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Web summary

Measures of community synchrony and stability aim at quantifying year-to-year fluctuations in 

species abundances. However, these indices reflect also long-term trends, potentially masking 

year-to-year signals. Using a large number of datasets with permanent vegetation plots we show a 

frequent greater synchrony and stability in year-to-year changes compared to when long-term 

trends are not taken into account.
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Abstract

Questions

Compensatory dynamics are described as one of the main mechanisms that increase community 

stability, e.g. where decreases of some species on a year-to-year basis are offset by an increase in 

others. Deviations from perfect synchrony between species (asynchrony) have therefore been 

advocated as an important mechanism underlying biodiversity effects on stability. However, it is 

unclear to what extent existing measures of synchrony actually capture the signal of year-to-year 

species fluctuations in the presence of long-term directional trends in both species abundance and 

composition (species directional trends hereafter). Such directional trends may lead to a 

misinterpretation of indices commonly used to reflect year-to-year synchrony. 

Methods

An approach based on three-term local quadrat variance (T3) which assess population variability 

in a three-year moving window, was used to overcome species directional trend effects. This 

‘detrending’ approach was applied to common indices of synchrony across a Worldwide collection 

of 77 temporal plant community datasets comprising almost 7800 individual plots sampled for at 

least 6 years. Plots included were either maintained under constant ‘control’ conditions over time 

or were subjected to different management or disturbances treatments.

Results 

Accounting for directional trends increased the detection of year-to-year synchronous patterns in 

all synchrony indices considered. Specifically, synchrony values increased significantly in ~40% 

of the datasets with the T3 detrending approach while in ~10% synchrony decreased. For the 38 

studies with both control and manipulated conditions, the increase in synchrony values was 

stronger for longer-time series, particularly following experimental manipulation. 

Conclusions

Species long-term directional trends can affect synchrony and stability measures potentially 

masking the ecological mechanism causing year-to-year fluctuations. As such, previous studies on 

community stability might have overemphasised the role of compensatory dynamic in real-world 

ecosystems, and particularly in manipulative conditions, when not considering the possible 

overriding effects of long-term directional trends.

Keywords: asynchrony, biodiversity, stability, synchrony, temporal dynamics, year-to-year 

fluctuation.A
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Introduction

Given the challenges posed by rapidly changing environments in the context of global change, it is 

crucial to understand how biological diversity is maintained over time (Cardinale et al. 2007; 

Tomimatsu et al. 2013; Tilman, Isbell, & Cowles 2014). There is a general consensus toward the 

role that synchrony (or lack of) in, e.g., year-to-year population fluctuations between co-existing 

species plays on species diversity and community stability (Hautier et al. 2014; Craven et al. 

2018). On the one hand, a common response to environmental fluctuations (for example changes 

in temperature or precipitation from one year to another) of most species (synchrony) will tend to 

destabilize the community biomass or abundance. On the other hand, the opposite pattern 

(compensatory dynamics, i.e. increases or decreases in the relative abundance of some species that 

are offset by changes in the relative abundance of others; Hubbell 2001; Gonzalez & Loreau 2009) 

will lead to higher community stability. In this sense asynchrony, i.e. the extent of the deviation 

from lack of perfect synchrony between species, has been advocated as an important and 

widespread mechanism that contributes to stability (Loreau & de Mazancourt 2013).

While there is a lively debate on the importance of compensatory dynamics on the stability 

of communities (Houlahan et al. 2007; Blüthgen et al. 2016; Lepš et al. 2018) there are also 

important methodological aspects that can influence the detection of the underlying biological 

patterns. Recently, Lepš et al. (2019) demonstrated that the study of synchrony between species 

has traditionally disregarded the possible effects of long-term directional compositional trends in 

the analysed communities (i.e. a tendency of some species to increase or decrease over time, or to 

fluctuate cyclically, Wu et al. 2007). Species directional trends occur when the abundances of 

species respond not only to short-term environmental fluctuations, but also to the presence of 

monotonic or cyclical tendencies over the whole time series considered. Short term environmental 

fluctuations (Rabotnov 1974), for example on a year-to-year basis, are expected to affect species 

abundance but also to be largely reversible, so that species would not show long-term directional 

trends in their abundances. In contrast, long-term environmental changes, such as climate change, 

nutrient deposition and changes in land use (e.g. abandonment or intensification of agricultural 

land),  generally cause long-term species directional trends (Stevens et al. 2011; Walter et al. 

2018). Long-term directional trends can also be the result of the impact of undetermined drivers 

(Milchunas, Lauenroth, & Burkeal 1998). As repeatedly reported by many authors, long term 

trends in species abundance are probably omnipresent, and have been demonstrated even in, now, 

more than 160 years of the Park Grass Experiment (Silvertown et al. 2006).A
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To gain a better understanding of the underlying mechanisms regulating changes in species 

abundance, short-term fluctuations and long-term trends effects on synchrony should be 

disentangled. Unfortunately, this differentiation has been rare in studies assessing drivers of 

synchrony and stability (but see Vasseur & Gaedke 2007; Tredennick et al. 2017; and the review 

by Lepš et al. 2019). Indeed, using simulations and simple case studies Lepš et al. (2019) showed 

that species directional trends can mask year-to-year fluctuations among species. This has the 

potential to result in a biased estimation of asynchrony when using many widely used synchrony 

indices. Such directional trends could lead to either overestimation of year-to-year synchrony 

when the majority of species concomitantly increase or decrease over time, as well as 

overestimation of year-to-year asynchrony when some species increase and some others decrease 

over time. 

Multiple indices have been developed to evaluate the level of synchrony among species in 

a community (Loreau & de Mazancourt 2008; Gross et al. 2014; Blüthgen et al. 2016; Lepš et al. 

2018). Further methodologies have also been developed to assess directional trends, such as 

spectral or wavelet analyses, however, they are applicable only to very long or highly resolved 

time series (see Lepš et al. 2019 for an overview of these methods). None of the classically used 

synchrony indices disentangle, a priori, the actual year-to-year fluctuations from the directional 

trends. However, such indices can be ‘detrended’ using different methods (Wu et al. 2007; Lepš et 

al. 2019). One appealing a simple solution includes computing synchrony indices over moveable 

windows of three consecutive years (three-term local variance, ‘T3’, Hill 1973) instead of over the 

whole sampling period (Lepš et al. 2019). This ‘detrending’ approach, which we call T3 

detrending approach, could allow testing the generality of the effect of directional trends on 

synchrony indices. If the focus of the research is on year-to-year fluctuations, then the minimum 

number of years to exclude trends and consider yearly fluctuations is 3 years, hence the three-term 

local variance. With bigger windows the computation of a common linear trend over the time 

window, and the focus on the deviation from this trend, does recall on the other method proposed 

by Lepš et al. (2019), using residuals of fitted linear models over a given time period. The first 

approach has the advantage that it can be computed with any existing index of synchrony and does 

not require the knowledge of the shape of possible linear trends in species abundance.

A widespread assessment of the effect of species directional trends on synchrony has been 

limited by the scarcity of available long-term data. Indeed, the study of temporal dynamics 

requires a substantial sampling effort to obtain meaningful data for temporal analyses. Although A
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there are networks and independent groups with long-term ecological data around the world, no 

major efforts have been made to compile and standardize the existing data in order to achieve a 

worldwide perspective. Consequently, a global-scale analysis would improve our understanding of 

both directional trends and year-to-year species fluctuations among the different synchrony indices 

and across diverse habitats, as well as how they are related with different types of disturbances or 

stressors. To face this challenge, we compiled plant community data from 77 temporal datasets 

with at least six sampling years, including almost 7800 vegetation plots distributed across the 

world. First, we evaluated to what extent year-to-year synchrony could be masked by long-term 

trends, by using the T3 detrending approach for temporal series proposed by Lepš et al. (2019) on 

commonly used indices of synchrony. Second, we assessed whether synchrony patterns changed in 

plots in which initial conditions were maintained (‘control’) vs. plots in which new conditions 

were applied (‘manipulated’ plots, see methods), assuming that these new conditions would trigger 

compositional changes and therefore generate a trend. Third, we evaluated how detrended 

synchrony values are affected by the duration of the sampling. Finally, we asked if relationships 

that are commonly assessed in the literature regarding synchrony indices, i.e. the correlation 

between synchrony and species richness and the correlation between synchrony and community 

stability, changed markedly depending on whether the T3 detrending approach was applied. 

Additionally, beside the validation of the T3 approach introduced by Lepš et al. (2019), we further 

validated (using simulations) the functionality of the approach in the case of both monotonic and 

cyclical long-term trends and depending on the time series length (Appendix S1). We expect that: 

(1) directional trends in our datasets can overshadow either asynchrony or synchrony depending 

on the type of trend; (2) manipulative experiments can give rise to directional trends and therefore 

reinforce the need for detrended metrics to accurately evaluate and compare community dynamics; 

(3) longer time series would provide greater chances to detect species directional trends; and (4) 

the presence of directional trends may affect the strength of the relationship between synchrony 

indices and species richness or community stability. 
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Methods

We collected 77 worldwide datasets of aboveground dry biomass, cover percentage, or frequencies 

of natural or semi-natural plant communities. These datasets consist of 7788 permanent and semi-

permanent plots sampled between 6 to 53 times over periods of 6 to 99 years. These datasets 

included plots with different treatments or manipulations. The plots were thus grouped into two 

categories: control vs. manipulated. In total 38 datasets presented both control and manipulated 

plots. Control includes those plots where the long-term conditions prior to the establishment of the 

sampling scheme were maintained throughout the sampling. For example, if the historical 

conditions in a given site include periodic mowing, this represents the ‘control’. The 

‘manipulated’ plots were exposed to different treatments that altered the long-term conditions in 

their respective sites. These treatments included introduction or exclusion of grazing, mowing, 

removal of dominant species, fire, fertilization and climate change treatments. These wide 

categories allowed us to perform broad comparisons between different land-use and management 

conditions that are expected to influence species trends. The list of datasets, their characteristics in 

habitat, vegetation type and their available data on location and main manipulations is provided in 

Appendix S2. 

Synchrony measures

For each of the 7788 plots, we computed the most common indices of community-level synchrony 

from existing literature. The main indices fall into two families. The first one is based on 

correlations between species’ abundances and includes two indices: the one proposed by Gross et 

al. (2014) and then this modified by Blüthgen et al. (2016), which weighs the contribution of 

species to community synchrony in terms of their abundance. We call these indices ‘Gross’ and 

‘GrossW’, respectively. The second family of indices is based on variance ratios, i.e. the variance 

in species fluctuations is compared against the null model of independent fluctuations of 

individual populations, and includes two indices: log variance ratio (‘Logvar’, Lepš et al. 2018) 

and 𝜑 (‘Phi’, Loreau & de Mazancourt 2008). 

The Gross and GrossW indices range from -1 to +1 and Logvar from -Inf to +ln(nsp), with 

nsp being the number of species in a community. High values indicate a common response of the 

species (synchrony), while any deviation from perfect synchrony indicates asynchrony; the lowest 

and negative values indicate that the increases or decreases in some species are compensated by 

opposite changes in others. For all, Gross, GrossW and Logvar, zero corresponds to a situation A
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where the species fluctuate completely independently of each other. Finally, Phi ranges from 0 to 

1, 1 being perfect synchrony and any deviation from this value means asynchrony. 

For each plot we also computed the average number of species in the plots across years, as 

well as the coefficient of variation (CV) of species abundances (standard deviation of the total sum 

of abundances or biomass across years divided by the mean of abundances or biomass across 

years). CV of total community abundance is a common measure of community (in)stability, where 

high values of CV indicate low stability in the community. 

All measures of synchrony (and the CV) can be computed using the three-term local 

variance (T3; see Lepš et al. 2019 for an explanation of how to apply this method to the synchrony 

measures), originally introduced by Hill (1973) in the context of spatial pattern analysis. T3 is then 

calculated as:

𝑇3 =
∑𝑛 ― 2

𝑖 (𝑥𝑖 ― 2𝑥𝑖 + 1 + 𝑥𝑖 + 2)2

6(𝑛 ― 2)

where n is the number of years in the time-series, i is the year index, and xi is the abundance 

recorded in year i. Consequently, T3 computes the variance by averaging variance estimates 

within a moving window of three consecutive years over the data. Any eventual increase in 

window size needs to be considered with respect to the limits imposed by total length of the series 

(Lepš 1990). In this context that the minimum length of the time series in our collection of datasets 

was 6 years, a movable window of 3 years seemed as a reasonable solution.

For the three-year window used in the calculations, the variance (which is needed in all 

existing index of synchrony) is estimated from the squared difference of the middle year and 

average of the years before and after. Therefore, if there is a perfect linear trend within these three 

years, the difference is zero. If there is no temporal trend in the time series analysed, then T3 is an 

estimate of classic variance (i.e. for long-time series without a trend the values of T3 and classical 

variance will converge; see below; Lepš et al. 2019). For each plot, each synchrony index (Gross, 

GrossW, Logvar and Phi) as well as the CV were calculated both with and without the T3 

detrending method. 

Data analysisA
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To assess to what extent the synchrony indices were affected by directional trends we followed 

different approaches. First, we correlated (across plots within each dataset) synchrony values with 

and without the T3 detrending approach. Specifically, for each dataset we retained a Rho 

coefficient from the Spearman correlation between indices calculated using the T3 detrending 

approach and their respective indices calculated without the T3 approach. Then, to test consistency 

across datasets another Spearman test was run on the average of each synchrony index per dataset 

to test if the ranking in synchrony between datasets was maintained. 

Second, we determined in how many datasets the T3 detrending approach significantly 

increased, or decreased, the synchrony values. For this we ran a series of paired t-tests, with a 

correction of the resulting p-values using the Benjamini–Hochberg approach (Benjamini & 

Hochberg 1995) for false discovery rates (n = 77 tests for each index). To assess how the T3 

detrending approach affected overall community stability, this test was also applied to the CV. For 

each of the assessed synchrony indices, we also retained for each dataset the t-statistic of the 

paired t-test, which indicates the strength and the direction of the effect (positive values implying 

T3 increased synchrony, negative ones when T3 decreased synchrony). Additionally, we evaluated 

how globally the synchrony values responded to the T3 detrending approach using Linear Mixed 

Models (LMM). In one approach, we computed for each plot two separate synchrony values 

(synchrony with and without the T3 detrending approach). The LMM contained one categorical 

variable (TraT3) as explanatory variable, specifying if the index was calculated with the T3 

detrending approach or not. Plots nested in each dataset were considered as a random factor. Also, 

we computed for each plot the difference between the synchrony values with the T3 detrending 

approach and the values without it. Then, we evaluated how the effect of detrending (i.e. the 

difference between synchrony with and without T3) varied across habitat types and the biomes by 

fitting a LMM in which the dataset identity was considered as a random factor.

Third, we assessed whether synchrony values were affected by directional trends 

depending on the presence of an experimental manipulation changing abruptly the ecological 

conditions in a plot. To do this, we evaluated the effect of T3 using the t-statistic of the paired t-

test within dataset (see above), separately in control and manipulated plots within datasets. This 

analysis was restricted to those 38 datasets (out of 77) in which both control and manipulated plots 

were present and with at least three plots in each category. The same approach was used to test the 

effect of the duration (number of years) of the sampling period. This was undertaken using a linear 

model to test the relationship between the t-statistic (resulting from the paired-test) and number of A
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years sampled in each dataset. We also used a similar LMM as described above to jointly evaluate 

the effects of the duration of the sampling period and experimental manipulation on the difference 

between the synchrony values with and without the T3 detrending approach in these 38 datasets. 

In this model, we used the number of years of sampling, the experimental manipulation 

(manipulated vs. control plots) and their interaction as fixed factor, while each dataset was 

considered as a random factor. When a significant interaction was found, we split the database in 

control and manipulated plots and evaluated the effects of duration of the sampling period on both 

groups of plots.

Finally, to assess changes in strength of the commonly found ecological relationships 

involving synchrony with or without the use of the T3 detrending approach, we tested for each 

dataset using paired t-tests how strong were the (Pearson) correlations between synchrony and (i) 

species richness and (ii) community stability. For each of these two correlations, we considered 

the Pearson r and tested through a paired t-test if this r value (one for each dataset) was greater or 

smaller when using the T3 approach compared to when not using the T3 approach.

For simplicity, we mostly present the results of one index (GrossW) in the main text 

because it is widely applied in the literature. However, most of the results for the other indices 

considered are shown in Appendix (S3 and S4). Similarly, all results concerning simulations are 

also included as Supporting Information material (Appendix S1). All the analysis were run in R (R 

Development Core Team 2018).

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Results

The ranking of synchrony values with and without the T3 detrending approach was relatively 

consistent, both within and across datasets (Fig. 1). The Spearman Rho values computed within 

each of the 77 datasets were mostly positive and significant (Fig. 1a, for GrossW as an example; 

similar patterns were obtained for the other indices, Appendix S3). For example, in 44 out of the 

77 datasets, the Spearman Rho was above 0.5. This indicates a moderate correspondence in the 

ranking in synchronicity values across plots within datasets. Nevertheless, notable exceptions were 

present, for example in six datasets (~8% of the cases) Rho was below 0.1. However, in five out of 

these six datasets, either the number of manipulated plots was greater than the control plots, or the 

control plots were entirely absent. Overall, the Spearman ranking test done on the mean synchrony 

values indicated that greater synchrony without the T3 approach also provided greater synchrony 

with the T3 approach (Fig. 1b: Rho = 0.81 and p < 0.001). Most importantly, synchrony mean 

values were frequently greater where the T3 detrending approach was applied than without its use 

(paired t-test p < 0.001; Fig. 1b and Appendix S3). 

We generally found a greater synchrony when accounting for long-terms trends with the 

T3 methods than without. A significant increase in synchrony values was found for over 1/3 of the 

datasets (~30 datasets of 77, i.e. in ~40% of datasets synchrony significantly increase, p < 0.05, 

after correcting p-values for multiple tests with the Benjamini & Hochberg correction for false 

discovery rate within each synchrony index, Fig. 2; all significant tests reported in this section 

account for this p-value correction). Conversely, in around 10 datasets (13%, depending on the 

indices) synchrony values decreased using the T3 approach. In total around 50% of the datasets 

showed a significant change in synchrony values when using or not using the T3 detrending 

approach. The pattern described for GrossW index was similar for all other synchrony indices. The 

number of datasets showing greater synchrony with the T3 approach was lower using Phi, which 

also showed a higher number of datasets showing lower synchrony with the T3 approach. In the 

majority of datasets (around 60) the CV computed using the T3 approach was significantly lower 

compared to the one computed without the T3 approach.

The LMM on the whole dataset showed a significant difference between the use of 

synchrony with and without the T3 detrending approach (p < 0.001) with an overall increase in 

synchrony with T3, meaning that the T3 detrending approach generally led to increased synchrony 

values among all the plots (other synchrony indices yielded similar results). This result (which is 

similar to the significant deviation from the 1:1 line in Fig. 1b mentioned above) further confirms A
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that across the whole dataset long-term trends generally blur the importance of synchrony between 

species.

The results of the LMM evaluating the effects of habitat type and biomes on the T3 

difference (i.e. on the difference between indices of synchrony with and without T3 within a plot) 

showed a significant effect of the habitat type (χ² = 47.21; p < 0.001), but no effect of the biomes. 

Grassland and savanna had in average positive values, meaning that a difference between T3 

synchrony and synchrony without T3 were greater in these two habitats.

 As expected, detrending had greater impacts on measures of synchrony in experimental 

plots than controls. Specifically evaluating ‘control’ vs. ‘manipulated’ plots (using 38 datasets in 

which there were both types of plots), showed a greater number of cases in which the T3 approach 

produced significant changes in synchrony in the manipulated than in the control plots (Fig. 3 for 

the GrossW and Appendix S4 for the other synchrony indices): 21 significant datasets (60%) in 

the manipulated plots but only 10 (27%) in the control plots. Moreover, the effect of the sampling 

period length (number of years plots were sampled) was significantly related to the change in 

mean synchrony with the T3 approach only in the case of the manipulated plots (Fig. 3, using, as 

dependent variable, the t-values resulting by comparing synchrony with and without T3 approach 

using the paired t-tests within plot described above). Specifically, in the manipulated plots a longer 

sampling period improved the predictive ability of the effect of T3 approach on synchrony 

(increased detection of synchrony over long-term periods and increased detection of asynchrony in 

short-time periods). We confirmed these results using an LMM in which the difference of 

synchrony with and without T3 were computed for each plot. This analyses showed a significant 

interaction between sampling period length and experimental manipulation. Sampling period 

length significantly increased the difference between synchrony values with and without the T3 

approach only in manipulated plots (χ² = 10.37; p = 0.001, n = 3414).

Finally, we found that overall the relationships between synchrony and both species 

richness and community stability were similar (Appendix S5). Nevertheless there were slightly 

more frequent significant cases after detrending for Gross and GrossW (Appendix S5). For 

instance, the relationship between species richness and synchrony (i.e. when considering GrossW) 

was found significant in 15 and 11 datasets (out of 77) respectively when using or not using the T3 

detrending approach (in both cases correcting for false discovery rates). However, this 

relationship, with LogVar, was found significant in 4 datasets less when using the T3. Further, 

with GrossW the expected positive relationship between synchrony and community CV was A
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significant in 58 and 54 datasets while using or not using the T3 detrending, respectively (we did 

not detect significant negative relationship between CV and synchrony). The strength of these 

relationships, however, was not affected by the detrending approach. In neither the (i) species 

richness and synchrony correlations, nor the (ii) community CV and synchrony correlations, did 

we detect significant differences when using or not using the T3 detrending approach (in both 

cases p > 0.2). This implies that the use of the T3 detrending approach did not systematically 

produce greater or weaker correlations when analyzing these common relationships.
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Discussion

In this study we show that the synchrony patterns usually attributed to compensatory dynamics 

could be actually caused by trends in species composition. Without accounting for these trends 

effectively, it is possible that compensatory effects could be generally overemphasized (in 30% of 

our datasets) or even underemphasized (in 10% of our datasets). Previous studies of synchrony 

and compensatory dynamics have often overlooked the possible effects of directional trends on the 

studied communities. Only few studies, such as Vasseur and Gaedke (2007), Loreau & de 

Mazancourt (2008) and Tredennick et al. (2017), have effectively filtered out species trends (using 

wavelet based methods or considering growth rates of species in time, instead of raw abundances). 

Long-term trends in abundances, either directional or cyclical, indeed have the potential to bias the 

interpretation of synchrony with the most commonly used indices. The T3 detrending approach 

can account for this bias (see simulation in Lepš et al. 2019 and in Appendix S1). The advantages 

of the T3 approach, compared to other approaches, are its lower data requirement and 

consideration of all species in a community, not just the most frequent ones (Lepš et al. 2019). 

In ~40% of the datasets, and in the overall model across all plots, synchrony using the T3 

detrending approach was significantly greater than synchrony without using it (Fig. 2). The ~40% 

estimate is, furthermore, a conservative one as we account for Type I errors. Overall, the mean 

values of synchrony computed with the T3 detrending approach were higher than without it in the 

majority of cases, both within and across datasets (Fig. 1b, and LMM). This is an important 

finding because it suggests that our appreciation of the importance of asynchrony, and therefore 

compensatory dynamics, may have been possibly overestimated, leading to wrong conclusions 

about synchrony-asynchrony in communities. These findings highlight the necessity of evaluating 

the effects of possible directional trends on synchrony to accurately estimate the importance of 

ecological mechanisms regulating compensatory dynamics. The difference between the indices 

calculated using T3 detrending approach and without it were higher in grasslands and meadows, 

possibly because in the absence of slow-growing, less dynamic, woody species. In these 

communities temporal trends can thus be more easily detected compared to other types of 

vegetation. The increase in synchrony after detrending also suggests the presence of opposite 

trends of species abundances in time, such as when one species is decreasing steadily and another 

increasing. For example, trends could be the result of species responding differently to disturbance 

or to an increase in nutrient availability. Such opposite trends could be monotonic or following 

waves in time (Wu et al. 2007), e.g. resulting from periodic climate events such as “El Niño”, or A
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intrinsic cycling of particular functional groups such as legumes (Herben et al. 2017). These 

results are partially expected because our datasets comprised natural or semi-natural well-

established plant communities but included experimental conditions in which changes in 

abundance or composition of species are common. 

When considering datasets with both control and manipulated plots (~50% of the datasets) 

the effect of the T3 approach was more frequently significant in manipulated plots than in control 

plots (Fig. 3). These plots were more prone to be affected by a directional trend promoted by the 

specific manipulation imposed. This result agrees with our hypothesis that events like soil-nutrient 

alteration (e.g. by fertilization) and recovery from disturbance might promote directional trends. 

This result was expected as some of the experimental manipulations were designed to directly alter 

species composition, in order to test their effects on community synchrony. However, such 

prompted changes, often due to colonization-competition trade-offs in species composition, can 

mask year-to-year fluctuations, and hence these experiments should disentangle these biologically 

different effects on synchrony. For these reasons, we recommend that any index of synchrony 

should be computed with and without the T3 approach to properly evaluate the corresponding 

effects of long-term experimental treatments and year-to-year fluctuations. Our result reinforces 

the assumption that the effect of the T3 approach could be stronger in changing 

environments/communities and the combination of indices with and without the T3 approach can 

be important to distinguish the mechanisms causing differential long-term species responses to 

changes in environmental conditions from the differential species responses to short-term species 

fluctuations on synchrony/asynchrony relationships. 

The effect of detrending on synchrony values was particularly pronounced in the case of 

succession. During succession the majority of species will increase their abundance, which will 

cause them to be ultimately positively correlated in time. However, these same species can 

compensate each other or vary independently on a year-by-year basis, even if they all generally 

increase in time, so the existing synchrony indices would tend to overestimate their actual year-to-

year synchrony between species within such communities. In fact, among the seven datasets with a 

Rho below 0.1 (Fig. 1a), the majority were characterised by being exposed to intense disturbance 

regimes that triggered some type of successional process. For instance, plots of four datasets had 

been exposed to a fire before or during the experiment, and two evaluated the effect of herbivory 

exclusion (where the reduction in grazing intensity allowed the development of higher vegetation A
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like shrubs and trees). Both treatments are good examples of environmental conditions promoting 

species directional trends (Pardo et al. 2015) and thus affect synchrony values. 

Interestingly, the effect of the T3 approach on the synchrony measured in manipulated 

plots depended on the period length of the sampling scheme. Manipulated plots sampled over 

longer time periods revealed higher synchrony values when using the T3 detrending approach 

(Fig. 3). In other words, the longer is the sampling period the greatest chance that there is a 

difference between T3 synchrony and synchrony without T3 in manipulated plots. Longer time 

series likely increased the chances that some species will have opposite trends in response to 

manipulation, with some increasing over time and others decreasing. In a shorter time series, on 

the contrary, the time lag in species responses (particularly extinction debt, Helm, Hanski, & 

Partel 2006; Lepš 2014) could cause that some species increase quickly in response to 

manipulation, while others might respond more slowly. The T3 detrending approach, therefore, 

will affect those species with a similar temporal trend in response to short-term manipulations. 

Consequently, the duration of the sampling period stands out as a key factor in the evaluation of 

temporal dynamics. We showed that, in the case of manipulated communities, classical methods 

tended to overestimate year-to-year synchrony when the sampling period was shorter, and 

underestimate it when the sampling period was longer. This highlights the importance of T3 

approach for a correct evaluation of year-to-year synchrony between species. However, further 

research is required to find the causes and consequences of these results.

Finally, we generally found that the T3 detrending approach did not cause strong changes 

in the correlation between synchrony and both species richness and community stability, two of 

the most iconic relationships in temporal dynamics studies (Hautier et al. 2014; Blüthgen et al. 

2016). However, there were more cases of significant correlations with the T3 approach and 

strength of the correlations could vary considerably (i.e. R < 0.6) across datasets. In summary, this 

suggests that while the applications of the T3 detrending approach did not produce systematically 

greater or weaker correlations on commonly used tests in ecology, the strength of the relationships 

could differ. These results confirm that the use of T3 approach to detrend the synchrony indices is 

far from trivial. As such, the conclusions obtained previously from studies that did not apply the 

method are not necessarily incorrect. Therefore, applying the detrended and non-detrended 

methods in a complementary way might bring us closer to understanding the directional changes 

in community dynamics. For instance, divergent trends, e.g. due to differential response to global 

warming with some species increasing and other decreasing, might stabilize communities and A
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could maintain ecosystem functions unaltered in response to global warming, even if there are no 

short-term compensatory mechanisms between species. Hence, it is important to consider both the 

synchrony with and without detrending approach for teasing apart different causes of stability, or 

instability, in response to global change drivers.  

The evaluation of synchrony with the T3 detrending method provides a feasible measure to 

reveal year-to-year fluctuations of species by removing the effect of directional trends. In 

comparison to methods using species growth rates, the T3 approach can be important because it 

enables the evaluation of the indices with and without the approach and also accounts for species 

which are not dominant and/or less frequent (in the case of the growth rates, log-transformation is 

needed, which might not be advisable in the case of zero abundances in specific years). This 

method has the advantage of evaluating both monotonic and non-monotonic directional trends, 

and can thus be used to detect year-to-year fluctuations in the face of cyclical periods, such as 

alternation between drought-wet periods (e.g. Riginos et al. 2018). 
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Figure legend

Figure 1. Effects of the T3 detrending approach on synchrony, using the GrossW index (Blüthgen 

et al. 2016) as an example. In panel (a), a ranking correlation between synchrony values with and 

without detrending was computed for each of the 77 datasets considered. The histogram reports 

the 77 Rho values of the Spearman ranking correlations. Panel (b) reports, for each of the 77 

datasets, the mean (+/- standard error) of the synchrony values with and without the T3 detrending 

approach. Vertical and horizontal dashed lines indicate zero synchrony (i.e. absence of 

synchrony). The solid line represents the 1:1 line above which, for example T3 synchrony was 

greater than synchrony without T3. 

Figure 2. Summary of the directional effects of the T3 detrending approach on various synchrony 

indices and on CV. The bar plots indicate the numbers of datasets (n=77) in which the T3 

approach significantly increased (red bars) or decreased (blue bars) synchrony values using a 

paired t-test after correction for false discovery rates. Grey bars indicate the number of datasets 

with non-significant paired t-tests. 

Figure 3. Effects of the T3 detrending approach in manipulated vs. control plots. The plots report 

results of t-tests on 38 datasets in which there were both manipulated and control plots. For each 

dataset we used a pairwise t-test to compare synchrony values (using the GrossW synchrony 

index, Blüthgen et al. 2016) with and without the T3 approach (a: manipulated plots, and b: 

control plots). Positive values of the t-statistic indicate that the T3 approach increased synchrony 

and negative ones indicate that the T3 decreased synchrony. Values outside the grey area in each 

plot indicate significant t-tests after correction for false discovery rates (‘ns’ indicates p > 0.05). 

For each panel an R2 for the relationship between t-statistic and number of years sampled in each 

dataset is provided together with the p-value of the regression model (the corresponding regression 

line is shown when significant). Syn: Synchrony.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Simulating long term trends in artificial communities to validate effectiveness of 

the T3 approach

Appendix S2. Descriptions of each dataset, highlighting the treatments of the datasets with 

‘control’ and ‘manipulated’ plots. 

Appendix S3. Application of the analyses shown in Fig. 1 of the main text to the three remaining 

indices of synchrony. 

Appendix S4. Application of the analyses shown in Fig. 3 of the main text to the three remaining 

indices of synchrony. 

Appendix S5. Results of the correlation between synchrony indices with species richness or with 

the CV of total abundance.
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