
Near Surface Geophysics, 2020, 18, 385–398 doi: 10.1002/nsg.12114

Electrical resistivity monitoring of river–groundwater interactions in a
Chalk river and neighbouring riparian zone

P. McLachlan1∗, J. Chambers2, S. Uhlemann3, J. Sorensen4 and A. Binley1
1Lancaster Environmental Centre, Lancaster University, Lancaster, LA1 4YQ, UK, 2Geophysical Tomography Team, British Geological
Survey, Keyworth, NG12 5GG, UK, 3Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, and 4British Geological Survey,
Wallingford, Oxfordshire 10 9NR, UK

Received January 2020, revision accepted June 2020

ABSTRACT
In the past several decades, there has been considerable interest in groundwater–
surface water interactions and their ability to regulate and cycle nutrients and pollu-
tants. These interactions are spatially and temporally complex, but electrical resistivity
imaging can be a useful tool for their characterization. Here, an electrical resistivity
imaging monitoring array was installed laterally across a groundwater-dominated
Chalk river and into the adjacent riparian wetland; data were collected over a period
of 1 year. Independent inversions of data from the entire transect were performed to
account for the changing river stage and river water conductivity. Additionally, data
from just the riparian zone were inverted using a temporally constrained inversion,
and the correlation between the riparian zone resistivity patterns and river stage was
assessed using time-series analysis. The river stage and the Chalk groundwater level
followed similar patterns throughout the year, and both exhibited a sharp drop fol-
lowing cutting of in-stream vegetation. For the independent inversions, fixing the river
resistivity led to artifacts, which prevented reliable interpretation of dynamics in the
riverbed. However, the resistivity structure of the riparian zone coincided well with
the intrusively derived boundary between the peat and the gravel present at the field
site. Time-series analysis of the inverted riparian zone models permitted identification
of seven units with distinct hydrological resistivity dynamics (five zones within the
peat and two within the gravel). The resistivity patterns in the gravel were predom-
inantly controlled by up-welling of resistive groundwater and the down-welling of
more conductive peat waters following the river vegetation cutting event. In compar-
ison, although the vegetation cutting influenced the resistivity dynamics in the peat
zones, the resistivity dynamics were also influenced by precipitation events and in-
creasing pore-water conductivity, likely arising from biological processes. It is evident
that such approaches combining electrical resistivity imaging and time-series analysis
are useful for understanding the spatial extent and timing of hydrological processes
to aid in the better characterization of groundwater-surface water interactions.
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1 INTRODUCTION

In recent decades, there has been significant interest in the bio-
geochemical cycling that occurs when groundwater (GW) and
surface water (SW) mix in the subsurface (e.g.Hill et al., 1996;
Prior and Johnes, 2002; Johnes et al., 2020). GW–SW mixing
regulates subsurface temperature and creates unique biogeo-
chemical conditions. Additionally, the presence of mineral sur-
faces and microbes is such that biogeochemical cycling can ac-
tively transfer the nutrients and pollutants across the GW-SW
interface, and consequently mitigate ecological degradation
throughout the catchment (Kuusemets et al., 2001; Shabaga
and Hill, 2010).

However, the importance of biogeochemical transforma-
tion may be misrepresented in catchment management liter-
ature due to the complex nature and variability of processes
occurring in different settings. For instance, the efficiency of
biogeochemical cycling is controlled by the sources and timing
of water mixing, the substrate and organic matter content, and
the microbial communities present, all of which can be drasti-
cally different between sites, even within the same catchment
(Frei and Peiffer, 2016; Bernard-Jannin et al., 2017). Charac-
terizing these parameters is not trivial, and limited spatial res-
olution of intrusive methods may make it difficult to unravel
complex interactions. There is a need for methods to reveal
properties and processes related to GW–SW interactions, for
example the timing and extent of GW–SW mixing, with high
spatial and temporal resolution.

In recent years, there has been an increasing appli-
cation of geophysics to characterize GW–SW interactions
(McLachlan et al., 2017). For example, electrical resistivity
measurements obtained from electrical resistivity imaging
(ERI) or electromagnetic induction methods have been used
to characterize riverbed structure (e.g. Crook et al., 2008) and
to reveal zones of GW up-welling (e.g. Binley et al., 2013).
Time-lapse ERI is particularly useful for monitoring GW–SW
interactions because changes in resistivity can be interpreted in
terms of changing saturation or changing pore-water conduc-
tivity. For example, time-lapse ERI has been used with saline
tracers to monitor GW–SW interactions over several hours in
the hyporheic zone (e.g. Ward et al. 2010; Toran et al., 2012).
Additionally, time-lapse ERI has also used natural electrical
contrasts (e.g. from solute content or temperature) of water
to monitor longer term GW–SW interactions (e.g. Johnson
et al., 2012; Wallin et al., 2013; Steelman et al., 2017).

In this work, an ERI array was installed to characterize
the timing and location of GW–SW interactions occurring be-
neath the River Lambourn and the adjacent riparian zone at

Figure 1 Spatial extent of geology at the field site and the location of
the ERI monitoring array. Locations of gravel and Chalk piezometers
are shown with a circle and a cross, respectively.

the Boxford Wetland, West Berkshire, UK. The field site was
investigated previously by Uhlemann et al. (2016) who used
time-lapse ERI to reveal the complex hydrological patterns
involving a peat with two-layer behavior and an underlying
gravel. Here, ERI data were collected diurnally over 1 year
to monitor electrical resistivity in both the riverbed and the
riparian zone, and determine their relation to the changing
stage and GW levels. The intention here was to assess the use-
fulness of ERI monitoring for understanding the timing and
spatial extent of GW–SW interactions.

2 METHODOLOGY

2.1 Field site

The River Lambourn and its associated wetlands, comprise
one of the least impacted Chalk river systems in the UK, and
they have been the subject of many publications to understand
groundwater–surface water (GW–SW) interactions (e.g. Allen
et al., 2010; Johnes et al., 2020). Furthermore, the Boxford
Wetland (Fig. 1) is a Site of Special Scientific Interest (Natural
England) and a Special Area of Conservation (EU Habitats
Directive) owing to the habitat it provides for flora and fauna;
particularly Desmoulin’s whorl snail (Vertigo moulinsiana)
and river-water crowfoot (Ranunculetum fluitans), which
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exhibits prolific growth during the spring–summer months.
As part of the river management, this aquatic vegetation is
cut during the year, primarily to maintain fish habitats for
angling and has been shown to significantly influence the
river stage and GW levels (Old et al., 2014).

The River Lambourn has a base flow index of 0.96
(Marsh and Hannaford, 2008) at the nearest hydrometric sta-
tion (6 km SE of the field site); the river stage is therefore
predominantly GW controlled. The River Lambourn catch-
ment, and wider Berkshire Downs area, is underlain by exten-
sive, broadly horizontal, Upper Cretaceous Chalk up to 250
m thick in some areas. At the field site, the underlying Chalk
is characterized by variable degrees of weathering such that
there is a well-developed, largely impermeable, putty layer in
its upper sections. The presence of this putty layer is thought
to govern the hydrology of the site; for example, regions where
this layer is poorly developed form zones of preferential GW
discharge (Younger et al., 1989).

The extent of the putty chalk was investigated by
Chambers et al. (2014a) using three-dimensional (3D) electri-
cal resistivity imaging (ERI), and locations of GW up-welling
within the wetland were revealed by House et al. (2015) via
a temperature survey. At the site, the Chalk is overlain by
Quaternary alluvial gravel and peat with a typical combined
thickness of 3–7m.The gravels exhibit braided structures, and
the basal gravels are characterized by high proportions of re-
worked chalk,whereas the peat is interpreted to have accumu-
lated during a series of wet and dry periods, as evidenced by
the predominance of organic matter sourced from terrestrial
and aquatic plants (Newell et al., 2015, 2016).

From temporal resistivity patterns, Uhlemann et al.
(2016) observed that the peat comprised two hydrologically
distinct layers. It was revealed further using intrusive sam-
pling that these layers were separated by a thin layer of clay.
Additionally, Musgrave and Binley (2011) used time-lapse
ERI over a 1 year period in an adjacent wetland on the east
side of the Lambourn, finding that seasonal temperature
variation dominated the resistivity signal. They interpreted
areas of low temporal variability to be sites where stable GW
temperatures subdued seasonal temperature variations within
the subsurface.

2.2 Site selection

Before the installation of the ERI array, a site of GW up-
welling was identified from a riverbed temperature survey. A
temperature probe was built by housing a thermocouple in a
1-cm diameter steel pipe, 2 mm holes were drilled in the vicin-
ity of the thermocouple and the end of the pipe was flattened

Figure 2 Riverbed temperature survey indicating areas of GW
up-welling relative to the position of the ERI array.

and sharpened to enhance riverbed penetration. The probe
was driven into the upper 5–10 cm of the riverbed during win-
ter (08 Jan 2017); throughout the survey, the river water tem-
perature was 7°C and the GW was 10.5°C within the Chalk
piezometer (Fig. 1). Riverbed temperatures ranged from 7 to
10.5°C, and locations with temperatures close to the temper-
ature of the Chalk GW were interpreted to be areas of GW
up-welling. The ERI array was installed to coincide with a
zone of elevated riverbed temperature (Fig. 2), i.e. a zone of
perceived GW–SW connectivity. Additionally, although there
is other potential zones of GW-upwelling, this site was chosen
beacuse of the relatively low river stage, non-complex bed-
form geomorphology, and proximity to previously installed
instrumentation.

2.3 Electrical resistivity imaging data acquisition

ERI data were collected using a PRIME ERI monitoring
system (Huntley et al., 2019). The electrode array comprised
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Figure 3 Locations of electrodes (white dots) and data loggers, view
is in the downstream direction. One set of temperature loggers was
installed on the East bank (EB-1) and three were installed in the West
bank (WB-1, 2 and 3). EB-R and WB-R were used to log stage, tem-
perature and electrical conductivity of the river. WB-G was used to
monitor the temperature and water level in the gravel. Logger sets
WB-1, 2 and 3 and EB-1 were installed < 0.5 m either side of the
ERI transect, EB-R and WB-R were installed ∼4 m downstream and
∼1 m upstream of the ERI transect, respectively.

32 point electrodes each ∼0.55 m apart; a larger spacing
was used at either riverbank to prevent electrodes being
periodically exposed to the air during low river stage (Fig. 3).
Two electrodes were positioned in the east bank, 18 on the
riverbed, and 12 in the west bank; concrete slabs were used to
prevent movement of the cable throughout the survey period.
A dipole–dipole measurement sequence was selected as they
provide good vertical and horizontal resolution (Chambers
et al., 2002). A sequence with dipole lengths (a) of 1–5 and
dipole separations (n) of 1a to 6a was used, resulting in a
total of 438 measurements along with a full set of reciprocal
measurements.

ERI data were collected diurnally from 16 Nov 2017 to
30 Nov 2018, at both 03:30 and 15:30 GMT. Two river log-
gers were housed in separate PVC pipes and installed in the
river to monitor stage, temperature and electrical conductiv-
ity; a series of temperature loggers were installed to correct
the ERI inversions for seasonal temperature variations (Fig. 3).
Additionally, the GW levels in the Chalk and gravel piezome-
ters (see Fig. 1) were monitored with pressure loggers, Chalk
water level was monitored from 11 Feb 2018 and gravel level
was logged from the start of the ERI monitoring period, with
a logger malfunction leaving a period from 08 Feb 2018 to 27
Jun 2018 absent from the record.

2.4 Data quality

Before inversion, data quality and general patterns within the
ERI data were assessed. Reciprocal errors were calculated for
each quadrupole from the difference between direct and recip-
rocal measurements; a mean resistance was also calculated to
express reciprocal errors as a percentage. Apparent resistivity
values were calculated to explore the pattern of data through-

out the monitoring period by assuming a flat topography and
an electrode spacing of 0.55 m.

Data quality was good with most measurements having a
reciprocal error< 0.5%.Measurements with reciprocal errors
exceeding 10%or apparent resistivities exceeding 400 ohm�m
were removed from their respective data sets. To ensure that
datasets had similar sensitivity patterns, datasets with less
than 416 ohm�m (95%) mean resistivity values were dis-
carded. This resulted in a total of 80 datasets out of 739 being
discarded; this included 25 day period (between 02 Sep 2018
and 26 Sep 2018) where high contact resistances of electrodes
in the riparian zone gave data with high reciprocal error.

2.5 Electrical resistivity imaging inversion

2.5.1 Time-lapse electrical resistivity imaging inversion

Time-lapse ERI data can be inverted through performing
standard, independent inversion of data collected at different
times (e.g. Steelman et al., 2017). However, more elaborate
methods have also been proposed, such as inversions where
data are constrained to a previous model. This can be done
by inverting data with some penalty term for divergence from
a prior model (e.g. Oldenborger et al., 2007), or difference
inversions whereby the difference between two datasets is
used to model deviations from a model obtained from one of
those datasets (LaBrecque and Yang, 2001). For the difference
inversions, systematic noise, for example arising from poorly
surveyed electrode positions, poor galvanic contact, and
numerical measurement errors can be removed. Such ap-
proaches are useful in cases where systematic errors dominate
measurement errors. However, as investigated by Lesparre
et al. (2017), special care must be taken when characterizing
errors in difference inversions.

When large datasets are concerned, sequential inversions
may be time consuming; alternatively, datasets may be in-
verted simultaneously using some temporal regularization to
link datasets (e.g. Johnson et al, 2012; Wallin et al., 2013). In
this way, data may be treated in parallel, which can be efficient
for datasets collected over long periods or with high temporal
resolution. Although these methods require a consistent mesh
for each inversion, Wallin et al. (2013) demonstrated how the
inclusion of a zone of fine mesh elements could be used to
limit model regularization across a dynamic water table and
improve interpretation of dynamic GW–SW patterns.

2.5.2 River-based electrical resistivity imaging

It is important to note that additional complications arise
in aquatic ERI applications, in comparison to terrestrial
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applications, due to the abrupt transition between a conduc-
tive river and a more resistive riverbed. For example,McLach-
lan (2020) demonstrated using synthetic modelling that fix-
ing the river resistivity in the inversion significantly improves
riverbed characterization. However, the increased sensitivity
of measurements to the river, in comparison to the riverbed,
is such that erroneous fixing of river resistivity can lead to
significant artifacts within the riverbed region of the inverted
model. This issue becomes more problematic in time-lapse sur-
veys given that erroneous fixing of river regions in models for
sequential datasets could produce significant artificial changes
through time, especially if river parameters (i.e. stage and con-
ductivity) change.

Due to these complexities, in this work, for inversion of
data from the full ERI transect, a new mesh was generated for
each dataset to account for the change in river stage and in-
versions were conducted independently. Although it could be
argued that an approach similar to Wallin et al. (2013) with
consistent mesh and dynamic water table could be used, this
would require the incorporation of a layer with infinite resis-
tivity to represent the air. Alternatively, an approach involving
interpolation of prior inversions onto a new mesh for differ-
ence inversions could have been used; however, it was antic-
ipated that, if present, resistivity changes related to GW–SW
interactions would be revealed by standard independent in-
versions. Finite element meshes were generated using Gmsh
(Geuzaine and Remacle, 2009). Although the meshes for each
dataset were inherently different, they were generated using
the same characteristic lengths to obtain similar finite ele-
ment sizes and thus minimize substantial differences in for-
ward modelling errors.

2.5.3 Error modelling and inversion

As noted, in this work reciprocal measurements were obtained
to characterize errors. Reciprocal errors are sensitive to both
systematic and random components, for example arising from
fluctuating contact between electrodes and soil, and the resul-
tant modification of current pathways (Binley et al., 1995). In
this work, an error model is used to assign measurement error
to ensure appropriate data weighting during the inversion. Re-
ciprocal error (εrec) is proportional to the measured resistance
(R) and is often expressed by the following relationship:

εrec = aR+ b, (1)

where a and b are fitting parameters. An envelope fit error
model was used to encompass the majority of data (e.g. Slater
et al., 2000). Log transformed mean resistances were sorted

into bins of equal width, and a linear model was fitted be-
tween the log of the sum of mean reciprocal error and twice
the standard deviation of the reciprocal error, and the mean re-
sistance. This meant that the error model encompassed 97%
of the data.

2.5.4 Inversion

Data were inverted using R2 (Binley, 2019), a robust and
mature inversion algorithm that uses the L2 norm (of the pa-
rameter space) to minimize the misfit. Through reduced lo-
cal regularization, R2 permits blocking regularization across
specified regions, for example the river–riverbed interface. To
begin with each dataset was inverted independently, with a
river resistivity fixed to the logged value. Several tests were
also carried out whereby regularization between the river and
riverbed was blocked, but the inversion was able to modify the
resisitivity of the river. However, from experience this results
in the river being modelled with large ranges in resistivity, es-
pecially in themesh elements near to the riverbanks. Following
inversion of data from the entire ERI transect, data obtained
from the riparian zone electrodes were inverted separately us-
ing a consistent mesh. Furthermore, to ensure smooth changes
in modelled resistivity of the riparian zone, data were con-
strained to the prior inversion using R2 and inversions were
conducted sequentially.

2.6 Temperature correction

Given the influence of temperature on resistivity, inverted
models were corrected for seasonal temperature variations.
Using the procedure outlined by Chambers et al. (2014b), tem-
perature data collected from different depths within the peat
and gravel were fitted to the following:

Tz,t = Tair + Ae−( zd )sin
(
ωt + ϕ − z

d

)
, (2)

where Tz,t is the average temperature of day t at depth z,Tair is
the mean annual temperature of the air, A is the yearly ampli-
tude of the air temperature variation, d is the depth by which
the amplitude of the temperature variation reduced by 1/e, ϕ is
a phase offset, and ω is the angular frequency (2π /365). In this
case, the obtained penetration depth of the temperature signal
was 1.375 m. Resistivity models were then corrected using the
ratio model (see Hayashi, 2004; Ma et al., 2010):

ρcorrected = ρmodel

[
1 + c

100

(
Ttarget

)− Tmodel

]
, (3)
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where ρcorrected and ρmodel are the corrected resistivity and the
resistivity obtained from the inverse model, respectively, c is
a correction factor, and Ttarget and Tmodel, is the target tem-
perature and modelled temperature. Each inverse model was
corrected to the mean annual temperature, 10.09°C, and the
c value used here,−2.95°C−1, was determined experimentally
by Uhlemann et al. (2016) for the Boxford field site. The good
fit when using both the peat and gravel temperatures indicated
that thermal diffusivities of both materials were similar. It is
important to note that the corrections applied here are for lat-
erally averaged seasonal changes in temperature and are not
for diurnal temperature variations.

2.7 Time-series analysis

To aid with the interpretation of the ERI models obtained
from the riparian zone data, cross-correlation metrics were
used to assess the relationship between the changes in resis-
tivity of each inversion element and the river stage. Summary
statistics such as maximum absolute correlation and time lag
to maximum absolute correlation offer a robust method for
determining areas of the subsurface that exhibit similar be-
havior. Such analysis was employed by Johnson et al. (2012)
and Wallin et al. (2013) to assess the infiltration of water due
to the changing river stage of the River Columbia at the Han-
ford Nuclear Site, Washington, United States.

It was anticipated that the increasing river stage would in-
crease the water content of the peat in the riparian zone, that
is either from lateral infiltration from the river or vertical up-
welling of GW, given the hydraulic connection between the
river and GW. Consequently, a negative correlation between
river stage and electrical resistivity in the peat was anticipated.
However, it is also important to note that if conductive waters
are replaced by more resistive waters, a positive correlation
could be expected. In addition to obtaining maximum abso-
lute correlations, which indicate the connection of the sub-
surface to the changing river stage, the lag time to maximum
absolute correlation should be related to pore water velocities
(Johnson et al., 2012). For example, areas with a short lag time
could be used to indicate areas of higher pore water velocity
and preferential flow.

Given that there is a gap in ERI coverage between 02 Sep
2018 and 26 Sep 2018, and that correlation analysis requires
equally spaced data, only data from 16 Nov 2017 to 02 Sep
2018 was considered.Other gaps in the monitoring (≤ 2 days)
were accounted for by linearly interpolating resistivity val-
ues of elements from temporally neighbouring inverse models.
The cross-correlation between river stage and bulk resistivity

of each element was calculated using the Pearson correlation
for different time lags, for example:

corr (t ) = 1
Nk

Nt−1∑
k=0

(
ρt+k − ρ̄

σρ

)(
Sk − S̄

σS

)
, (4)

where Nt is the number of stage and resistivity values in the
time sequence,Nk = Nt-1, ρk is the bulk resistivity at time k, ρ̄
is the mean resistivity of the time sequence, σρ is the standard
deviation of the resistivity time sequence, Sk, S̄, and σ S are
the corresponding river stage time-series, mean, and standard
deviation.

3 RESULTS

3.1 General electrical resistivity imaging data patterns

Over the monitoring period, the river stage ranged from 90.7
to 91.1 m above sea level and rose steadily frommid Dec 2018
due to increasing water level in the Chalk and growth of river
water crowfoot (see Fig. 4a). The abrupt drop in stage on 20
Jun 2018 coincides with the removal of the river vegetation;
furthermore, this drop was also observed in the Chalk wa-
ter level (Fig. 4b). The specific conductivity of the river water
(∼55 mS/m) was stable throughout the year and matched the
specific conductivity of the Chalk groundwater (GW). As a
result, the electrical conductivity variation is predominantly
dependent on river temperature variation (Fig. 4c).

The mean apparent resistivity coincides with the river
stage and drops abruptly following the aquatic vegetation
cutting (Fig. 4d). Curiously, the aquatic vegetation cutting
event results in different patterns of the maximum and mini-
mum resistivities (Fig. 4c): the maximum resistivity shows an
abrupt increase following the vegetation cutting, whereas the
minimum resistivity shows an abrupt decrease. The increase
in maximum resistivity could be attributed to an increase in
the measured resistivity of the largest quadrupole spacing
given that the sensitivity patterns will be shifted significantly;
the fall in minimum resistivity could be attributed to the bulk
increase in the conductivity of the river, for example without
the presence of plants, and associated trapped sediment
(Old et al., 2014). Moreover, it can be seen that the mean
reciprocal error also increased during the time immediately
following the vegetation cutting. This was due to the in-
crease in contact resistances of the riparian zone electrodes
immediately following vegetation cutting, perhaps due to
a reduction of moisture content in the uppermost riparian
zone.
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Figure 4 Seasonal patterns of river properties and ERI measurements:
(a) river stage, (b) Chalk water table, (c) resistivity of river water, (d)
mean (red points), maximum and minimum apparent resistivity of
each dataset and reciprocal error as a percentage (blue points). Water
levels are expressed as meters above sea level (masl).

3.2 Background resistivity

The resistivity model for the background dataset (from 16
Nov 2017) is displayed in Fig. 5. A two-layer structure can
be observed in the right side of the resistivity model, which
coincides well with the intrusively derived depths to the peat–
gravel interface (white dashed line). The bulk resistivity of the
peat layer is in the order of 15–50 ohm�m, which is in agree-
ment with previous electrical resistivity imaging (ERI) studies
conducted at the field site (e.g. Chambers et al., 2014a; Uh-
lemann et al., 2016). Similarly, resistivities of 70–200 ohm�m

E
le

va
tio

n 
(m

)

Distance (m)

16 Nov 2017

Figure 5 Background resistivity model from 16 Nov 2017.

for the gravels beneath the riparian zone and in the majority
of the riverbed also agree with Chambers et al. (2014a) and
Uhlemann et al. (2016). However, immediately beneath the
river, modelled resistivities exceed 1000 ohm�m, for example
beneath electrode 5 and between electrodes 19 and 20 in Fig.
5 (note that the colour scale is limited to 1000 ohm�m). These
extreme values are similar to those investigated by McLach-
lan (2020) and are likely to have arisen from a combination
of reduced sensitivity in the upper portion of the riverbed and
complications in fixing of river parameters in the inversion.

3.3 Temporal resistivity patterns

The extreme resistivity values beneath the riverbed are partic-
ularly noticeable when comparing data collected at two dif-
ferent times. For instance, comparing the background dataset
(16 Nov 2017) and the dataset collected the day before river
vegetation cutting (19 Jun 2018), changes exceeding ± 150%
can be observed in the riverbed (Fig. 6b). Given the compara-
ble specific conductivities of the GW and the river water, and
the fact that changes due to temperature could only account
for ∼3% change in resistivity per °C, these patterns are likely
to be artifacts. As subtle changes in the riverbed resistivity dy-
namics are likely to be obscured by these inversion artifacts,
the focus of the remainder of the paper is on characterizing
the riparian zone dynamics.

3.4 Time-series analysis

Time-series analysis of the river stage and bulk resistivity for
each mesh element of the riparian zone data was used to iden-
tify areas that exhibited similar behaviors. Plots of maximum
absolute correlationwith river stage and time tomaximum ab-
solute correlation with river stage are presented in Fig. 7, and
several time-series from elements of interest are presented in
Fig. 8. The mean resistivity and coefficient of variation for the
resistivity for each mesh element throughout the monitoring
period were also calculated. The mean resistivity (Fig. 7a) of
the entire monitoring period shows the same pattern as Fig. 5,
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19 Jun 2018 16 Nov 2017 to 19 Jun 2018

Figure 6 (a) Resistivity model from 19 Jun 2018 and (b) change in model resistivity between 16 Nov 2017 and 19 Jun 2018. [Correction made
on 15 July 2020, after first online publication: Figure 6 was previously a repetition of Figure 5 and has now been corrected in this version.]

i.e. a more conductive peat overlying a more resistive gravel
layer. The highest variation in resistivity can be found in the
upper portion of the peat; however, the gravel resistivity also
demonstrates some variability (Fig. 7b). It is also important to
note that although correlation analysis was done using river
stage data, it can be seen from Fig. 4(a) and 4(b) that the Chalk
water level and river stage are coincident with one another; the
river stage was used in the time-series analysis due to its longer
period of coverage.

It is immediately apparent that the maximum absolute
correlations of peat resistivity and river stage exhibit a nega-
tive correlation, whereas the maximum absolute correlation
of the resistivity in the gravels is positively correlated with
the river stage (Fig. 7c). Furthermore, in the gravels, the most
common lag to maximum correlation was 0 days (Fig. 7d) in-
dicating the behavior of the gravel resistivity and river stage
coincide well. However, a zone where lag time to maximum
correlation is in the order of 30–40 days can be seen at the
horizontal position of ∼14.8 m. In comparison, the peat lag
times are more disparate, with two prominent zones charac-
terized by short lag times (<5 days).

Given the anticipated high permeability of gravel and the
presence of the zone characterized by lag times of 30–40 days,
it is important to explore what these cross-correlation met-
rics actually show in terms of the resistivity and stage time-
series (see Fig. 8). For instance, element 1 (Fig. 8a) exhibits
a negative correlation (−0.812) and a large lag time to min-
imum correlation (66.5 days); it is evident in comparing the
time series that although the stage drop following vegetation
cutting coincides with a resistivity drop, the river stage does
not coincide with the pattern of the resistivity well. In com-
parison, element 2 (Fig. 8b) is characterized by a negative
correlation and a shorter lag time to the minimum correla-
tion (6.5 days). However, it is evident again that the resis-
tivity time-series is not simply shifted as the maximum stage
andminimum resistivity occur at similar times. Similarly, com-
plementary bulk resistivity patterns are also evident for ele-
ments 3 and 4, but the time lag to maximum absolute corre-

lation is substantially longer than the lag between the max-
imum stage and the minimum resistivity (Fig. 8c and 8d).
Furthermore, although the stage drop following the river veg-
etation cutting coincides with an increasing resistivity in el-
ement 4, the change resistivity pattern during Nov 2017 to
Mar 2018 behaves differently from the stage, indicating some
other factors may be governing resistivity patterns in the peat
(Fig. 8d).

For the elements in the gravels, element 6 is character-
ized by a positive correlation (0.976) and a lag of 0 days
and follows the same pattern as the river stage (Fig. 8f). In
comparison, element 7 is characterized by a similar positive
correlation (0.91), but a long lag to maximum correlation
duration (Fig. 8g). On inspection of Fig. 8(g), it can be seen
that following an initial drop in resistivity immediately after
the vegetation cutting the resistivity increases above the pre-
cutting value. This, again, gives evidence of additional controls
on resistivity occurring in the riparian zone, other than the
changing river stage. Lastly, although element 8 is located in
the gravel, according to intrusive measurements, it behaves
more similarly to mesh elements in the peat. This could be
because intrusive measurements were not made directly along
the ERI line, due to the presence of tree roots, or due to some
additional three-dimensional (3D) effects influencing the
inversion.

For the majority of the peat (i.e. areas showing a nega-
tive correlation in Fig. 7c), the minimum resistivity occurs im-
mediately before the vegetation cutting (Fig. 8). Furthermore,
whereas the stage decrease is abrupt, the increasing resistiv-
ity following the vegetation cut is more gradual. This implies
that the behavior of the stage and resistivity of the peat are
not linearly related. Additionally, the metric of time-lag to
maximum absolute correlation is somewhat misleading as it
can be seen clearly in Fig. 8(b) and 8(g) that it does not give
a true measure of the lag time between the river stage and
bulk resistivity patterns. It does still, nonetheless, offer a use-
ful metric of identifying areas in the riparian zone with similar
behaviors.
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Figure 7 (a) Mean resistivity, (b) coefficient of variation of resistivity, (c) maximum absolute correlation with river stage and (d) lag time to
maximum absolute correlation. The eight marked positions in each image are shown as time-series plots in Fig. 8.
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Figure 8 Normalized time series of selected elements displayed in Fig. 7.Values are normalized by subtracting themean value of the corresponding
time series and dividing by the standard deviation of the corresponding time series, as is done in equation (4). Red lines are the normalized
resistivity values, and black lines are the normalized river stage.

4 RIPARIAN ZONE DYNAMICS

4.1 Resistivity patterns in the riparian zone

Based on the cross-correlation metrics discussed above, the
subsurface was split into seven zones, five within the peat
(P1-5) and two within the gravel (G1-2). The thresholds
used to discriminate between different zones are displayed in
Table 1 and the respective zones are shown in Fig 9(a). The ge-

ometric mean resistivities for each zone throughout the mon-
itoring period were then calculated and are shown in Fig 9(b)
alongside river stage and precipitation data.

In Fig 9(b), it can be seen that the P1 resistivity gradually
increased from Nov 2017 to its maximum resistivity during
Feb 2018, following this, resistivity began to decrease. The re-
sistivity of P1 responds to the vegetation cutting by exhibiting
a sharp increase, then from Jun 2018 to Nov 2018 it increases
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Table 1 Summary of the different zones of the riparian zone as defined by cross-correlation metrics and coefficients of variation. P zones denote
zones within the peat and G zones denote zones within the gravels.

Zone name

Maximum absolute
correlation to river

stage

Time-lag to maximum
absolute correlation to

river stage [Days]
Coefficient of variation

[%] Horizontal location [m]

P1 < −0.7 > 15 and < 50 > 20 –
P2 < −0.7 > 15 and < 50 < 20 –
P3 < −0.7 < 15 – –
P4 < −0.7 < 15 – < 13.5
P5 > −0.5 and < 0 > 50 – > 13.5
G1 > 0.7 < 15 – –
G2 > 0.7 > 15 – –

steadily with some rapid drops followed by gradual increases,
which coincide with precipitation events (Fig. 9b), for example
on the 14 Oct 2018 and 10 Nov 2018. In comparison, the
resistivity of P2 increases slightly from Nov 2017 through to
Feb 2017 where it begins to decrease to a minimum around
the time of the vegetation cutting. The resistivity of P2 is also
perturbed by the vegetation cutting but is characterized by a
small drop in resistivity, before returning to pre-cutting values
immediately after the vegetation cutting. Following this, the
resistivity increases, similarly to P2 and it also experiences
sudden drops in resistivity on 14 Oct 2018 and 10 Nov
2018, albeit the signal is more subdued. The resistivity of P3
follows a similar pattern as P2 but it increases just before the
vegetation cutting, and immediately decreases following the
vegetation cutting, before resuming similar patterns as those in
P2. The bulk resistivity patterns for P4 are the most variable;
however, they become more stable as resistivity falls, probably
due to increasing saturation; in general, the resistivity patterns
are similar to those in P1. P5 shows a much less variable
resistivity pattern; however, it is still affected by the vegetation
cutting and shows a slight, and gradual, increase following the
cutting. Also, P1, P2, P3 and P4 all show a sharp increase on
01 Mar 2018; this does not appear to coincide with precipita-
tion; however, it does precede a sudden increase in river stage
and could instead be related to changing groundwater (GW)
levels.

The resistivity of G1 follows very closely the pattern
of the rising stage and is characterized by a drop in resis-
tivity immediately following the vegetation cutting, similarly
to P3. From Jun 2018 onward, the resistivity of the zone
remains relatively stable, with a few perturbations around
early to mid Oct 2018. Similar resistivity patterns are seen
in G2; however, the resistivity is both lower and the ranges
in resistivity are not as great. Also, immediately following
the vegetation cutting the resistivity of G2 increases to a

value above the pre-vegetation-cutting level; this is not seen
in G1.

4.2 Interpretation of hydrological processes within the
riparian zone

P1 and P2 are comparable to the upper and lower peat
zones identified by Uhlemann et al. (2016), who determined
a boundary at ∼0.5 m beneath the surface. Although Uhle-
mann et al. (2016) observed a reduction in the resistivity of
the upper peat layer in comparing resistivity models from Dec
2013 and Apr 2013, during the equivalent period in this work
P1 showed an increasing resistivity during Jan 2018 and Feb
2018 before returning to resistivity values similar to Dec 2017
during Apr 2017. Uhlemann et al. (2016) attributed the re-
ducing resistivity of the upper peat layer during this time to
an increase in pore-water conductivity as a result of increased
activity of vegetation and microbes following the onset of in-
creased temperatures. Although biological activity can explain
the reduction in resistivity from Dec 2012 to Apr 2013 of the
upper peat in their work, the higher temporal resolution of
this work revealed an increasing resistivity from Nov 2017 to
Feb 2018 which can be attributed to a reduction in moisture
content due to the draining of waters from P1 into the lower
zones. Additionally, Uhlemann et al. (2016) observed an in-
creasing resistivity in the lower peat layer during the Dec 2012
to Apr 2013 period and attributed it to the up-welling of more
resistive GW. Here, the resistivity of P2 remains fairly stable
from Nov 2017 to Feb 2018 indicating that this is probably
not the case here: this is in agreement with the behavior of
the river stage which suggest that the Chalk GW levels remain
relatively stable during this period Fig 4.

Following from the P1 resitivity increase between Dec
2017 and Feb 2018, the resistivity decreases from Mar 2018
to Jun 2018. As with Uhlemann et al. (2016), this is attributed
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Figure 9 (a) Shows the zonation of the riparian zone based on time-series summary statistics, dotted line shows the intrusively determined peat–
gravel interface; (b) shows the resistivity time series for each zone, the river stage, and the daily precipitation data from Deanwood golf course
(5 km SE of field site).

to increasing pore-water conductivity, perhaps as a result of
vegetation andmicrobe related processes. The increasing pore-
water conductivity in P1 also agrees with the patterns in P2,
G1 and G2 where their bulk resistivity decreases immediately
following the vegetation cutting, as a result of an abrupt drain-
ing of more conductive water from P1. The resistivity patterns
in G1 and G2 following the vegetation cutting are also dis-
tinctive. While the resistivity of G1 remains stable following
its initial drop the resistivity of G2 increases perhaps due to
influx of more resistive water, perhaps as GW levels equili-
brate following vegetation cutting.

It is evident from Fig 9(b) that the vegetation cutting dom-
inates the resistivity dynamics of the riparian zone; however,
patterns within the P1, P2, P3 and P4 indicate that precipi-

tation events influence the saturation of the peat layers when
resistivity is high, i.e. when moisture content is low. For in-
stance, the influence of precipitation is most evident during
Nov 2017 to Mar 2018 and Oct 2018 to Nov 2018. It is evi-
dent from Fig. 10 that rainwater infiltration is focused on the
top-left portion of the riparian zone following the precipita-
tion event that occurred between electrical resistivity imaging
(ERI) measurements made on 13 Oct 2018 at 15:30 GMT and
14 Oct 2018, also at 15:30 GMT.

4.3 Determining hydrological properties of different zones

In addition to interpreting the patterns observed in each zone,
the information about the hydrological properties of each can
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Figure 10 Comparison of resistivity models obtained on 13 Oct 2018
and 14 Oct 2018, both obtained at 15:30 GMT.

also be inferred. For instance, P1 and P4 are seemingly closely
connected given that they respond similarly to changes in the
river stage and precipitation events. However, given the higher
resistivity and more extreme changes in response to precipita-
tion events, it is anticipated that P4 is characterized by higher
porosity. Furthermore, given that the resistivity of P4 is always
higher both zones are unlikely to have ever been completely
saturated during the monitoring period.

In comparison, the resistivity of P5 remains very stable
during the monitoring period, and whilst the effect of the veg-
etation cutting is seen on the resistivity, the response is both
subtle and prolonged (Fig 9b). This implies that this zone is not
well-connected to the rest of the peat, and pore-water veloci-
ties are low. This could be attributed to a higher clay content
which would be in agreement with its low resistivity. P2 and
P3 both show a decrease in resistivity following the vegetation
cutting (i.e. the opposite behavior of P1 and P4). This implies
that although throughout the majority of the year there is a
limited connection of P1 and P4 with P2 and P3, when hy-
draulic gradients are large enough, water can be exchanged
between zones. The increase in resistivity in P3 immediately
before the vegetation cutting is also worthy of mentioning
and could be related to the up-welling or lateral infiltra-
tion of more restive water after some threshold water level is
surpassed.

Lastly, the different behaviors of the gravel zones G1 and
G2 are important to discuss given that they were anticipated
to exhibit similar patterns. The behavior of G1 is intuitive;
the resistivity increases due to the up-welling of resistive GW,
it then drops following the vegetation cutting due to the drain-
ing of more conductive pore waters before its resistivity sta-
bilizes as the conductive pore waters from the upper peat lay-
ers are diluted with resistive GW. In comparison, although G2
follows the same pattern it is less resistive than G1 and the re-
sistivity increase during Mar 2018 to Jun 2018 is not as large.
Furthermore, whereas the resistivity drop following the vege-
tation cutting in G1 is abrupt, it is more gradual in G2. This

coupled with the increasing resistivity following the initial re-
sistivity drop following vegetation cutting could be a result of
slower influx of more conductive waters from above (e.g. due
to the presence of P5) and then the up-welling of more resistive
GW however the exact mechanisms are unclear.

The presence of different zones within the peat may be at-
tributed to the complex depositional patterns at the field site.
For instance,Newell et al. (2015) observed inter-bedded sands
within the peat that they propose could be indicative of former
channels or over bank deposits. Similarly, using ground pene-
trating radar data Newell et al. (2015) demonstrated that the
upper portion of the gravels is highly structured with clearly
defined channel form features that could give rise to the dis-
tinct behavior present within the gravels.

5 CONCLUSIONS

Time-lapse electrical resistivity imaging (ERI) was carried out
to reveal vertical and lateral exchange of a river with the
groundwater (GW). Despite measures to appropriately ac-
count for the river stage and resistivity, resolving processes in
the riverbed was not possible. Furthermore, the localized na-
ture of some artifacts could arise from poorly surveyed elec-
trodes. It was demonstrated by McLachlan (2020) that ac-
counting for river stage in inversions can be contentious even
in relatively straightforward aquatic cases; additionally here
the presence of vegetation is also likely to influence the bulk
resistivity of the river. For instance, the presence of vegeta-
tion and the associated trapped sediment is such that the bulk
resistivity of the river is likely lower than the logged river wa-
ter resistivity, such an effect could also explain the drop in
minimum resistivity immediately following river vegetation
cutting. Future work ought to be aware of issues surround-
ing regularization across the riverbed and the bulk resistivity
of rivers, including the presence of river vegetation.

Cross-corelation metrics proved useful for simplifying
the large dataset and identifying patterns and regions of the
subsurface that behaved similarly. The correlation between
the resistivity each riparian zone element, and the river stage
was assessed; however, it is important to note that the river
stage and Chalk GW had coincident patterns. Although it was
apparent that there were additional controls of subsurface
resistivity, especially in the peat, and non-linear relation-
ships between bulk resistivity and river stage were present,
cross-correlation metrics permitted grouping of distinctive
hydrological units. Such identification of distinct hydrolog-
ical behavior in the subsurface could provide a useful tool
for locating areas of enhanced residence times or increased
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mixing,whichmay have important implications for catchment
health. Moreover, although time lag to maximum absolute
correlation was shown to differ from the time lag between
maximum stage and maximum/minimum resistivity in some
cases, it still provided a useful metric to group zones of similar
behavior.

It has been demonstrated that ERI monitoring, coupled
with time-series analysis, provides a useful method for assess-
ing the extent and timing of groundwater–surface water (GW–
SW) interactions within the riparian zone. Future work could
rely on a more extensive installation of GW level and bulk
conductivity loggers, which could help to interpret patterns
of electrical resistivity at a smaller scale and validate some
of the observations. Also, approaches aiming to characterize
microbiological processes, alongside similar ERI installations,
could help to quantify implications of GW–SW interactions
for catchment-scale health.
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