associated functions of phenol and catechol catabolic genes were predicted
using the NCBI genomic database and RAST server with SEED, Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Clusters of Orthologous Groups (COG) databases (Table 6). Figure 5 illustrates
the physical map of the gene cluster containing phenol hydroxylase and other enzymes including
catechol 1,2-dioxygenase (C12D) involved in the catechol degradation pathway. The gene cluster
from strain AQ5-07 is almost identical to that of the well-studied Rhodococcus erythropolis CCM2595.
When compared to the gene cluster from Rhodococcus jostii RHA1, generally the gene structure is highly
conserved in strain AQ5-07, with the exception of the 2.9 kbp insertion between the cat gene and
the phe gene cluster. The CatRABC operon was identified within the gene cluster, which is involved
in the ortho-pathway of catechol metabolism. Genes encoding catechol 2,3-dioxygenase (C23D) and
downstream enzymes related to meta-pathway were not detected in the genome. Contiguous to the cat
operon, the pheR-pheA2A1 gene cluster was predicted, shown in Figure 5.
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Table 6. Gene candidates involved in complete phenol catabolism identified in the genome of
Rhodococcus sp. AQ5-07.

Gene Name
(Locus Tag) Gene Products Accession No. Amino Acid

Residues (Aa) COG No. KEGG No.

pheA1
(S2GM001986)

Phenol hydroxylase
large subunit A1 RAL35045 542 COG2368 K03380

pheA2
(S2GM001985)

Phenol hydroxylase
small subunit A2 RAL35044 189 COG1853 K03380

catA
(S2GM001982)

Catechol
1,2-dioxygenase RAL35043 279 COG3485 K03381

catB
(S2GM001981)

Muconate
cycloisomerase RAL35564 373 COG4948 K01856

catC
(S2GM001980)

Muconolactone
isomerase RAL35042 93 COG4829 K03464

praD
(S2GM002436)

3-oxoadipate
enol-lactonase RAL34922 270 COG0596 K01055

pcaI
(S2GM003023)

3-oxoadipate
coa-transferase,
alpha subunit

RAL34191 303 COG1788 K01031

pcaJ
(S2GM003024)

3-oxoadipate
coa-transferase,

beta subunit
RAL34192 261 COG2057 K01032

fadA/ fadI
(S2GM005247)

Acetyl-coa
acyltransferase RAL31833 411 COG0183 K00632
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Figure 5. Physical map of the gene cluster containing phenol hydroxylase and catechol 1,
2-dioxygenase genes from Rhodococcus sp. strain AQ5-07 in comparison to Rhodococcus jostii RHA1 and
Rhodococcus erythropolis CCM2595. The putative functions of the genes in the cluster were predicted as
follows: muconolactone isomerase, CatC; muconate cycloisomerase, CatB; catechol 1,2-dioxygenase,
CatA; IclR family transcriptional regulator, CatR; AraC family transcriptional regulator, PheR;
phenol hydroxylase small subunit A2, PheA2; phenol hydroxylase large subunit A1, PheA1.

2.6. Enzymatic Assay for catechol 1,2-dioxygenase (C12D) and catechol 2,3-dioxygenase (C23D)

Bioinformatics analyses predicted the existence of a single copy of the catA gene, encoding
C12D in strain AQ5-07. To determine whether other catechol ring cleavage enzymes are available,
enzymatic assays for C12D and C23D were performed using cell-free extracts. Figure 6 illustrates the
outcome of assays of the production of cis, cis–muconic acid (CCMA) by C12D and 2-hydroxymuconic
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semialdehyde (2-HMS) by C23D, respectively. The concentration of CCMA slowly increased throughout
the assay, reaching 46.55 µM. However, no production of 2-HSM was detected, supporting only the
presence of C12D activity in strain AQ5-07. The average rate of CCMA production over the 1 h assay
was 0.78 µM/min. The calculated maximum specific activity of C12D was 23.603 U/mg after 10 min
of incubation.
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Figure 6. Formation of cis, cis-muconic acid (filled diamond), and 2-hydroxymuconic semialdehyde
(filled triangle) by catechol dioxygenases of Rhodococcus sp. strain AQ5-07. Error bars represent
mean ± standard deviation for three replicates.

3. Discussion

In general, the OFAT approach is less sensitive in optimisation, as it does not include interaction
effects between variables, potentially leading to misinterpretation of the results obtained [30].
Statistical optimisation by RSM optimises all the significant parameters effectively [31]. RSM is
commonly used to evaluate the relationships between several explanatory variables and the response
variables [32]. Previously, Lee et al. [30] reported that Rhodococcus sp. strain AQ5-07 achieved a highest
phenol degradation of 89.93% under OFAT at 10.0 ◦C, pH 7.0, and 0.3 g/L NaCl. Therefore, in this study,
a Plackett–Burman design and CCD were employed to provide an effective means of optimizing the
conditions for phenol degradation by strain AQ5-07 under the three significant independent variables
of temperature, pH, and ammonium sulphate concentration. The elliptical shapes of the 3D response
surfaces shown Figures 1 and 2 and the circular shape of the response surface in Figure 3 indicate
interaction effects between the two variables in each figure, with the peaks suggesting the mutual
relationships between these variables and the centre of the system that represents the point where
maximum phenol degradation was achieved [33,34]. The optimum temperature for phenol degradation,
in the range of 12.5 to 16.25 ◦C, is consistent with the strain being psychrotolerant [35,36]. The results
obtained were consistent with the current study’s data. The optimum temperature predicted by RSM
was in the range of optimum temperature revealed by OFAT. However, optimum concentrations of
NaCl and pH as predicted by RSM were higher than those of OFAT. The highest phenol degradation of
94.11% was achieved under conditions predicted by RSM of 12.5 ◦C, pH 7.0, and 0.4 g/L NaCl.

Next generation sequencing and application of bioinformatics give insights into the metabolic
pathways of microorganisms [37,38]. Progressive advances in next generation sequencing technologies
have led, for instance, to the characterisation of novel biochemical pathways of biogeochemical
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significance and insights into the phylogenetic and the functional diversity of hydrocarbon-degrading
microorganisms [39]. According to Ehsani et al. [40], members of the bacterial genus Rhodococcus are
Gram-positive and high GC actinomycetes. The genomes of several Rhodococcus species with >60% GC
content have been reported in recent studies, as found here in strain AQ5-07 [40–42]. Similar results
have been reported in a very recent sub-Antarctic study [43] where the genomes of two Rhodococcus
species both contained 62.3% GC.

Genome annotation showed that the most abundant genes classified into subsystems were related
to metabolism of amino acids and derivatives, carbohydrates, cofactors, vitamins, prosthetic groups,
and pigments, all of which are essential for cell survival [44]. Temperature is one of the major
environmental challenges facing microbial life in Antarctica [45]. In the genome, 151 stress response
proteins were annotated including proteins with roles in responding to osmotic stress as well as cold
and heat shock. The genome of strain AQ5-07 contains a total of six genes encoding for cold shock
proteins with four of them categorised as cold shock protein A and one as cold shock protein C. Most
bacteria produce cold shock proteins to counteract the harmful effects of declining temperature and
to enable growth at low temperatures [46,47]. A gene coding for a type I antifreeze protein was also
detected based on RAST annotation, showing 75.5% amino acid sequence identity with type I antifreeze
protein from Rhodococcus spp. (accession no. WP_006944967). Part of the survival strategy employed
by microorganisms in Antarctic habitats includes the production of antifreeze proteins [48]. Similarly,
Gilbert et al. [49] reported that a hyperactive, Ca2+-dependent, antifreeze protein in the Antarctic
bacterium Marinomonas primoryensis might be capable of preventing lethal freezing in ice-covered
Antarctic lakes.

Members of the genus Rhodococcus are well known for their metabolic capabilities for
biodegradation of various environmental pollutants, including aliphatic and aromatic hydrocarbons
and halogenated compounds [50,51]. Ninety genes were detected in the genome of strain AQ5-07 that
are involved in the metabolism of aromatic compounds, including metabolism of central aromatic
intermediates such as salicylate, protocatechuate, and catechol. Similar results have been reported
in R. erythropolis strain CCM2595 [52], Rhodococcus sp. strain RHA1 [53], and Rhodococcus sp. strain
311R [40]. For instance, the genome of R. erythropolis strain CCM2595 harbours the catRABC cluster
coding for enzymes involved in catechol degradation [52]. Nahar et al. [43] similarly reported that genes
for aromatic compound metabolism are present in the genomes of three sub-Antarctic Rhodococcus spp.

Tomás-Gallardo et al. [54] noted that a number of transcriptional regulators have been
identified in Rhodococcus genome sequences, with most belonging to LysR and IclR-type families.
Several transcriptional regulators of Rhodococcus spp. involved in regulating the degradation of
aromatic compounds have been characterised in previous studies [51,55–57]. Transcriptional regulator
CatR is transcribed in the opposite direction to catABC genes, coding for the IclR family transcriptional
regulator. The amino acid sequence of CatR (accession number RAL35564) from strain AQ5-07
shared 99.6% and 98.8% similarity with CatR from R. erythropolis PR4 (accession number BAH36132)
and R. erythropolis CCM2595 (accession number AGT94972), respectively. A similar result was
reported in Rhodococcus opacus 1CP, where the CatR gene encoded a regulator belonging to the IclR
family [57,58]. Previous studies have shown that CatR is responsible for the transcriptional control
of the cat operon [59,60]. For example, Cámara et al. [61] noted that most members of the genus
Pseudomonas express CatRBCA gene cluster controlled by CatR in response to the substrate muconate.
Eulberg and Schlömann [58] demonstrated that CatR regulates the catABC expression in R. opacus 1CP
by binding the protein within the intergenic catR-catA region. Tropel and van der Meer [62] noted that
IclR-type regulators generally function as repressors, although IclR may also function as activators.

The pheR-pheA2A1 operon was detected contiguous to the cat operon. A similar organisation
of this gene cluster has been reported in R. erythropolis CCM2595, where the gene cluster including
catA, catB, catC, catR, pheR, pheA2, pheA1 was involved in the ortho-cleavage pathway of phenol [56].
The PheR gene is transcribed in the opposite direction to pheA2 and pheA1 (Figure 5), which is an
AraC-type transcriptional regulator. Szőköl et al. [56] suggested that PheR activates the pheA2 promoter
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of R. erythropolis CCM2595. The amino acid sequence of PheR shared 99.0% similarity with PheR
from R. erythropolis (accession no. CAJ01323). The pheA2A1 genes coding for a two-component
phenol hydroxylase are involved in the first step of phenol degradation [56]. The amino acid
sequences of PheA2 and PheA1 obtained here were respectively 100% and 99.8% similar to PheA1
(accession no. ABS30825.1) and PheA2 (accession no. WP_019745631) from R. erythropolis. The two
components of phenol hydroxylase encoded by PheA1 and PheA2 have been reported in several
Rhodococcus spp., including R. opacus 1CP [63], R. erythropolis UPV-1 [64], R. erythropolis CCM2595,
and R. jostii RHA1 [56].

Catechol 1, 2-dioxygenase, muconate cycloisomerase, and muconolactone isomerase, the first
three enzymes involved in catechol degradation, were identified as coded by the catABC operon.
Previous studies have reported catRABC genes in Rhodococcus sp. strain RHA1 [53] and R. erythropolis
CCM2595 [57]. The amino acid sequence of CatA shared the highest identity (99.6%) with CatA
from R. erythropolis strain PR4 (accession no. WP_019745628). Many studies have shown that certain
aerobic bacteria metabolise aromatic compounds to non-toxic intermediates of the TCA cycle via the
ortho-pathway using C12D or the meta-pathway using C23D. As bioinformatics analyses of the whole
genome sequence of strain AQ5-07 did not identify the gene encoding C23D and no C23D activity was
detectable from cell-free crude extract, it is likely that, in strain AQ5-07, catechol is first converted to
CCMA by the C12D enzyme encoded by catA, which is then metabolised by CatB and CatC.

A number of phenol-degrading microorganisms have been studied, and the pathways for
the aerobic phenol degradation are now firmly established; nonetheless, phenol degradation
pathways based on genetic traits in Antarctic bacteria have yet to be thoroughly explored [65].
It has been established that members of the genus Rhodococcus play important roles in the
biodegradation of compounds that cannot be easily transformed by other organisms [51]. Moreover,
several psychrotolerant Rhodococcus spp. isolated from Antarctica are capable of degrading
hydrocarbons under low temperatures [65–68]. Rhodococcus sp. AQ5-07 isolated from Antarctic soil is a
cold-adapted strain that is able to degrade phenol at optimum temperatures of 10–15 ◦C [30]. The results
of genomic analyses of strain AQ5-07 revealed the presence of genes for the complete enzyme system
(PheA1A2, C12D, muconate cycloisomerase, muconolactone isomerase, 3-oxoadipate enol-lactonase,
3-oxoadipate CoA-transferase, acetyl-coa acyltransferase) that can completely metabolise phenol to
products entering the TCA cycle via the β-ketoadipate (ortho-) pathway [57]. However, the presence of
these genes does not directly confirm each enzymes’ functionality, and further investigation is required
using other approaches.

The pathway of phenol degradation of strain AQ5-07 was determined as the ortho-pathway
based on the absence of C23D and the confirmation of C12D activity with specific enzyme activity
of 23.603 U/mg after 10 min of incubation. In comparison, a higher C12D activity of 1730 U/mg was
reported in Rhodococcus sp. strain RHA1 [53]. A number of other studies have also identified and
measured C12D activities in Rhodococcus spp. [69–71]. A high C23D activity in Rhodococcus ruber
UKMP-5M in the early minutes of incubation was also reported by Tavakoli and Hamzah [72].

4. Materials and Methods

4.1. Strain and Phenol Medium

Rhodococcus sp. strain AQ5-07 was isolated from Antarctic soil obtained on 9 September 2007 from
King George Island, South Shetland Islands (62◦09′7.2” S, 58◦11.4” W) [30]. Representative material
is deposited in the Microbial Culture Collection Unit (UNiCC) of Universiti Putra Malaysia under
reference number “UPMC 1202”.

Phenol medium (0.5 g/L) was prepared in 1 L volume by adding 0.4 g KH2PO4, 0.2 g K2HPO4,
0.1 g MgSO4, 0.1 g NaCl, 0.01 g MnSO4.H2O, 0.01 g Fe2(SO4)3.H2O, 0.01 g Na2MoO4.H2O, and 0.4 g
(NH4)2SO4 to distilled water. The medium was adjusted to pH 7.2 using NaOH, checked with a pH
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meter (Mettler Toledo FiveEasy Plus™, Greifensee, Switzerland). The medium was autoclaved for
15 min at 121 ◦C. The sterilised medium was then augmented with 0.5 g crystalline phenol.

4.2. Analytical Procedure

Bacterial growth was determined by measuring Optical Density 600 using a U.V Mini
1240 Shimadzu Spectrophotometer at a wavelength of 600 nm. Meanwhile, the determination of phenol
concentration was carried out using a UV-vis spectrophotometric method with 4-aminoantipyrine as
colorimetric agent at a wavelength of 510 nm [73].

4.3. Optimisation Using Statistical Approach

In a preliminary experiment, the effects of different parameters were studied as single variables
in OFAT without considering interactions between the variables. Experimental optimisation using a
statistical approach was conducted subsequent to OFAT to effectively determine the optimum levels
including interactions among variables. In the statistically designed experiment, the range of each
parameter was chosen based on the results of OFAT [30]. The experiments were performed in triplicate,
and assessments of phenol degradation were made after an incubation period of 84 h for AQ5-07.

4.3.1. Plackett–Burman Design

The Plackett–Burman design was employed to screen for significant factors prior to statistical
optimization with RSM. The statistically planned experiments were designed and analysed by using
statistical software Design-Expert version 6 (Stat-Ease Inc., Minneapolis, MN, USA). The experimental
ranges of each parameter were selected based on the results from OFAT. Four important factors
as previously identified in OFAT were optimized and screened at two levels (−1 and 1) using the
Plackett–Burman design. Each statistically planned experiment was conducted in triplicate, and the
significance of the effect of each factor on phenol degradation was determined. The experimental ranges
and levels of the four independent variables tested in the Plackett–Burman design for strain AQ5-07
are shown in Table 7. The analysis shows a total number of 12 experimental designs, with each row of
the table consisting of four independent variables for the selected strain, where A is the temperature,
B is pH, C is the concentration of NaCl (g/L), and D is the concentration of the nitrogen source (g/L).

Table 7. Experimental range and level of independent variables tested in Plackett–Burman design for
Rhodococcus sp. AQ5-07.

Variables Symbol Unit
Experimental Value

Low (−1) High (+1)

Temperature A ◦C 5 25
Concentration of NaCl B g/L 0.05 0.25

pH C - 6 8
Concentration of (NH4)2SO4 D g/L 0.1 0.5

4.3.2. CCD

The significant variables (p < 0.05) identified through Plackett–Burman were optimised by CCD.
Design-Expert version 6 software was used to design the statistical experiments of CCD. The selected
significant variables were analysed at five different levels (−2, −1, 0, 1, 2) for AQ5-07, as shown in
Table 8. A total of 20 runs were designed for AQ5-07 using the three significant variables.

The quadratic model of CCD was used to describe the relationship between response and
independent variables based on a second-order polynomial equation as follows:

Y = β0

k∑
i=1

βiXi +
k∑

i=1

βiiX2
i +

k∑
1≤i≤ j

βi jXi X j (1)



Int. J. Mol. Sci. 2020, 21, 9363 13 of 20

where Y is the phenol degradation (response); Xi and Xj are the independent variables; k is the
number of variables; β0 is the model intercept; βi is the ith linear coefficient; βii is the ith quadratic
coefficient; and βi j is the ijth interaction coefficient [33]. Analysis of variance (ANOVA) was used to
determine the significance of the model and regression coefficients. The fit of the model was evaluated
by the determination coefficient (R2), and statistical significance of the model was determined by
Fisher’s F-test.

Table 8. Experimental range and level of independent significant variables tested in CCD for
Rhodococcus sp. AQ5-07.

Variables Symbol Unit
Experimental Value

−2 −1 0 +1 +2

Temperature A ◦C 0 5.0 10.0 20.0 25.0
pH C - 5.3 6.0 7.0 8.0 8.7

Concentration of (NH4)2SO4 D g/L 0.23 0.30 0.40 0.50 0.57

4.3.3. Validation of Experiments

Based on the results from CCD, the predicted value of response was generated using Design-Expert
version 6 (Stat-Ease Inc., Minneapolis, MN, USA) to permit the validation of experiments with the
values of significant factors given. Independent statistically designed experiments were carried out
in triplicate to validate the predicted model. Subsequently, the actual value (percentage of phenol
degradation) obtained from the experiment was compared with the predicted value of response
generated by CCD [74].

4.4. Whole Genome Sequencing

4.4.1. Extraction of Genomic DNA

The selected bacterial strain was cultured in 50 mL of nutrient broth (Merck) on a shaking incubator
at 15 ◦C for 48 h. The cultured broth (1.5 mL) was transferred to an Eppendorf tube and centrifuged
at 15,000× g for 2 min in order to remove the supernatant. Subsequently, the genomic DNA was
extracted using the GeneJET Genomic DNA Extraction Kit (Thermo Scientific, Waltham, MA, USA)
following the manufacturer’s protocol. The extracted DNA was examined using 1.0% (w/v) agarose
gel electrophoresis stained with 0.5 µg/mL of ethidium bromide (Vivantis Technologies Sdn Bhd,
Subang Jaya, Malaysia) at 100 V for 40 min. Gel electrophoresis was performed using the Lambda/Hind
III marker (Vivantis Technologies Sdn Bhd, Subang Jaya, Malaysia) as ladder to examine the size of
the extracted genomic DNA prior to observation of the gel under UV light. Subsequently, the purity
and the concentration of extracted genomic DNA were assessed using a Nanodrop spectrophotometer
(Bio-Rad, Des Plaines, IL, USA). The extracted genomic DNA of strain AQ5-07 was sent to Beijing
Novogene Bioinformatics Technology Co., Ltd. for whole genome sequencing.

4.4.2. Genome Sequencing and Assembly

Whole genome sequencing of strain AQ5-07 was performed on the Illumina HiSeq 2500-PE125
platform with massively parallel sequencing Illumina technology. Prior to sequencing, the harvested
genomic DNA was detected using sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and quantified using Qubit, A-tailed, ligated to paired-end adaptors, and PCR amplified
with a 500 bp insert, and a mate-pair library with an insert size of 5 kb was used for library construction
at Beijing Novogene Bioinformatics Technology Co. Ltd. Filtration of Illumina PCR adapter reads
and low quality reads from the paired-end and mate-pair library was performed for quality control.
SOAPdenovo was used to assemble all the paired reads into a number of scaffolds followed by handling
of the filter reads by the next step of gap-closing [75].
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4.4.3. Gene Prediction and Annotation

The GeneMarkS program [76] was used to retrieve the related coding genes of strain AQ5-07.
The interspersed repetitive sequences were predicted using RepeatMasker [77]. Tandem repeats
were analysed by TRF (tandem repeats finder) [78]. Transfer RNA (tRNA) genes were predicted
by the tRNAscan-SE [79]. Ribosomal RNA (rRNA) genes were analysed using the rRNAmmer [80].
Small nuclear RNAs (snRNA) were predicted by Basic Local Alignment Search Tool (BLAST) against
the Rfam database [81]. Annotations of the whole genome sequences were performed using the
automated web-based tool, Rapid Annotations using subsystems Technology (RAST) server, with the
SEED database [82]. To screen for phenol degradative genes, the amino acid sequences were searched
against the protein sequence database from the BLAST [83], Uniprot [84], the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [85], and Clusters of Orthologous Groups (COG) databases [86].
The Whole Genome Shotgun project has been deposited at DNA Data Bank of Japan/ European
Nucleotide Archive/GenBank (DDBJ/ENA/Genbank) under accession QEUH00000000.

4.5. Enzyme Assays

4.5.1. Preparation of Cell Extracts

Phenol-degrading bacterial strains were cultured in 10 mL of minimal salt medium (MSM)
containing 0.7 g/L phenol on a shaking incubator at 150 rpm at 15 ◦C for 5 d. Cells (2 mL) were then
harvested by centrifugation at 4500× g for 15 min. This was followed by washing with 50 mM of
phosphate buffer at pH 7.5 and resuspension in 2 mL of the same buffer. Cells were then disrupted by
sonication with 30 s intervals of sonication and 30 s intervals of interruption for a total of 6 min in an
ice-cooled bath [87]. Pellets were removed by centrifugation at 9000× g for 30 min at 4 ◦C. The collected
supernatants were used in the following enzyme assays [88,89].

4.5.2. Enzyme Assay of catechol 1, 2 dioxygenase (C12D)

Enzyme activity of C12D was determined by confirming the formation of cis, cis–muconic acid
(CCMA) in the presence of catechol as substrate. In the C12D enzyme assay, cell-free extract (20 µL)
was added to 50 mM phosphate buffer (pH 7.5) containing 20 mM Na2EDTA and 50 mM catechol to
give a final volume of 1 mL [90]. Cis, cis-muconic acid formation was measured spectrophotometrically
at 260 nm for 1 h at 10 min intervals in an ice bath. The crude extracts were pre-treated for 5 min with
0.01% (v/v) H2O2 to suppress any activity of C23D prior to the enzyme assays [91,92]. The absorbance
of each sample was read in a quartz cuvette, and distilled water was used as a blank. The control was
prepared by replacing the cell-free extracts with distilled water. The extinction coefficient of CCMA
was determined as ε260 nm = 16,800/M cm [88,90]. One unit of enzyme activity was defined as the
amount of enzyme required to generate 1 µmol of CCMA per minute.

4.5.3. Enzyme Assay of catechol 2, 3 dioxygenase (C23D)

Enzyme activity of C23D was determined spectrophotometrically at 375 nm based on the method
developed by Hupert-Kocurek et al. [90]. The formation of 2-hydroxymuconic semialdehyde (2-HMS)
was measured at 375 nm at 10 min intervals for 1 h in an ice bath. Cell-free extract (20 µL) was added
to 980 µL of 50 mM phosphate buffer (pH 7.5) containing 50 mM catechol to give a final volume of
1 mL. The absorbance of each sample was read in a quartz cuvette, and distilled water was used as a
blank. The control was prepared by replacing the cell-free extracts with distilled water. The extinction
coefficient of 2-HMS was measured as ε375 nm = 36,000/M cm [90,93]. One unit of enzyme activity was
defined as the amount of enzyme required to generate 1 µmol of 2-HMS per minute.
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5. Conclusions

Statistical optimisation using RSM resulted in faster phenol degradation compared to OFAT
analysis in Rhodococcus sp. strain AQ5-07. The draft genome sequence of strain AQ5-07 was documented,
and analysis of the genome revealed a complete enzyme system of the β-ketoadipate (ortho-) pathway
of phenol degradation, initiated by a two-component phenol hydroxylase PheA1A2. Enzyme assays
confirmed activity of only one catechol ring cleavage enzyme, C12D, consistent with the results from
whole genome sequencing. The availability of the whole genome sequence of strain AQ5-07 provides
a means for extending understanding of the physiology, the evolution, and the functions of this
indigenous Antarctic phenol-degrading bacterium, including its future potential role in bioremediation.
Future research will focus on the analysis of gene functions, regulation mechanisms, and cold-adaptation
characteristics based on information contained in the whole genome sequence of strain AQ5-07.
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