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The Coulomb stress theory is the basic physics principle upon which scientists rely for 
improving our understanding behind earthquake triggering processes and therefore, our 
predictability of future earthquake hazards. The assumption that following a large earthquake 
the expected regional stress redistribution will affect other faults has been known since the 
late 19th century and has been passed on for further consideration by Charles Richter. 
However, we still struggle to define its implementation principles in short-term forecasts. This 
opinion paper discusses the recent advances in physics-based earthquake forecasting to 
motivate an open discussion about what we have collectively learnt from the last 30 years of 
published research on physics-based forecasts and where future experiments should aim.  
 
If one considers that seismologists are aware of the connection between stress redistribution 
effects and seismicity response for decades, if not a century, then it is surprising that there is 
such a slow pace in understanding the physics of earthquake triggering. Looking at the rapid 
advancement of statistical forecasting, which was conceptualized by Ogata (1985, 1988a,b) 
and now is the reference mathematical approximation of earthquake triggering processes, 
then one would argue that physics had quite a head start but somewhere along the way slowed 
down.  
 
So what is so challenging in the realization of Coulomb stress theory? Is it implementation 
challenges, such as the different input data products required, or our limited understanding of 
earthquake triggering mechanisms? Segou and Parsons (2020) looked into past 
implementations while focusing on a systematic reassessment of Coulomb stress theory using 
the data-rich M=7.2 El-Mayor Cucapah sequence. The evaluation of past hypotheses 
motivated the development of a new technique to forecast rupture styles of triggered 
seismicity. 
 
In the mind of the seismologists working on the issue today elastic stress redistribution equals 
Coulomb stress change estimates. In the early 90s there was an enthusiasm that the basic 
principle, namely coseismic stress changes, is the accurate operator for large magnitude 
aftershock prediction (Stein, 1999). More complex ideas were proposed supporting the role of 
the regional stress field priming the well-oriented for failure faults while still attributing 
aftershock occurrence solely to coseismic stress changes (King et al., 1994). Two major 
assumptions were passed on from these early influential works; firstly, a coseismic stress 
triggering threshold of 0.01 MPa is required (Harris and Simpson, 1992) and secondly, the 
most hazardous faults in evolving aftershock sequences are the ones that maximize stress 
(King et al., 1994). The 1992 M=7.3 Landers cascade revolutionized not only the way 
seismologists thought about local aftershock patterns but also about remote dynamic 
triggering; in a seminal work Hill et al. (1993) described the far reach of this mainshock that 
increased seismic activity across much of the western United States. Around the same time 
the rate-and-state laboratory-confirmed law brought continuum mechanics into aftershock 
forecasts by describing triggered seismicity as a response to these estimated stress 
perturbations (Dieterich, 1994).  
 
By the early 2000s, scientific research related with remote dynamic triggering (e.g. Prejean 
and Hill, 2009) and borehole breakouts (Townend and Zoback, 2004) revealed that even 
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minuscule stress changes from teleseismic waves can trigger seismicity and that crust is 
always in a critical state even in low strain rate intraplate regions, respectively. These results 
imply that active faults anywhere in the crust balance at the cusp of failure and even the 
smallest stress perturbations will lead to failure. A few years later the improvement of regional 
networks allowed for global studies on remote dynamic triggering (e.g. Hill and Prejean, 2015) 
revealing that the magnitude of peak dynamic stresses is not the controlling factor behind 
triggering potential but the orientation of regional faults with respect to backazimuth of 
incoming waves play an important role in susceptibility (Parsons et al., 2014). More complex 
observations related to microearthquakes (Aiken and Peng, 2014) and tremor triggering 
suggested that low effective stress results in a relatively low triggering threshold around 2-3 
kPa in central California (Peng et al., 2009). No matter how provocative these findings were, 
and still are, they did not change the implementation of Coulomb stress theory.  
 
Without a doubt the Regional Earthquake Likelihood Models (RELM) experiment 
(Schorlemmer et al., 2007) and the Collaboratory of the Study of Earthquake Predictability 
(CSEP; Zechar et al., 2010) motivated modelers to put forecast models under prospective 
testing tied with predefined performance evaluation metrics. Also, the challenges in scientific 
communication and testable forecast development came into the light in the post-2009 
L’Aquila disaster environment (Jordan et al., 2011). Nowadays, the operational earthquake 
forecast system in Italy (Warner et al., 2014) exemplifies the scientific advantages of 
prospective testing and its contribution to decision-making protocols (Marzocchi et al., 2015). 
Τhe majority of submitted models correspond to statistical forecasts; a fact that is mostly 
related to practical challenges behind the standardization of input data formats and computer 
code development. Perhaps the next phase of CSEP will look into these matters since the 
recent New Zealand experiment (Michael and Werner, 2018) and research projects underway, 
such as the NSFGEO-NERC funded The Central Apennines Under A New Microscope and 
the EU funded RISE, stimulate further the interest for physics-based forecasts.  
 
The above initiatives promoted the development of physics-based models up to the point that 
within few years regional and sequence-specific comparative testing revealed that these 
models present comparable to better performance than ETAS forecasts (Segou et al., 2013; 
Segou and Parsons, 2016; Cattania et al., 2018; Mancini et al., 2019). The recipe for the best 
physics-based forecast is somewhat expected; realistic heterogeneous in geometry faults, 
secondary triggering effects, optimization of model parameters, use of best-available (vs. 
early) data products. The last two are challenges that statistical catalog-based models also 
faced and partly addressed (e.g. Omi et al., 2014).  
 
Outside of the common challenges, the limitations of stress models are somewhat different 
and often not discussed in recent literature. In physics fault-based approaches the expected 
seismicity rate corresponds to nucleations on a specified fault geometry. The modelers 
eventually compare fault-specific expected rates (e.g. on strike-slip faults) against observed 
seismicity belonging to diverse populations. Addressing this limitation Segou and Parsons 
(2019), in a 3-yr retrospective sequence-specific experiment, used available past focal 
mechanisms as spatially-variable receivers under a spatially-varying stress field asking the 
question, Do earthquake occur on the idealized planes that maximize coseismic stress or they 
rupture pre-existing ones? They found that at a 0.89 majority occurs on pre-existing ruptures. 
This simple consideration of small-scale diverse-style faults is directly linked to the realization 
of critical stresses in the crust. The fact that the well-expressed large-scale parallel faults 
present negative coseismic stresses at the same time means that a small-scale spatial 
rearrangement of stresses takes place on the diverse fault populations. Putting this concept 
into a pseudo-prospective mode Mancini et al. (2019) represented off-fault small scale 
heterogeneity coupled with secondary triggering effects in the 2016-2017 Central Apennines 
sequence leading to higher information gain per earthquake on behalf of physics-based 
models against the statistical reference model. The second challenge is the relationship 
between the coseismic stress changes amplitude and the expected seismicity response. This 



	
	

3	

touches upon the persisting problem of earthquake occurrences in the shadow zones. An 
alternative explanation is now found when looking into the total stress estimates. However, 
the surprise comes when Segou and Parsons (2020) queried whether the theoretical 
maximum total stress plane corresponds to the triggered plane(s). They found this to be 
correct only for the 0.18 of triggered seismicity within the first few months of the sequence. 
The above findings on the efficiency of the maximum stress criterion remove some certainty 
from seismologists about which faults are immediately hazardous during an evolving 
earthquake sequence. Indeed, high expected rates on low-stressed misoriented faults 
following a mainshock raise concerns. The 2019 M7.1 Ridgecrest earthquake has stress 
loaded the Garlock Fault (Mancini et al., 2020) but so far the latter exhibits only shallow creep 
and swarm-type occurrences (Ross et al., 2019). The recent 2018 California test of the 1998-
issued 30-yr earthquake probabilities forecast revealed that only the 2004 M=6.0 Parkfield 
earthquake was “unambiguously connected with the forecast outcome” with better estimates 
provided by an improved model (Jackson, 2018).  
 
The encouraging results from the consideration of the total stress estimates in Segou and 
Parsons (2020) should be extended to incorporate localized triggering contributions from 
background seismicity, stress patterns within unfolding sequences and random-noise stress 
perturbations accounting for dynamic triggering effects but perhaps the most challenging is to 
describe spatially-varying stressing rates in the fine-scale of forecast experiments. Those 
considerations will help us map potential delayed responses within a decadal time scale over 
complex fault patterns that are now imaged in greater detail than ever before (Ross et al., 
2019). Admittedly the controlling factor behind our collective progress is the expansion of 
seismic networks and the implementation of techniques, such as the double-difference 
relocation, aided by waveform cross-correlation, (e.g. Waldhauser and Ellsworth, 2000) and 
template matching (Peng and Zhao, 2009), that shaped our capability to detect and 
characterize earthquakes in high seismic hazard regions, such as California, Italy, Japan, and 
New Zealand. Recently deep learning techniques (Mousavi et al., 2019) introduce novel 
workflows that revolutionize our image of earthquake activity with real-time implementation in 
sight. In cases of seismicity induced by industrial injections enhancing network detection 
capability will support decision-makers and operators (Zhang et al., 2019). It remains to be 
seen whether the physics-based models employing artificial intelligence (AI) catalogs will 
outperform AI-driven forecasts (e.g. DeVries et al. 2018).  
 
Moving forward new performance tests that will evaluate the impact of the aforementioned 
limitations in stress-based models should be introduced but also more physics has to come 
into play. The integration in physics-based models of slow earthquakes and postseismic, 
dynamic triggering and poroelastic effects should not be ignored. These phenomena control 
earthquake physics over different time scales and that by itself is a challenge. How do we 
reconcile between short, intermediate and long-term forecasts? Do we need new ideas? 
Segou and Parsons (2020) presented a new technique for mapping triggering potential but 
stills expanding our testing in a decadal time horizon requires heavy borrowing from rate-and-
state simulators tasked at the moment at significantly longer earthquake cycles. Any new 
ideas should present a unified explanation of induced to remotely triggered seismicity 
observations in different spatial and temporal scales. However, describing our model’s failure 
from understanding the reasons behind the poor performance is not the same task. 
 
There is no doubt that statistical ETAS forecasts provided the first quantification of predictive 
skills and that they carry a whole lot of physics that we do not fully appreciate at the moment. 
They are clever, catalog-based, globally accepted with a simplicity that invites transparency, 
comparability, and reproducibility. The empirically-driven statistical mathematics behind the 
estimation of a probability for any natural occurrence remains within the realm of Physics-at 
least according to the rationale behind the 1921 Nobel prize nomination committee for Physics 
in support of the statistical mechanics nominee (Isaacson, 2009).  
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Recent advances in ETAS model (Field et al., 2017) supported a more fault-based character 
while secondary triggering effects make stress-based forecasts more ETAS-like (Mancini et 
al., 2019). Therefore, there is room for exchanges of the advantageous traits of each model 
and perhaps the key in operational forecasting is doing exactly that—combing them in time 
and space while avoiding the devious course of overfitting (Warner et al., 2012). Marzocchi 
and Jordan (2018) presented a probabilistic framework for testing forecasts of earthquake 
probabilities showing how different experimental concepts can probe specific model features. 
The contribution of CSEP group towards an even more inclusive and well-designed testing 
protocol that will reveal any significant information gain behind physics-based simulations 
would require the extension of data input formats, computational resources and the 
introduction of additional performance metrics.  
 
Clearly, the road ahead for the next generation of physics-based models is far more difficult 
but we have to also recognize what we are asking of them, and that is to inform us about the 
complex physical mechanisms of earthquake triggering. That’s not an easy or trivial task. 
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