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ABSTRACT 10 

Since the publication of five literature compilations issued between 2012 and 2020, 63 further 11 

published contributions on Triassic, Jurassic and earliest Cretaceous (Berriasian) 12 

dinoflagellate cysts have been discovered, or were issued in the last 14 months (i.e. between 13 

February 2019 and March 2020). These studies are on North Africa, Southern Africa, East 14 

Arctic, West Arctic, east and west sub-Arctic Canada, China and Japan, East Europe, West 15 

Europe, the Middle East, and sub-Arctic Russia west of the Ural Mountains, plus multi-16 

region studies and items with no geographical focus. The single-region studies are mostly 17 

focused on Africa, the Arctic, Europe and the Middle East. All the 63 publications are listed 18 

herein with doi numbers where applicable, and a description of each item as a string of 19 

keywords. 20 
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1. Introduction 26 

 27 

The literature on Triassic to earliest Cretaceous (Berriasian) dinoflagellate cysts is relatively 28 

extensive, and it has been compiled and reviewed by Riding (2012, 2013, 2014, 2019a, 29 

2020). These five items listed 1347, 94, 89, 266 and 93 publications respectively on this 30 

topic, with each citation followed by a string of keywords detailing the scope of these 1889 31 

studies. Unfortunately 11 publications were mentioned twice, hence the true culmulative total 32 

of published items is 1878 (Riding 2019b). The works of Riding (2014, 2019a, 2020) were 33 

substantially more interpretive than Riding (2012, 2013); the former three papers reviewed 34 
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and summarised the major items of literature which were listed. During the 14 months since 35 

the finalisation of Riding (2020), the author has compiled 63 relevant items which were either 36 

previously inadvertently overlooked or have been recently published (i.e. issued between 37 

February 2019 and March 2020). The 63 contributions listed herein makes the current 38 

cumulative total 1941 (Table 1). 39 

 These 63 articles are largely on the Jurassic of Africa, the Arctic, Europe and the 40 

Middle East (Table 2), and are listed in Appendix 1 of the Supplementary data. Papers on 41 

West Europe are most numerous (17), and comprise 27% of the overall total (Table 2). This 42 

continues the substantial Euro-centric bias noted by Riding (2012, 2013, 2014, 2019a, 2020). 43 

No single stratigraphical interval is dominant, but 19 papers are focused on, or include data 44 

from, the Early Jurassic (Table 3). 45 

 In this compilation, more selected catalogues, contributions on suprageneric 46 

classification, indexes and major taxonomic reviews are included where considered 47 

stratigraphically appropriate. Examples of these are Stover and Evitt (1978), Wilson and 48 

Clowes (1981) and Fensome et al. (2019a, 2019b). 49 

 50 

 51 

2. Regional review and synthesis 52 

In this section, brief commentaries/reviews of selected articles from the 63 publications listed 53 

in Appendix 1 of the Supplemental data are presented. These items are deemed particularly 54 

worthy of mention, and are from nine of the 11 geographical regions relevant to this 55 

contribution (Table 2). These 11 territories are North Africa, Southern Africa, East Arctic, 56 

West Arctic, east and west sub-Arctic Canada, China and Japan, East Europe, West Europe, 57 

the Middle East, and sub-Arctic Russia west of the Ural Mountains. Forty-nine of the 63 58 

contributions in Appendix 1 of the Supplemental data is referred to one of these 11 regions; 59 

the remaining 14 are assigned as either ‘multi-region’ or ‘no geographical focus’ (Tables 1, 60 

2). Van de Schootbrugge et al. (2019) and Stover and Evitt (1978) are good examples of 61 

‘multi-region’ and ‘no geographical focus’ respectively. In this compilation, there are no 62 

relevant single-region publications from East Africa, Central America, South America, 63 

Antarctica, Southeast Asia, Australasia, the Indian subcontinent, sub-Arctic Russia east of the 64 

Ural Mountains, and the U.S.A. east and west of the Rocky Mountains (Tables 1, 2). All the 65 

dinoflagellate cysts, at and below species level, mentioned throughout this paper are listed in 66 

Appendix 2 of the Supplemental data with full author citations. All the biozones referred to 67 
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herein are deemed to be have chronostratigraphical significance and the terminology used 68 

reflects this. 69 

 70 

2.1. North Africa 71 

Four contributions on material from the continent of Africa are included in this review. Three 72 

of these are on Egypt and Morocco in North Africa, and are summarised below. 73 

 Omran et al. (1990) is largely focussed on the palynology of the Lower Cretaceous 74 

(Hauterivian/Barremian to Albian) successions penetrated by three boreholes in the northern 75 

Western Desert of Egypt. However, eight dinoflagellate cyst taxa were reported from the 76 

Middle and Upper Jurassic, below a substantial hiatus in the Alam el Bueib Formation 77 

(Omran et al. 1990, figs 2, 9). These include the genera Ctenidodinium, Escharisphaeridia 78 

and Sentusidinium. The presence of Apteodinium spp., Cribroperidinium spp., 79 

Hystrichosphaerina spp. and Systematophora areolata means that the Jurassic samples 80 

studied are all Late Jurassic in age (e.g. Klement 1960, Riding and Thomas 1992). 81 

 El Atfy et al. (2019) is a detailed study of the palynology of the Alam El Bueib and 82 

Alamein members within the Burg El Arab Formation from the Obaiyed Oilfield in the 83 

northwest Matruh Basin, northern Western Desert, northwest Egypt. Sixty-two cuttings 84 

samples were examined from two boreholes. This succession is of Early Cretaceous age and 85 

ranges from Berriasian to Aptian, and the entire palynomorph spectra were thoroughly 86 

documented, and these include 24 dinoflagellate cyst species. These authors recognised a 87 

single dinoflagellate cyst ‘phase’, of Berriasian to Barremian age. Dinoflagellate cysts proved 88 

subordinate to pollen and spores, however dinoflagellate cyst phase DI of Berriasian to 89 

Barremian age was identified. This was defined as the base of the two successions studied to 90 

the range top of Tenua anaphrissa (as Pseudoceratium anaphrissum) (see Costa and Davey 91 

1992, fig. 3.5). Also present were Cribroperidinium spp., Coronifera oceanica, 92 

Cyclonephelium spp., Oligosphaeridium spp., Sentusidinium spp., Subtilisphaera sp. and 93 

Trichodinium castanea. The age of phase DI was discussed by El Atfy et al. (2019, p. 114); 94 

the Berriasian–Barremian age was determined largely due to a correlation with a nearby 95 

successions studied by El Beialy (1994) and Mahmoud and Deaf (2007). 96 

 The geochemistry and palynofacies of the Pliensbachian–Toarcian Event from Ait 97 

Moussa and Issouka, northeast of Boulemane, in the Fès-Meknès region, Middle Atlas Basin, 98 

northeast Morocco was studied by Rodrigues et al. (2020) in order to investigate 99 

palaeoclimate, sea level fluctuations, sedimentology and tectonic history. The succession 100 

investigated exhibits strong terrestrial affinity, and was deposited in nearshore settings. The 101 
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dinoflagellate cysts Luehndea spinosa and Nannoceratopsis gracilis were recorded from the 102 

Pliensbachian–Toarcian transition at Ait Moussa, and were attributed to post Late 103 

Pliensbachian cooling by Rodrigues et al. (2020). Luehndea spinosa was also encountered at 104 

Issouka. 105 

 106 

2.2. Southern Africa 107 

Steeman et al. (2020), is a study on material from on Angola and it represents the first 108 

relevant record from Southern Africa. These authors undertook a study of Paleogene 109 

dinoflagellate cysts of the Landana section on the coast of Cabinda Province in Angola, 110 

western Southern Africa. They noted some reworking from the underlying Mesozoic, 111 

including the characteristically Middle Jurassic species Aldorfia aldorfensis (see, for 112 

example, Gocht 1970; Wiggan et al. 2017). As mentioned above, this represents the first 113 

record of Jurassic dinoflagellate cysts from the region of Southern Africa. 114 

 115 

2.3. East Arctic 116 

Eight contributions listed in Appendix 1 of the Supplemental data are on the East Arctic 117 

region; four of these are deemed to be substantially impactful. One of them, van de 118 

Schootbrugge et al. (2019), is a multi-region study. Five of the eight items are on the 119 

Svalbard Archipelago in the Arctic Ocean, and four of these are described in subsection 2.3.1. 120 

below. The following subsection, 2.3.2, concerns two major investigations of important 121 

Lower and Upper Jurassic successions from northern Russia. 122 

 123 

2.3.1. The Svalbard region 124 

Koevoets et al. (2018) is a major multidisciplinary study of the Agardhfjellet Formation of 125 

borehole material from central Spitsbergen, Svalbard that was drilled for the Longyearbyen 126 

carbon dioxide storage project. These authors obtained two dinoflagellate cyst associations, 127 

one from the uppermost Bathonian Oppdalen Member and the other from the uppermost 128 

Kimmeridgian to Ryazanian (Berriasian) Oppdalssåta and Slottsmøya members (Koevoets et 129 

al. 2018, figs 8, 16). Samples from the Oppdalen Member yielded Atopodinium haromense, 130 

Chytroeisphaeridia hyalina, Gonyaulacysta jurassica, Sirmiodinium grossii, Valensiella 131 

ovulum and Valvaeodinium spinosum amongst others. This succession was assigned to the 132 

Cadoceras calyx boreal ammonite zone of late Bathonian age and Koevoets et al. (2018) 133 

concluded that the dinoflagellate cysts are consistent with this assessment based on the 134 

presence of Sirmiodinium grossii and Valvaeodinium spinosum (see Woollam and Riding 135 
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1983, Riding et al. 1985). The identification of Atopodinium haromense may be questionable 136 

as this species is typical of the Oxfordian–Kimmeridgian transition in the Late Jurassic 137 

(Thomas and Cox 1988). The Oppdalssåta and Slottsmøya members produced apparently 138 

more diverse associations including Leptodinium subtile, Rhynchodiniopsis cladophora, 139 

Senoniasphaera jurassica and Tubotuberella apatela, and typical of the Upper Jurassic. The 140 

upper, palynologically productive, part of the Oppdalssåta Member was interpreted as being 141 

late Kimmeridgian to Tithonian (early Volgian) in age. The overlying Slottsmøya Member 142 

spans the lower Volgian to Berriasian (Ryazanian), which is consistent with the boreal 143 

ammonites recovered. However, some reworking of dinoflagellate cysts from the 144 

Kimmeridgian was noted (Koevoets et al. 2018, p. 12). 145 

 The occurrence of the late Pliensbachian to early Toarcian marker dinoflagellate 146 

cyst Mancodinium semitabulatum in the Mohnhøgda Member (Svenskøya Formation) was 147 

mentioned in Olaussen et al. (2018, p. 48). This occurrence is coeval with a global flooding 148 

event (Smelror et al. 2018). Paterson and Mangerud (2019) produced an extensively 149 

illustrated revised palynomorph zonation for the Middle and Upper Triassic (Anisian–150 

Rhaetian) of the Barents Sea between Svalbard in the north, and Arctic Norway in the south. 151 

Most of the biozones considered are based on spores and pollen, but the Rhaetogonyaulax 152 

arctica and Rhaetogonyaulax rhaetica dinoflagellate cyst zones of late Carnian-early Norian 153 

and early Norian age respectively were also established (Paterson and Mangerud 2019, p. 18–154 

19, fig. 3). 155 

 Smelror et al. (2018) is a comprehensive illustrated account of the Upper Triassic 156 

to Lower Cretaceous (Norian–Aptian) palynostratigraphy of Kong Karls Land in the eastern 157 

part of the Svalbard Archipelago, north of the Barents Sea in the Arctic Ocean. The material 158 

comprises samples collected from seven formations in the Kapp Toscana and Adventdalen 159 

groups (Smelror et al. 2018, fig. 3). The oldest material are three samples from the Flatsalen 160 

Formation of Kapp Koburg, Kongsøya. The two uppermost samples yielded 161 

Rhaetogonyaulax sp., thereby placing the Flatsalen Formation in the Rhaetogonyaulax 162 

rhaetica Assemblage Zone of Paterson and Mangerud (2015) of early Norian age. This is 163 

consistent with several other studies in the Barents Sea area. 164 

 The Svenskøya Formation (Norian–?Rhaetian to Toarcian) comprises two 165 

members and is thought to include several hiatuses. The lower unit, the Sjøgrenfjellet 166 

Member, is devoid of dinoflagellate cysts and is of Norian–?Rhaetian to Hettangian–early 167 

Pliensbachian age based on pollen and spores. The overlying Moenhøgda Member yielded 168 

abundant palynomorphs including the dinoflagellate cysts Luehndea spinosa, Mancodinium 169 
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semitabulatum, Nannoceratopsis gracilis, Pareodinia halosa (as Caddasphaera halosa) and 170 

Phallocysta sp. This association indicates a late Pliensbachian to early Toarcian age, 171 

correlating with the DSJ6 and DSJ7 dinoflagellate cyst zones of Poulsen and Riding (2003). 172 

 The Kongsøya Formation was interpreted as being of late Toarcian to Aalenian in 173 

age by Smelror et al. (2018). This unit produced Nannoceratopsis gracilis, Nannoceratopsis 174 

spp., Ovalicysta hiata, Parvocysta spp., Phallocysta eumekes, Scriniocassis priscus (as 175 

Eyachia prisca), Scriniocassis weberi and Susadinium scrofoides. The co-occurrences of 176 

Ovalicysta hiata, Phallocysta eumekes and Susadinium scrofoides allows a correlation to the 177 

latest Toarcian to earliest Aalenian DSJ10 dinoflagellate cyst zone of Poulsen and Riding 178 

(2003). The Flatsalen, Svenskøya and Kongsøya formations are largely conformable. 179 

However there is a major hiatus above the Kongsøya Formation and these are no Bajocian 180 

strata preserved on Kong Karls Land (Smelror et al. 2018, fig. 17). 181 

 The lowermost unit of the Agardhfjellet Formation, the Oppdalen Member has a 182 

transgressive base. The latter unit generally yielded common dinoflagellate cysts. These 183 

include Arkellea teichophera (as Heslertonia teichophera), Chytroeisphaeridia cerastes, 184 

Chytroeisphaeridia hyalina, Ctenidodinium continuum, Ctenidodinium ornatum, 185 

Endoscrinium galeritum, Nannoceratopsis pellucida, the Paragonyaulacysta group, 186 

Rhynchodiniopsis cladophora and Sirmiodinium grossii. On the basis of the aforementioned 187 

taxa, together with key ammonites, the Oppdalen Member was assigned to the upper 188 

Bathonian to middle Callovian (Smelror et al. 2018, fig. 13). The overlying Lardyfjellet 189 

Member of the Agardhfjellet Formation produced relatively diverse dinoflagellate cyst 190 

associations. These include the marker species Evansia deflandrei (as Crussolia deflandrei), 191 

Gonyaulacysta eisenackii, Gonyaulacysta jurassica subsp. adecta var. longicornis, Kalyptea 192 

diceras, Scriniodinium crystallinum, Stephanelytron redcliffense, Trichodinium 193 

scarburghense, Wanaea fimbriata and Wanaea thysanota. This association is indicative of 194 

the late Callovian to early Oxfordian interval (Poulsen and Riding 2003). However, evidence 195 

from ammonites and foraminifera indicates that the upper part of the Lardyfjellet Member is 196 

early Kimmeridgian in age. There is a substantial hiatus above the Agardhfjellet Formation 197 

(Smelror et al. 2018, fig. 17). 198 

 The overlying strata, the Klippfisk, Kolje and Helvetiafjellet formations are Early 199 

Cretaceous (Valanginian–Aptian) in age. This study has allowed reliable correlations to 200 

Triassic to Cretaceous successions in Franz Josef Land, Arctic Russia (Smelror et al. 2018, 201 

fig. 17). 202 

 203 
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2.3.2. Northern Russia 204 

The foraminifera and palynomorphs from samples collected from two sections of the Upper 205 

Jurassic (Oxfordian–Tithonian [Volgian]) on the banks of the Lopsiya River immediately east 206 

of the northern Ural Mountains in north-central Russia were studied by Lebedeva et al. 207 

(2019). This is an extremely important reference section largely due to its stratigraphical 208 

completeness, and the presence throughout of zonal ammonites and other molluscs. Lebedeva 209 

et al. (2019, figs 4, 5) reported relatively diverse marine and terrestrial palynomorphs. The 210 

dinoflagellate cyst associations are dominated by non-tabulate, proximate forms with apical 211 

archaeopyles referred to the Sentusidinium-Batiacasphaera-Kallosphaeridium group (Wood 212 

et al. 2016), and chorate taxa are relatively rare. The latter phenomenon is typical of the 213 

Boreal Realm (Wierzbowski et al. 2002). However, the assemblages also include typically 214 

Late Jurassic dinoflagellate cysts including Ambonosphaera? staffinensis, Cribroperidinium 215 

globatum, Cribroperidinium? longicorne, Dingodinium spp., Endoscrinium luridum, 216 

Glossodinium dimorphum, Leptodinium spp., Scriniodinium crystallinum, Senoniasphaera 217 

jurassica, Systematophora areolata and Tubotuberella apatela. 218 

 Two dinoflagellate cyst biozones were described by Lebedeva et al. (2019). These 219 

are the Gonyaulacysta jurassica subsp. jurassica and Corculodinium inaffectum assemblage 220 

zones of early Kimmeridgian, and latest early Kimmeridgian to earliest Tithonian (Volgian) 221 

age respectively. The Gonyaulacysta jurassica subsp. jurassica assemblage zone is 222 

equivalent to the early Kimmeridgian Eurorasenia pseudoouralensis ammonite subzone of 223 

the Rasenia evoluta ammonite zone. Lebedeva et al. (2019, p. 9) stated that the Lopsiya River 224 

material is closely comparable with the dinoflagellate cysts from around the Oxfordian–225 

Kimmeridgian transition of northwest Europe and adjacent areas and the central Russian 226 

Platform (e.g. Riding and Thomas 1988, 1997; Riding et al. 1999). By contrast, it is markedly 227 

different from coeval material from central northern Siberia (e.g. Ilyina et al. 2005). 228 

Lebedeva et al. (2019) deemed the dinoflagellate cyst assemblages from Lopsiya River to be 229 

intermediate in floral character between coeval material from Subboreal northwestern Europe 230 

and the Boreal Realm. The overlying Corculodinium inaffectum assemblage zone ranges 231 

from the Zonovia ulalensis ammonite subzone of the Rasenia evoluta ammonite zone to the 232 

Eosphinctoceras magnum ammonite zone, and is latest early Kimmeridgian to earliest 233 

Tithonian (Volgian) in age (Lebedeva et al. 2019, fig. 4). The base of this biozone was 234 

formally identified as the range base of Corculodinium inaffectum. 235 

 The same succession of dinoflagellate cyst biozones were established in western 236 

Russia by Riding et al. (1999). A major difference in Lebedeva et al. (2019) is that the 237 
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inception of Corculodinium inaffectum is substantially older than documented by Riding et 238 

al. (1999), i.e. immediately below the Aulacostephanus mutabilis ammonite zone. Riding et 239 

al. (1999) placed the range base of Corculodinium inaffectum (as Subtilisphaera? inaffecta) at 240 

the base of the Aulacostephanus autissiodorensis ammonite zone. As Lebedeva et al. (2019) 241 

pointed out, there is substantial congruence between their data with dinoflagellate cyst ranges 242 

established in northern Europe and adjacent regions. For example, the range bases of 243 

Corculodinium inaffectum and Cribroperidinium? longicorne, and the apparent extinctions of 244 

Endoscrinium luridum and Gonyaulacysta jurassica subsp. jurassica are extremely similar in 245 

both areas in terms of their calibration with the ammonite zonations. 246 

 Two successions spanning the Kyra and Kelimyar formations of late Pliensbachian 247 

and Toarcian age from two exposures near the Kelimyar River in northern Siberia were 248 

studied by van de Schootbrugge et al. (2019) as part of a major multi-region study comparing 249 

the Arctic with sub-Arctic West Europe. These were sections S16 and S5-D1, and the former 250 

comprises Upper Pliensbachian to Upper Toarcian strata. Most of the Upper Pliensbachian 251 

Kyra Formation yielded sparse dinoflagellate cyst associations dominated by the genus 252 

Nannoceratopsis. By contrast, the uppermost Kyra Formation, and the overlying Kelimyar 253 

Formation of Toarcian age produced much more species-rich dinoflagellate cyst palynofloras. 254 

Batiacasphaera sp., Dissiliodinium sp., Maturodinium inornatum, Pareodinia? 255 

pseudochytroeides (as Dodekovia pseudochytroeides), Parvocysta spp., Phallocysta eumekes, 256 

Scriniocassis weberi, Susadinium scrofoides, Valvaeodinium koessenium (as Comparodinium 257 

koessenium), Valvaeodinium spp. and Wallodinium cylindricum were recorded from this 258 

succession, together with the acritarch Limbicysta bjaerkei (see van de Schootbrugge et al. 259 

2019, fig. 7). Biostratigrapically, the most notable aspect of this succession is that the 260 

Parvocysta-Phallocysta suite has a substantially younger inception, i.e. earliest Toarcian, 261 

than further south in western Europe (e.g. Riding 1984, Riding et al. 1991). 262 

 The transition between the Kyra and Kelimyar formations (uppermost 263 

Pliensbachian–Lower Toarcian) was sampled in the Kelimyar River S5-D1 section by van de 264 

Schootbrugge et al. (2019). At the onset of the Early Toarcian negative Carbon Isotope 265 

Excursion, there is a dramatic increase in dinoflagellate cyst diversity. Mancodinium 266 

semitabulatum, Moesiodinium raileanui, Nannoceratopsis spp., Parvocysta spp., Phallocysta 267 

spp., Susadinium scrofoides and Valvaeodinium spp. all appeared at this time (van de 268 

Schootbrugge et al. 2019, fig. 9). This succession proves that the range base of the 269 

Parvocysta-Phallocysta suite is early Toarcian in age in the high palaeolatitudes. 270 
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 The data from the two Kelimyar River sections examined by van de Schootbrugge 271 

et al. (2019) disproves the contention of, for example Riding et al. (1999, fig. 11) that the 272 

Parvocysta-Phallocysta suite emerged in the high northerly palaeolatitudes during the Late 273 

Toarcian. By contrast, this group emerged during the early Toarcian, and thrived during the 274 

Toarcian Oceanic Anoxic Event (T-OAE) in northern Siberia. As the Parvocysta-Phallocysta 275 

suite co-occurred with early representatives of the Gonyaulacales during the Early Toarcian, 276 

the high northerly latidudes appear to represent the cradle of dinoflagellate evolution at this 277 

critical interval in plankton evolution (Wiggan et al. 2018). The abundance of dinoflagellate 278 

cysts in northern Siberia during the T-OAE is believed to be as a result of only sporadic 279 

benthic anoxia due to seasonally-driven marine mixing. Further south, there was a virtual 280 

blackout of dinoflagellate cysts during the early Toarcian (Correia et al. 2017). Furthermore, 281 

the Parvocysta-Phallocysta suite migrated into Europe in southerly-moving currents through 282 

the Viking Corridor after oceanic deepening during the middle part of the early Toarcian (van 283 

de Schootbrugge et al. 2019, fig. 11). These authors suggested that this enhanced Arctic-284 

Tethys marine connectivity, specifically the influx of cold, low-salinity, nutrient-rich waters 285 

from the Arctic region helped to end the T-OAE. These conclusions are supported by the fact 286 

that the late Pliensbachian and Toarcian ammonite zonal schemes are substantially different 287 

in the Arctic, Suboreal and Tethyan regons, indicating intense provincialism at this time (van 288 

de Schootbrugge et al. 2019, fig. 1). 289 

 290 

2.4. West Arctic 291 

In this review there are three items relevant to the West Arctic region. These are one on 292 

Arctic Canada, one on northeast Greenland and there is one multi-region contribution 293 

(Appendix 1 of the Supplemental data). An abstract on the dinoflagellate cysts from the 294 

Upper Jurassic to Lower Cretaceous (Oxfordian–Valanginian) succession of the Rollrock 295 

section on northern Ellesmere Island in the Sverdrup Basin of Arctic Canada was issued by 296 

Ingrams (2019). This successon is an important high latiutude reference section for the 297 

Jurassic–Cretacous transition. Seven biozones were distinguished, defined by the range bases 298 

and tops of marker taxa such as Muderongia simplex and Oligosphaeridium complex. 299 

Glacioeustacy is thought to influence spine-bearing dinoflagellate cyst morphology with 300 

major fluctuations in proximochorate forms reflecting relative sea level fall. 301 

 A major paper on the Cretaceous palynostratigraphy of northeast Greenland 302 

between Traill Ø in the south and Store Koldeway in the north was published by Nøhr-303 

Hansen et al. (2019). The interval considered was latest Jurassic to Late Cretaceous 304 
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(Tithonian–Maastrichtian) in age and the biozonation, which comprises 15 zones, was 305 

calibrated to an updated ammonite zonation and based on three boreholes and over 100 306 

outcrop sections. It is the first palynozonation for the entire Cretaceous of East Greenland, 307 

and can be correlated to other areas in the Arctic region. The Gochteodinia villosa villosa 308 

(NEG Cr 1) and Oligosphaeridium complex (NEG Cr 2) zones cover the late Tithonian to 309 

earliest Hauterivian interval. The base of the former was defined as the inceptions of 310 

Gochteodinia villosa villosa and Isthmocystis distincta in the upper Tithonian. Bioevents in 311 

the Gochteodinia villosa villosa zone include the range base of Scriniodinium pharo, the 312 

ranges of Lagenorhytis delicatula and Rotosphaeropsis thule and the range top of 313 

Paragonyaulacysta? borealis in the Berriasian of the Rødryggen-1 core 517001. The base of 314 

the succeeding Oligosphaeridium complex zone was drawn in the uppermost Berriasian at the 315 

range base of the index species (Nøhr-Hansen et al. 2019, fig. 7). 316 

 Krencker et al. (2019) is a contribution based largely on geochemistry and 317 

sedimentology which posited a temporally short, high amplitude global forced regression, 318 

due to polar ice sheet dynamics, which immediately preceded the major marine transgression 319 

associated with the Toarcian Oceanic Anoxic Event (T-OAE). It suggests that this, and other, 320 

hyperthermal events may have had their origins in short-lived ‘cold snaps’. This study was 321 

based on data and material from the Central High Atlas Basin in Morocco and Jameson Land, 322 

East Greenland. The palynology data in Krencker et al. (2019) is entirely from the uppermost 323 

Pliensbachian, Toarcian and lowermost Aalenian strata within the Neill Klinter Group of 324 

Jameson Land Basin in East Greenland. The samples used were originally collected from the 325 

Gule Horn to Sortehat formations for the study of Koppelhus and Dam (2003). The material 326 

yielded the dinoflagellate cysts Luehndea spinosa, Mancodinium semitabulatum, 327 

Nannoceratopsis gracilis, Phallocysta elongata (as Parvocysta elongata), Parvocysta sp., 328 

Phallocysta eumekes and Valvaeodinium armatum (see Krencker et al. 2019, p. 6, 7; fig. 5). 329 

 330 

 331 

2.5. China and Japan 332 

Two contributions on the marine palynology of the Jurassic of China and Japan were issued 333 

during the period of this review. Lin and Li (2019, fig. 4E) illustrated ‘?Dinoflagellate cyst’ 334 

from the Lower Cretaceous Duoni Formation of Wadga coal mine, near Baxoi, Qinghai-335 

Xizang Plateau, western China. This highly thermally mature specimen has a substantial 336 

opening that may be an archaeopyle. However the lack of other microplankton, the 337 
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resemblance to certain Mesozoic gymnospermous pollen such as Perinopollenites and the 338 

poor preservation strongly suggests it is not of dinoflagellate affinity. 339 

 Kemp et al. (2019) is the first report of Jurassic dinoflagellate cysts from Japan. 340 

This paper is an integrated study on the isotope geochemistry, palynofacies and palynology of 341 

a highly expanded succession through the Toarcian Oceanic Anoxic Event (T-OAE) in 342 

southwest Japan. Palynomorphs were extracted from 32 samples of the Nishinakayama 343 

Formation collected from the Sakuraguchi-dani stream section near Toyota Town. The 344 

palynoflora is of relatively low diversity and two samples apparently yielded the 345 

dinoflagellate cyst Luehndea spinosa (see Kemp et al. 2019, fig. 4). The two samples precede 346 

the T-OAE, and this scenario is consistent with the results of Correia et al. (2017, fig. 3). The 347 

latter study found that Luehndea spinosa is highly characteristic of the pre T-OAE succession 348 

in the Lusitanian Basin in Portugal. Due to the intense tectonism which has affected Japan, 349 

the Nishinakayama Formation is highly thermally altered and substantially overmature. This 350 

is confirmed by the extremely poor preservation of the palynomorphs extracted by Kemp et 351 

al. (2019, fig. 3). They are intensely blackened and degraded such that identification to 352 

species level is highly problematical. This includes the photograph of Luehndea spinosa (see 353 

Kemp et al. 2019, fig. 3T). This specimen is a poorly-preserved subangular polygonal body 354 

approximately 40 µm in diameter and bearing irregular spines. The epicystal archaeopyle, 355 

gonal spines and gonyaulacacean tabulation characteristic of Luehndea spinosa are not 356 

evident (Morgenroth 1970), and the validity of the identification of this specimen is therefore 357 

not considered to be secure. 358 

 359 

2.6. East Europe 360 

In this compilation, eight items concerning East Europe were listed in Appendix 1 of the 361 

Supplemental data; these are studies from the Czech Republic, Poland and Ukraine. Four of 362 

these items, Birkenmajer and Gedl (2019), Skupien and Doupovcova (2019), Svobodová et 363 

al. (2019) and Kowal‑Kasprzyk et al. (2020), have substantial contributions on dinoflagellate 364 

cysts. 365 

 The study of Birkenmajer and Gedl (2019) investigated the Jurassic to Paleogene 366 

dinoflagellate cyst biostratigraphy of borehole PD-9 drilled at Szczawnica in central southern 367 

Poland. This well was drilled in the intensely tectonised northern boundary fault zone of the 368 

Pieniny Klippen Belt in the West Carpathians. Specifically, this borehole indicates that the 369 

Grajcarek Main Dislocation is virtually vertical and separates the Magura Nappe of the Outer 370 

Carpathians to the north, and the Pieniny Klippen Belt to the south. The authors reported 371 
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dinoflagellate cyst assemblages from the Lower–Middle Jurassic, Upper Cretaceous and 372 

Eocene. 373 

 A steeply-dipping thrust sheet of the Szlachtowa Formation of Jurassic age was 374 

identified. This is the oldest unit of the Grajcarek Unit and two samples were collected at 375 

716.4–710.4 m and 710.4–707.1 m (Birkenmajer and Gedl 2019, fig. 4, table 1). The 376 

lowermost sample at 716.4–710.4 m yielded a low diversity dinoflagellate cyst association. It 377 

is dominated by Nannoceratopsis gracilis and Phallocysta elongata, and some Eocene 378 

contaminants are also present. The occurrence of the latter species, together with the absence 379 

of Dissiliodinium, is indicative of a latest Toarcian to Aalenian age (Feist-Burkhardt 1990, 380 

Riding 1994). By contrast, the uppermost sample at 710.4–707.1 m produced a relatively 381 

abundant assemblage, which lacks contamination, and is overwhelmingly dominated by 382 

Nannoceratopsis dictyambonis. Also present, but in lower proportions, are Batiacasphaera 383 

sp., Dissiliodinium sp., Kallosphaeridium? sp., Nannoceratopsis gracilis, Nannoceratopsis 384 

raunsgaardii, Nannoceratopsis spiculata, Nannoceratopsis sp. and Sentusidinium 385 

explanatum (as Kallosphaeridium praussii) (Birkenmajer and Gedl 2019, table 1). The 386 

authors used Dissiliodinium and Nannoceratopsis dictyambonis to interpret a latest Aalenian 387 

age for the sample at 710.4–707.1 m. The overlapping ranges of this species and genus is 388 

indicative of the latest Aalenian interval (Birkenmajer and Gedl 2019, p. 247). Furthermore, 389 

the absence of Dissiliodinium giganteum provides substantial negative evidence that this 390 

sample is not Bajocian in age (e.g. Gedl 2008; Segit et al. 2015). 391 

 Skupien and Doupovcova (2019) is of substantial regional significance because the 392 

succession examined is one of the few localites in the Tethyan Realm where the Jurassic–393 

Cretaceous transition is suitable for palynological study. These authors undertook 394 

biostratigraphical research on the calcareous and organic dinoflagellate cysts, and 395 

calpionellids of the Vendryně Formation and Těšín Limestone (Tithonian and Beriasian 396 

respectively) at Bruzovice, Outer Western Carpathians in the eastern Czech Republic. These 397 

lower Tithonian and Beriasian strata were sampled and several biostratigraphically significant 398 

dinoflagellate cyst taxa recovered. These include Amphorulacysta metaelliptica (as 399 

Amphorula metaelliptica), Diacanthum hollisteri, Dichadogonyaulax bensonii, Glossodinum 400 

dimorphum, Muderongia longicorna, Phoberocysta tabulata (as Muderongia tabulata), 401 

Prolixosphaeridium anasillum, Spiculodinium neptuni (as Achomosphaera neptuni) and 402 

Spiniferites sp. S. cf. ramosus (see Skupien and Doupovcova 2019, fig. 6). The 403 

biostratigraphy was discussed in detail, and a very extensive set of photographs was 404 

presented (Skupien and Doupovcova 2019, p. 221, 226 and figs 7–13 respectively). The 405 
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Jurassic–Cretaceous transition was established to occur between samples Br 12 and Br 10 406 

(Skupien and Doupovcova 2019, fig. 6). Some reworking from the Pliensbachian to Bajocian 407 

was noted; Nannoceratopsis gracilis and Nannoceratopsis raunsgaardii were encountered in 408 

the lowermost Cretaceous Těšín Limestone (Skupien and Doupovcova 2019, figs 11F, G). 409 

 Svobodová et al. (2019) examined the micropalaeontological biostratigraphy and 410 

palaeocological analysis of the Kurovice Limestone from Kurovice Quarry in southeast 411 

Czech Republic as part of a larger project the determine a Global Stratotype Section and 412 

Point (GSSP) for the Berriasian. This study includes analysis of the entire palynoflora and 413 

integrated all results with magnetostratigraphy. A total of 24 samples were examined for 414 

palynomorphs, and seven of these produced relatively rare and often poorly-preserved 415 

material due largely to the organic-lean nature of the succession (Svobodová et al. 2019, p. 416 

166, 168, figs 13–16). Because of this, the majority of the biostratigraphical conclusions are 417 

based on the calcareous microfossils. However, bioevents such as the range tops of 418 

Amphorulacysta? dodekovae (as Amphorula dodekovae) and Glossodinium dimorphum, and 419 

the range bases of, for example, Amphorulacysta metaelliptica (as Amphorula metaelliptica), 420 

Dichadogonyaulax bensonii, Dingodinium tuberosum (as Dingodinium ‘tuberculosum’), 421 

Scriniodinium campanula, Spiculodinium neptuni (as Achomosphaera neptuni) and 422 

Tehamadinium evittii proved to be stratigraphically useful. Some reworking was discerned. 423 

 Kowal‑Kasprzyk et al. (2020) studied the dinoflagellate cysts (calcareous and 424 

organic) and foraminifera of exotic clasts of Upper Jurassic (Oxfordian–Kimmeridgian) strata 425 

from southern Poland which have been reworked into an extensive Lower Cretaceous to 426 

Eocene succession. These allochthonous fragments of sedimentary rocks deposited in shelfal 427 

settings are proxies for the understanding of the palaeogeography of this region prior to the 428 

development of the Outer Carpathian flysch basins. The clasts are from three carbonate facies 429 

types. Key marker organic dinoflagellate cyst species recognised include Endoscrinium 430 

luridum, Glossodinium dimorphum, Gonyaulacysta jurassica, Leptodinium subtile and 431 

Rhynchodiniopsis cladophora (see Kowal‑Kasprzyk et al. 2020, figs 8, 9). 432 

 433 

2.7. Sub-Arctic West Europe 434 

Seventeen contributions solely on the Triassic, Jurassic and lowermost Cretaceous 435 

successions of sub-Arctic West Europe are covered in this review, one of which is deemed 436 

especially significant (Appendix 1 of the Supplementary data). Of these 17 single-region 437 

items, seven are briefly outlined below, and one highly impactful multi-region publication is 438 

described. 439 
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 Adloff and Doubinger (1982) recorded Dapcodinium priscum and 440 

Rhaetogonyaulax rhaetica from the Rhaetian and lowermost Hettangian strata of Mersch, 441 

central Luxembourg. Similarly, Hillebrandt et al. (2013) recorded Dapcodinium priscum and 442 

Rhaetogonyaulax rhaetica from the Rhaetian of the Kuhjoch Pass in the Karwendel 443 

Mountains, western Austria, although abundance, sample and range data are lacking. 444 

 The palaeontology of the lowermost Cretaceous (Berriasian and Valanginian) strata 445 

of central Austria was studied by Boorová et al. (2015). This study is centered on the 446 

Schrambach Formation at its type locality and was multidisciplinary, encompassing 447 

ammonites, calpionellids and calcareous dinoflagellate cysts. The Oberalm, Schrambach and 448 

Rossfeld formations yielded organic-walled dinoflagellte cysts (Boorová et al. 2015, p. 106–449 

107, figs 3A–3F, 7–8, table 1). Biostratigraphically significant taxa recorded by these authors 450 

include Amphorulacysta metaelliptica (as Amphorula metaelliptica), Ctenidodinium 451 

elegantulum, Cribroperidinium? edwardsii, Dichadogonyaulax bensonii, 452 

Kleithriasphaeridium corrugatum, Kleithriasphaeridium fasciatum, Phoberocysta 453 

neocomica, Pseudoceratium pelliferum, Scriniodinium campanula, Spiculodinium neptuni (as 454 

Achomosphaera neptuni), Spiniferites ramosus and Stanfordella? cretacea. Some reworking 455 

of specimens of Nannoceratopsis, including Nannoceratopsis gracilis, from the underlying 456 

Lower–Middle Jurassic (Pliensbachian–Bajocian) was observed in the Oberalm and 457 

Schrambach formations (Boorová et al. 2015, figs 7P, 7Q). 458 

 The palynology and sedimentology of the Rannoch Formation (Brent Group) in the 459 

northern North Sea was studied by Slater et al. (2017). These authors reported the presence of 460 

the dinoflagellate cyst genera Evansia, Kallosphaeridium, Mancodinium, Nannoceratopsis, 461 

Pareodinia and Phallocysta in bioturbated sandy facies of three wells in block 211/14. This 462 

association, together with rare Botryococcus, is indicative of shallow marine conditions 463 

within the Rannoch Formation which is late Aalenian–early Bajocian in age (Richards et al. 464 

1993). 465 

 Schobben et al. (2019) undertook a multidisciplinary study of the uppermost 466 

Triassic and lowermost Jurassic (Rhaetian–Hettangian) strata of central Europe in order to 467 

beeter understand the end-Triassic mass extinction. These authors recorded Dapcodinium 468 

priscum, Rhaetogonyaulax rhaetica and Suessia swabiana from the Rhaetian and Hettangian 469 

succession at a quarry northwest of Bonenburg in central Germany. Suessia swabiana was 470 

confined to the Rhaetian, but Dapcodinium priscum and Rhaetogonyaulax rhaetica were 471 

recorded throughout (Schobben et al. 2019, fig. 2). 472 
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 The vegetational response to the Toarcian Oceanic Anoxic Event (T-OAE) in 473 

northern England was investigated by Slater et al. (2019). Despite the focus on the terrestrial 474 

realm, these authors discussed the dynamics of marine phytoplankton and illustrated the 475 

dominance of sphaeromorphs, together with abundant amorphous organic material with much 476 

reduced numbers of dinoflagellate cysts during the T-OAE, which is characterised by a 477 

marked negative carbon isotope excursion (Slater et al. 2019, fig. 2). 478 

 A major multi-region study on the Lower Jurassic (Pliensbachian and Toarcian) of 479 

the East Arctic and West Europe was published recently by van de Schootbrugge et al. 480 

(2019). These authors worked on the Cleveland Basin in northern England and the 481 

Norwegian North Sea. In the Cleveland Basin, van de Schootbrugge et al. (2019, fig. 5) 482 

examined productive samples from the Cleveland Ironstone and Whitby Mudstone 483 

formations (Upper Pliensbachian to Upper Toarcian). In broad terms, the floras recorded by 484 

van de Schootbrugge et al. (2019) are complementary to, and consistent with, the 485 

assemblages documented by Riding (1984) and Bucefalo Palliani and Riding (2000) from this 486 

depocentre. The oldest dinoflagellate cyst species recorded by van de Schootbrugge et al. 487 

(2019) was Luehndea spinosa in the Amaltheus margaritatus ammonite zone of the Upper 488 

Pliensbachian and this was followed by a substantial influx of taxa at the Pliensbachian–489 

Toarcian transition. These include the inceptions of Mancodinium semitabulatum, 490 

Maturodinium inornatum, Nannoceratopsis gracilis, Nannoceratopsis senex and 491 

Scriniocassis weberi. There is a marked decrease in dinoflagellate cysts, but not a total 492 

blackout, during the Carbon Isotope Excursion (CIE) interval at the base of the Harpoceras 493 

falciferum ammonite zone in the T-OAE. The Parvocysta-Phallocysta suite are first observed 494 

in the Harpoceras falciferum–Hildoceras bifrons ammonite zone transition, after the T-OAE. 495 

Of this major plexus of forms, Parvocysta bullula, Phallocysta eumekes and Susadinium 496 

scrofoides were recorded by van de Schootbrugge et al. (2019, figs 5, 12). The subsequent 497 

diversity only increased marginally up-section, with Scriniocassis priscus appearing in the 498 

middle part of the Hildoceras bifrons ammonite zone (van de Schootbrugge et al. (2019, fig. 499 

5). Taken together, Riding (1984), Bucefalo Palliani and Riding (2000) and van de 500 

Schootbrugge et al. (2019) provide an excellent composite palynologcal reference section for 501 

the Sinemurian to the Aalenian of the Cleveland Basin. 502 

 The uppermost Pliensbachian and Toarcian succession from the Norwegian North 503 

Sea, specifically well 34/10-35 in the Gulfaks South oilfield, was studied by van de 504 

Schootbrugge et al. (2019, fig. 6) as part of an investigation of the Arctic and Europe. This is 505 

the only succession in this study that is not calibrated to the ammonite zonation. It appears 506 
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that, in general terms, this North Sea record is similar to coeval floras from northern England, 507 

but nonetheless and intermediate between northern Siberia and northwest Europe. Luehndea 508 

spinosa ranges slightly stratigraphically higher (to the end of the CIE in the T-OAE) than in 509 

southern Europe and Tethys, i.e. into the Harpoceras falciferum ammonite zone equivalent 510 

based on chemostratigraphy (van de Schootbrugge et al. 2019, fig. 12). There is no virtual 511 

blackout of dinoflagellate cysts in the T-OAE, as is the case further south in Europe, in the 512 

Norwegian North Sea (e.g. Correia et al. 2017). Early representatives of the Gonyaulacales 513 

such as the genera Batiacasphaera and Dissiliodinium are present in the upper Pliensbachian, 514 

and throughout the T-OAE of well 34/10-35. This is similar to the records from northern 515 

Siberia (van de Schootbrugge et al. 2019, figs 7, 9). Potentially most significantly, in well 516 

34/10-35 is the range bases of Parvocysta bullula and Parvocysta nasuta within the T-OAE, 517 

i.e. within the negative CIE (lowermost Toarcian). These species are typical of the 518 

Parvocysta-Phallocysta suite, and this inception is similar to the situation in northern Siberia 519 

(see section 2.2; van de Schootbrugge et al. 2019, figs 6, 7, 9, 12). 520 

 Hesselbo et al. (2020) is a follow-up paper to Riding et al. (2013). The latter is an 521 

account of acmes of the dinoflagellate cyst Liasidium variabile and the pollen species 522 

Classopollis classoides, together with a marked negative CIE of 2–3‰ in the upper 523 

Sinemurian strata of Lincolnshire, eastern England. These phenomena were collectively 524 

termed the S-CIE and interpreted as a hyperthermal event of global extent. Hesselbo et al. 525 

(2020) sampled the shallow marine Sinemurian succession at Robin Hood’s Bay in the 526 

Cleveland Basin, North Yorkshire, northern England at a high resolution. These authors 527 

confirmed the presence of the S-CIE (and renamed it the Liasidium Event), which 528 

corresponds very closely to the Oxynoticeras oxynotum ammonite zone. The Liasidium Event 529 

at Robin Hood’s Bay also is coeval with a negative CIE that exhibits a distinctive double 530 

spike in the middle part of the Oxynoticeras oxynotum ammonite zone (Hesselbo et al. 2020, 531 

fig. 3). The peak occurrences of Liasidium variabile correspond to deep water and maximum 532 

flooding. Analysis of parasequences in this succession allow an age assessment of at least one 533 

million years for the Liasidium Event. The intensity of this relatively minor hyperthermal is 534 

far less than the subsequent T-OAE, and no evidence of significant bottom water 535 

deoxygenation was developed. This study established a chronostratigraphical range for 536 

Liasidium variabile at Robin Hood’s Bay as middle late Sinemurian. Specifically this is the 537 

base of the Eparietites denotatus ammonite subzone of the Asteroceras obtusum ammonite 538 

zone, to close to the top of the Oxynoticeras oxynotum ammonite subzone of the 539 

Oxynoticeras oxynotum ammonite zone. However, Liasidium variabile is only consistent and 540 
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common (i.e. >5 %) in the Oxynoticeras oxynotum ammonite zone, from the middle of the 541 

Oxynoticeras simpsoni ammonite subzone to the base of the Oxynoticeras oxynotum 542 

ammonite subzone (Hesselbo et al. 2020, fig. 3). 543 

 544 

2.8. The Middle East 545 

In this review, there are six contributions which are focused exclusively on the Middle East, 546 

two of which are considered especially impactful (Appendix 1 of the Supplementary data). 547 

Five of these six items are on the Lower and Middle Jurassic (Pliensbachian to Callovian) 548 

successions of northern Iran. The material documented in these five articles is dominated by 549 

pollen and spores, and all the palynomorphs are blackened and poorly-preserved due to 550 

substantial levels of thermal alteration. 551 

 Four of the items on Iran were authored or co-authored by Fatemeh Vaez-Javadi, 552 

and three of these are centered on northeast Iran. The first of these was Vaez-Javadi et al. 553 

(2003), a study of the marine palynomorphs in six samples collected from the Shemshak 554 

Formation of Jajarm County, northeast Iran. The material is highly blackened, and includes 555 

nine species of dinoflagellate cysts and two acritarchs. Two zones, the Nannoceratopsis 556 

spiculata and Valensiella ovulum biozones were established, and are of Pliensbachian–557 

Toarcian and Bajocian age respectively (Vaez-Javadi et al. 2003, fig. 2, pl. 1, 2). The 558 

Nannoceratopsis spiculata biozone yielded four taxa; these are Kalyptea diceras, Liesbergia 559 

liesbergensis, Nannoceratopsis spiculata and Scriniodinium? dictyophorum (as ‘Aldorfia 560 

dictyophora’) (see Vaez-Javadi et al. 2003, fig. 2). Nannoceratopsis spiculata does not 561 

normally occur in the Pliensbachian–Toarcian interval with younger gonyaulacacean taxa 562 

such as Liesbergia liesbergensis (see Berger 1986). In the succeeding Valensiella ovulum 563 

biozone (Bajocian), a more diverse flora was recorded. However, as in the Nannoceratopsis 564 

spiculata biozone, some species such as Gonyaulacysta centriconnata appear to be 565 

stratigraphically anomalous (Riding 1983). 566 

 Vaez-Javadi (2018, 2019) are both on the palynology of the Middle Jurassic 567 

(Aalenian–Bajocian) Hojedk Formation of the Tabas Block in northeast Iran. In a substantial 568 

paper, Vaez-Javadi (2018, fig. 2) reported a moderately diverse dinoflagellate cyst 569 

association dominated by the genera Kalyptea, Nannoceratopsis and Pareodinia. This 570 

assemblage was assigned to the Nannoceratopsis triceras-Pareodinia ceratophora 571 

assemblage zone. The presence of species such as Nannoceratopsis gracilis, Nannoceratopsis 572 

symmetrica, Nannoceratopsis triceras and Pareodinia ceratophora is consistent with an 573 

Aalenian–Bajocian age (Bucefalo Palliani and Riding 2000, 2003). Vaez-Javadi (2019) is a 574 
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report on 38 samples from the Hojedk Formation of the Chahrekhneh borehole, southwest of 575 

Tabas, in South Khorasan Province, northeast Iran. A less diverse dinoflagellate cyst 576 

assemblage was recovered than in Vaez-Javadi (2018), but it also comprised the genera 577 

Kalyptea, Nannoceratopsis and Pareodinia. The Nannoceratopsis sp. cf. N. gracilis interval 578 

zone was established, and was assigned an Aalenian–Bajocian age. Miospore evidence also 579 

contributed to this age assignment, which is consistent with other studies on marine 580 

microplankton (Riding and Thomas 1992, Poulsen and Riding 2003). 581 

 An integrated study on the palaeobotany and palynology of the Dansirit Formation 582 

(Middle Jurassic) from the Soltanieh Mountains of Zanjan Province, northwest Iran was 583 

undertaken by Vaez-Javadi and Abbassi (2018). The dinoflagellate cysts recorded were 584 

Nannoceratopsis triceras, Pareodinia ceratophora and Pareodinia sp. cf. P. prolongata. The 585 

specimens figured are not in an optimal preservational state (Vaez-Javadi and Abbassi 2018, 586 

pl. 1/16–19). The Pareodinia ceratophora-Nannoceratopsis triceras assemblage zone, of 587 

Aalenian–Bajocian age, was erected on the basis of this material. 588 

 Badihagh et al. (2019) is a detailed study of the palynomorphs and plant 589 

macrofossils from the Hojedk Formation of Well 233, southwest of Tabas city, northeast Iran. 590 

This part of the Hojedk Formation of the Tabas Block is interpreted as being Middle Jurassic 591 

(?Bajocian–Bathonian) in age based on the pollen and spores which dominate the 48 samples 592 

studied. The entire succession studied was assigned to the Klukisporites variegatus acme 593 

zone by Badihagh et al. (2019). This interpretation was based on the consistent and abundant 594 

occurrence of the pteridophytic spore Klukisporites variegatus. However rare unidentified 595 

dinoflagellate cysts were recorded in samples 42 and 41, in the uppermost part of the Hojedk 596 

Formation, by Badihagh et al. (2019, fig. 2, tables 1, 2). It is clear that all the palynomorphs 597 

recovered from the Hojedk Formation of the South Khorasan Province are very dark and 598 

relatively poorly-preserved (Badihagh et al. 2019, fig. 4). This is indicative that this unit had 599 

been subjected to high levels of thermal alteration. These authors illustrated one 600 

indeterminate dinoflagellate cyst (Badihagh et al. 2019, fig. 4r). It is a poorly-preserved 601 

subpentagonal specimen which is circumcavate/epicavate, and has a cingulum and a 602 

precingular archaeopyle. The overall morphology, plus the relatively small hypocyst and the 603 

apparently broken/damaged apical horn strongly suggests that this specimen is referable to 604 

Gonyaulacysta jurassica subsp. adecta. The total range of this subspecies is Bathonian to 605 

Oxfordian, but it is only common and consistent between the Callovian and middle Oxfordian 606 

(Riding et al. 1985, Riding and Thomas 1992, 1997, Wiggan et al. 2017). If the specimen 607 

illustrated by Badihagh et al. (2019, fig. 4r) is Gonyaulacysta jurassica subsp. adecta, this is 608 
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substantially more suggestive that the uppermost Hojedk Formation is Callovian as opposed 609 

to Bathonian; it cannot be of Bajocian age. 610 

 The five contributions reviewed herein on the Lower and Middle Jurassic 611 

(Pliensbachian–Callovian) successions of northern Iran indicate clearly that the entire region 612 

has been subjected to significant levels of sub-metamorphic thermal alteration over a 613 

substantial interval. This is because, following faulting during the early part of the 614 

Cimmerian orogeny, Middle Jurassic siliciclastic successons were deposited in northern Iran 615 

and these were affected by the Mid Cimmerian orogenic event throughout the Iran Plate 616 

(Zanchi et al., 2009). Unsurprisingly, this intense tectonism has badly affected palynomorph 617 

preservation. The four contributions authored or co-authored by Fatemeh Vaez-Javadi clearly 618 

prove that there was a low diversity dinoflagellate cyst association, dominated by the genera 619 

Nannoceratopsis and Pareodinia, in Aalenian and Bajocian successions throughout northern 620 

Iran. The units examined were the Dansirit Formation of northwest Iran and the Hojedk and 621 

Shemshak formations of northeast Iran. Badihagh et al. (2019) also studied the Hojedk 622 

Formation of northeast Iran. These authors found evidence that part of this unit appears to be 623 

somewhat younger, i.e. Callovian in age. 624 

 The remaining contribution on the Middle East is Issautier et al. (2019). This is a 625 

major work on the depositional environments, palynostratigraphy, sedimentology and 626 

sequence stratigraphy of the Minjur Formation in central Saudi Arabia. This unit was studied 627 

in detail via examination of 112 cuttings and 12 core samples collected from five exploration 628 

wells in central and eastern Saudi Arabia (Issautier et al. 2019, figs 1, 11, 12). The 629 

palynology of this material was documented in detail, and six palynomorph zones 630 

(‘palynozones’) established which span the late Carnian to Pliensbachian interval. These 631 

authors reported the occurrences of the dinoflagellate cyst species Dapcodinium priscum, 632 

?Hebecysta spp., Nannoceratopsis gracilis, Rhaetogonyaulax dilatata, Rhaetogonyaulax 633 

rhaetica and Rhaetogonyaulax wigginsii, together with acritarchs, foraminiferal test linings, 634 

freshwater algae, pollen and spores, and prasinophytes (Issautier et al. 2019, p. 155–158; 635 

170–179). It is clear that the cuttings samples are badly affected by uphole contamination or 636 

caving of substantially younger Jurassic dinoflagellate cysts such as Ctenidodinium 637 

sellwoodii, Korystocysta spp. and Systematophora penicillata (see Issautier et al. 2019, fig. 638 

16, enclosures 1–4). Significantly, one of these allochthonous forms is Wanaea verrucosa 639 

which is a marker for the late Bajocian to early Bathonian interval of Australasia (Mantle and 640 

Riding 2012). These occurrences indicate that Wanaea verrucosa has a wider 641 

palaeogeographical extent than was initially envisaged. 642 
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 643 

2.9. Sub-Arctic Russia west of the Ural Mountains 644 

Holm‐Alwmark et al. (2019) is the only item solely on sub-Arctic western Russia that is 645 

relevant to this review (Appendix 1 of the Supplementary data). These authors analysed 646 

samples from a basal breccia and the overlying Kovernino Formation, both from above the 647 

Puchezh‐Katunki impact structure east of Moscow in western Russia. Abundant pollen and 648 

spores, together with Mendicodinium spp. and unidentified dinoflagellate cysts were reported, 649 

and interpreted to be Pliensbachian to early Toarcian in age. 650 

 651 

 652 

3. Conclusions 653 

From February 2019 to March 2020, 63 publications pertaining to Triassic to earliest 654 

Cretaceous dinoflagellate cysts were discovered which are further to the 1878 already 655 

compiled by Riding (2012, 2013, 2014, 2019a, 2020). This makes a culmulative total of 1941 656 

relevant items (Table 1). These 63 contributions are listed in Appendix 1 of the Supplemental 657 

data, and are mostly on the Jurassic of Africa, the Arctic, Europe and the Middle East (Table 658 

2). Items on East and West Europe are most numerous (eight and 17 respectively), and 659 

overall comprise 39.7% of the total (Table 2). This marked bias towards Europe was 660 

previously recorded by by Riding (2012, 2013, 2014, 2019a, 2020). Nine and six items are on 661 

the Arctic and the Middle East, and this represents 14.2% and 9.5% respectively. Africa is 662 

also well-represented with 4 papers (6.4%). The other regions represented, sub-Arctic 663 

Canada, China and Japan and sub-Arctic Russia, together make up 8% of the total. Multi-664 

region studies and publications with no geographical focus comprise 6.3% and 16% 665 

respectively (Table 2). In terms of the stratigraphical intervals investigated, the spread is 666 

relatively equable. The Early Jurassic has most studies with 19 papers either entirely focused 667 

on, or including data from, this interval (Table 3). 668 
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Table 1. A breakdown of the 1941 publications on Triassic to earliest Cretaceous 1011 

dinoflagellate cysts compiled by Riding (2012, 2013, 2014, 2019a, 2020) and herein based on 1012 

the 23 relevant specified geographical region(s), plus multi-region studies and those with no 1013 
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geographical focus, and the initial letter of the family name of the first author. The number in 1014 

the geographical region cell refers to the number of relevant published items on that area 1015 

alone. An ellipsis (…) indicates a zero return for that particular parameter. 1016 

 1017 

Table 2. A breakdown of the 63 publications on Triassic to earliest Cretaceous dinoflagellate 1018 

cysts compiled herein, based on 11 specified relevant geographical region(s) plus multi-1019 

region studies and those with no geographical focus, and the initial letter of the family name 1020 

of the first author. The number in the geographical region cell refers to the number of 1021 

relevant published items on that area alone. An ellipsis (…) indicates a zero return for that 1022 

particular parameter. 1023 

 1024 

Table 3. A breakdown of the 63 publications on Triassic to earliest Cretaceous dinoflagellate 1025 

cysts compiled herein, subdivided chronostratigraphically. The intervals are Triassic, Early 1026 

Jurassic, Middle Jurassic, Late Jurassic, Jurassic-Cretaceous transition, investigations 1027 

comprising three or more of the previous intervals and studies with no stratigraphical focus, 1028 

and reworking. Some latitude and pragmatism are used in this compilation. For example if a 1029 

publication is on the Berriasian and Valanginian it is classified as covering the Jurassic-1030 

Cretaceous transition. One item may be counted twice if, for example, it spans the Toarcian 1031 

to Bathonian i.e. Early and Middle Jurassic) but not three times. An ellipsis (…) indicates a 1032 

zero return for that particular parameter. 1033 
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Appendix 2. List of palynomorph species, subspecies and varieties 1745 

 1746 

This Appendix alphabetically lists all valid palynomorph taxa below generic level which are 1747 

mentioned in this contribution with full author citations. References to the author citations for 1748 

the dinoflagellate cysts can be found in Williams et al. (2019 - American Asssociation of 1749 

Stratigraphic Palynologists Contribution Series 50, available at: 1750 

https://palynology.org/contribution-series-number-50-the-new-lentin-and-williams-index-1751 

2019/). The recommendations of Williams et al. (2019) are followed with the following two 1752 

exceptions. The proposals of Correia et al. (2017 - Review of Palaeobotany and Palynology 1753 

237, p. 93) on the species Nannoceratopsis senex are followed herein. With regard to this 1754 

species, Williams et al. (2019) adopted the taxonomic proposals of Ilyina et al. (1994 - 1755 

Russian Academy of Sciences, Siberian Branch, United Institute of Geology, Geophysics and 1756 

Mineralogy, Transactions 818), who proposed that Nannoceratopsis senex is a subspecies of 1757 

Nannoceratopsis deflandrei Evitt 1961. Furthermore, the Linnaean binomial Ctenidodinium 1758 

sellwoodii (Sarjeant 1975) Stover & Evitt 1978 is preferred herein to Dichadogonyaulax 1759 

sellwoodii Sarjeant 1975. Most of the Jurassic tabulate gonyaulacoid species with epicystal 1760 

archaeopyles are placed in Ctenidodinium. The species sellwoodii is clearly closely related to 1761 

two contemporary species which are accommodated in Ctenidodinium according to Williams 1762 

et al. (2019). These are Ctenidodinium combazii Dupin 1968 and Ctenidodinium cornigerum 1763 

(Valensi 1953) Jan du Chêne et al. 1985. That said, there are substantial taxonomic issues 1764 

with the two apparently very similar genera Ctenidodinium and Dichadogonyaulax. These 1765 

genera require a thorough taxonomic review. It is eminently possible that Dichadogonyaulax 1766 

is a junior synonym of Ctenidodinium as previously suggested by Lentin and Williams (1973 1767 

- Geological Survey of Canada Paper 73–42, p. 46). 1768 

 1769 

Acritarch: 1770 

Limbicysta bjaerkei (Smelror, 1987) MacRae et al. 1996 1771 

 1772 

Dinoflagellate cysts: 1773 

Aldorfia aldorfensis (Gocht 1970) Stover & Evitt 1978 1774 

Ambonosphaera? staffinensis (Gitmez 1970) Poulsen & Riding 1992 1775 

Amphorulacysta? dodekovae (Zotto et al. 1987) Williams & Fensome 2016 1776 

Amphorulacysta metaelliptica (Dodekova 1969) Williams & Fensome 2016 1777 
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Arkellea teichophera (Sarjeant 1961) Below 1990 1778 

Atopodinium haromense Thomas & Cox 1988 1779 

Chytroeisphaeridia cerastes Davey 1979 1780 

Chytroeisphaeridia hyalina (Raynaud 1978) Lentin & Williams 1981 1781 

Corculodinium inaffectum (Drugg 1978) Courtinat 2000 1782 

Coronifera oceanica Cookson & Eisenack 1958 1783 

Cribroperidinium? edwardsii (Cookson & Eisenack 1958) Davey 1969 1784 

Cribroperidinium globatum (Gitmez & Sarjeant 1972) Helenes 1984 1785 

Cribroperidinium? longicorne (Downie 1957) Lentin & Williams 1985 1786 

Ctenidodinium continuum Gocht 1970 1787 

Ctenidodinium elegantulum Millioud 1969 1788 

Ctenidodinium ornatum (Eisenack 1935) Deflandre 1938 1789 

Ctenidodinium sellwoodii (Sarjeant 1975) Stover & Evitt 1978 1790 

Dapcodinium priscum Evitt 1961 1791 

Diacanthum hollisteri Habib 1972 1792 

Dichadogonyaulax bensonii Monteil 1992 1793 

Dingodinium tuberosum (Gitmez 1970) Fisher & Riley 1980 1794 

Dissiliodinium giganteum Feist-Burkhardt 1990 1795 

Endoscrinium galeritum (Deflandre 1938) Vozzhennikova 1967 1796 

Endoscrinium luridum (Deflandre 1938) Gocht 1970 1797 

Evansia deflandrei (Wolfard & Van Erve 1981) Below 1990 1798 

Glossodinium dimorphum Ioannides et al. 1977 1799 

Gochteodinia villosa (Vozzhennikova 1967) Norris 1978 subsp. villosa autonym 1800 

Gonyaulacysta centriconnata Riding 1983 1801 

Gonyaulacysta eisenackii (Deflandre 1938) Górka 1965 1802 

Gonyaulacysta jurassica (Deflandre 1938) Norris & Sarjeant 1965 1803 

Gonyaulacysta jurassica (Deflandre 1938) Norris & Sarjeant 1965 subsp. adecta Sarjeant 1804 

1982 1805 

Gonyaulacysta jurassica (Deflandre 1938) Norris & Sarjeant 1965 subsp. adecta Sarjeant 1806 

1982 var. longicornis (Deflandre 1938) Downie & Sarjeant 1965 1807 

Gonyaulacysta jurassica (Deflandre 1938) Norris & Sarjeant 1965 subsp. jurassica autonym 1808 

Heibergella asymmetrica Bujak & Fisher 1976 1809 

Isthmocystis distincta Duxbury 1979 1810 

Kalyptea diceras Cookson & Eisenack 1960 1811 
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Kleithriasphaeridium corrugatum Davey 1974 1812 

Kleithriasphaeridium fasciatum (Davey & Williams 1966) Davey 1974 1813 

Lagenorhytis delicatula (Duxbury 1977) Duxbury 1979 1814 

Leptodinium subtile Klement 1960 1815 

Liasidium variabile Drugg 1978 1816 

Liesbergia liesbergensis Berger 1986 1817 

Luehndea spinosa Morgenroth 1970 1818 

Mancodinium semitabulatum Morgenroth 1970 1819 

Maturodinium inornatum Morgenroth 1970 1820 

Moesiodinium raileanui Antonesçu 1974 1821 

Muderongia longicorna Monteil 1991 1822 

Muderongia simplex Alberti 1961 1823 

Nannoceratopsis dictyambonis Riding 1984 1824 

Nannoceratopsis gracilis Alberti 1961 1825 

Nannoceratopsis pellucida Deflandre 1938 1826 

Nannoceratopsis plegas Drugg 1978 1827 

Nannoceratopsis raunsgaardii Poulsen 1996 1828 

Nannoceratopsis senex van Helden 1977 1829 

Nannoceratopsis spiculata Stover 1966 1830 

Nannoceratopsis symmetrica Bucefalo Palliani & Riding 2000 1831 

Nannoceratopsis triceras Drugg 1978 1832 

Noricysta fimbriata Bujak & Fisher 1976 1833 

Oligosphaeridium complex (White 1842) Davey & Williams 1966 1834 

Ovalicysta hiata Bjaerke 1980 1835 

Paragonyaulacysta? borealis (Brideaux & Fisher 1976) Stover & Evitt 1978 1836 

Pareodinia ceratophora Deflandre 1947 1837 

Pareodinia halosa (Filatoff 1975) Prauss 1989 1838 

Pareodinia prolongata Sarjeant 1959 1839 

Pareodinia? pseudochytroeides (Below 1987) Lentin & Williams 1989 1840 

Parvocysta bullula Bjaerke 1980 1841 

Parvocysta nasuta Bjaerke 1980 1842 

Phallocysta elongata (Beju 1971) Riding 1994 1843 

Phallocysta eumekes Dörhöfer & Davies 1980 1844 

Phoberocysta neocomica (Gocht 1957) Millioud 1969 1845 
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Phoberocysta tabulata Raynaud 1978 1846 

Prolixosphaeridium anasillum Erkmen & Sarjeant 1980 1847 

Pseudoceratium pelliferum Gocht 1957 1848 

Rhaetogonyaulax arctica (Wiggins 1973) Stover & Evitt 1978 1849 

Rhaetogonyaulax dilatata (Wiggins 1973) Stover & Evitt 1978 1850 

Rhaetogonyaulax rhaetica (Sarjeant 1963) Loeblich Jr. & Loeblich III 1968 1851 

Rhaetogonyaulax wigginsii (Stover & Helby 1987) Lentin & Williams 1989 1852 

Rhynchodiniopsis cladophora (Deflandre 1938) Below 1981 1853 

Rotosphaeropsis thule (Davey 1982) Riding & Davey 1989 1854 

Sahulidinium ottii Stover & Helby 1987 1855 

Scriniocassis priscus (Gocht 1979) Below 1990 1856 

Scriniocassis weberi Gocht 1964 1857 

Scriniodinium campanula Gocht 1959 1858 

Scriniodinium crystallinum (Deflandre 1938) Klement 1960 1859 

Scriniodinium? dictyophorum (Deflandre 1938 ex Sarjeant 1967) Brenner 1988 1860 

Scriniodinium pharo (Duxbury 1977) Davey 1982 1861 

Senoniasphaera jurassica (Gitmez & Sarjeant 1972) Lentin & Williams 1976 1862 

Sentusidinium explanatum (Bujak in Bujak et al. 1980) Wood et al. 2016 1863 

Sirmiodinium grossii Alberti 1961 1864 

Spiculodinium neptuni (Eisenack 1958) Duxbury 2018 1865 

Spiniferites ramosus (Ehrenberg 1837) Mantell 1854 1866 

Stanfordella? cretacea (Neale & Sarjeant 1962) Helenes & Lucas-Clark 1997 1867 

Stephanelytron redcliffense Sarjeant 1961 1868 

Suessia swabiana Morbey 1975 1869 

Susadinium faustum (Bjaerke 1980) Lentin & Williams 1985 1870 

Susadinium scrofoides Dörhöfer & Davies 1980 1871 

Systematophora areolata Klement 1960 1872 

Systematophora penicillata (Ehrenberg 1843 ex Ehrenberg 1854) Sarjeant 1980 1873 

Tehamadinium evittii (Dodekova 1969) Jan du Chêne et al. 1986 1874 

Tenua anaphrissa (Sarjeant 1966) Benedek 1972 1875 

Trichodinium castanea Deflandre 1935 ex Clarke & Verdier 1967 1876 

Trichodinium scarburghense (Sarjeant 1964) Williams et al. 1993 1877 

Tubotuberella apatela (Cookson & Eisenack 1960) Ioannides et al. 1977 1878 

Valensiella ovulum (Deflandre 1947) Eisenack 1963 1879 
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Valvaeodinium armatum Morgenroth 1970 1880 

Valvaeodinium koessenium (Morbey 1975) Below 1987 1881 

Valvaeodinium spinosum (Fenton et al. 1980) Below 1987 1882 

Wallodinium cylindricum (Habib 1970) Duxbury 1983 1883 

Wanaea fimbriata Sarjeant 1961 1884 

Wanaea thysanota Woollam 1982 1885 

Wanaea verrucosa Riding & Helby 2001 1886 

 1887 

Pollen and Spores: 1888 

Classopollis classoides Pflug 1953 1889 

Klukisporites variegatus Couper 1958 1890 

 1891 


