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ABSTRACT
Ionospheric Alfvén Resonances (IARs) are weak discrete non-stationary Alfvén waves along
magnetic field lines, at periods of ∼0.5–20 Hz, that occur during local night-time, particularly
during low geomagnetic activity. They are detectable through time-frequency analysis (spectro-
grams) of measurements made by sensitive search coil magnetometers. The IARs are generated
by the interaction of electromagnetic energy partially trapped in the Earth-ionosphere cavity with
the main geomagnetic field and their behavior provides proxy information about atmospheric ion
density between 100–1000 km altitude. Limited methods exist to automatically detect and anal-
yse their properties and behavior as they are difficult to extract using standard image and signal
processing techniques. We present a new method for the detection of IARs based on the fully
convolutional neural network U-net. U-net was chosen as it is able to perform accurate image
segmentation and it can be trained in a supervised fashion on a relatively small labeled dataset
utilizing data augmentation. We show that the resulting predictive model generated by training
the U-net is able to detect IAR signals while mislabelling considerably less noise than other data
analysis methods. We achieved our best results by using a training set of 178 hand-digitized ex-
amples from high-quality spectrograms measured at the Eskdalemuir Geophysical Observatory
(UK). We find that the network converges in ten iterations with a final intersection over union
(IoU) metric of 0.9 and a training loss of below 0.2. We use the trained network to extract IARs
from over 2300 images, covering six years of search coil magnetometer data measured at the Es-
kdalemuir Observatory. U-net can also automatically handle missing data or days without IARs,
giving a null result as expected. This constitutes the first use of a neural network for pattern
recognition of unstructured image data such as spectrograms containing IAR signals, though the
method is applicable to other types of resonances or geophysical features in the time-frequency
domain.

1. Introduction1

The Earth has a large-scale, approximately dipolar, main magnetic field that stretches for thousands of kilometres2

from its surface into space, passing through the conductive ionosphere out to the magnetosphere. On timescales rang-3

ing from months to years, the core field is responsible for driving magnetic field changes, while at periods ranging4

from seconds to hours, these changes are driven by solar wind interactions with the main field. Between 1 and 1005

Hz there are a number of natural resonance phenomena detectable, generated by the reflection/refraction of electro-6

magnetic waves between the conductive surface and the ionosphere. These resonances are known as the Schumann7

∗Corresponding author
∗∗Principal corresponding author

vyronc@bgs.ac.uk (V. Christodoulou); r.filgueira@epcc.ed.ac.uk (R. Filgueira); h.f.rogers@sms.ed.ac.uk (H.F. Rogers);
ciar@bgs.ac.uk (C.D. Beggan)

ORCID(s): 0000-0003-3835-3891 (V. Christodoulou); 0000-0002-5715-3046 (R. Filgueira); 0000-0002-1508-2833 (H.F. Rogers);
0000-0002-2298-0578 (C.D. Beggan)

P. Marangio et al.: Preprint submitted to Elsevier Page 1 of 19



Automatic detection of IARs using U-net

Resonances (Schumann, 1952) and Ionospheric Alfvén Resonances (IARs) (Polyakov and Rapoport, 1981; Trakht-8

engerts and Feldstein, 1981; Lysak, 1988).9

We focus here on the Ionospheric Alfvén Resonances, which are magnetic field vibrations (i.e. waves) in the range10

from around 0.5 to 20 Hz (Belyaev et al., 1989). At middle and low latitudes they are produced, indirectly, by the11

leakage of energy from lightning strikes into near-Earth space (Nosé et al., 2017). At high latitudes, they play a role in12

the modulation of magnetospheric signals (e.g. Demekhov et al., 2000). They have amplitudes in the picoTesla (pT)13

range and can be detected on Earth’s surface using search coil magnetometers. These instruments are very sensitive to14

rapid magnetic field variations but cannot be used for long-term or near-DC measurements (i.e. time-varying average15

of the full magnetic value of Earth’s field). Raw data from such instruments are typically processed using a Fast Fourier16

Transform (FFT) to create one-dimensional periodograms. Multiple periodograms are then stacked into a matrix that17

can be visualized as a spectrogram. IARs appear as repeating fringes of higher intensity magnetic field strength that18

change slowly over a few hours (see panel a in Fig. 1) and have been detected at ground stations across the world from19

low latitudes in Greece (e.g. Bösinger et al., 2002) to Svalbard at high latitudes (Semenova and Yahnin, 2008).20

In geophysical terms, the occurrence of IARs and their specific vibration frequencies allow certain properties such21

as the ion density of the upper atmosphere from 100 to 1000 km to be estimated. This is a region of the atmosphere that22

is difficult to remotely sense otherwise, making automatic identification and extraction of IAR signals a useful tool for23

investigating the night-time dynamics of the local atmosphere (e.g. Hebden et al., 2005). Indeed, surprisingly complex24

and as yet unexplained behaviors have been observed in IARs (e.g. Beggan and Musur, 2018). The key parameters of25

interest are the frequencies (f ) the IARs occur at, and the distance between fringes in frequency (known asΔf ), which26

are both controlled by the density of the ionosphere through which the waves pass (Molchanov et al., 2004).27

Within the geomagnetic research community, there are no universal standards for the analysis of IAR signals. Sev-28

eral methods based on signal and image processing techniques have been developed for the semi-automated detection29

(i.e. labelling) of IARs and computation of parameters of interest (Odzimek et al., 2006; Beggan, 2014). However,30

not only do these methods require the tuning of several thresholds and parameters, but they are also prone to noise31

detection regardless of whether IARs are present or not. The aim of this work is therefore to develop an alternative32

method for the automated detection of IARs based on machine learning.33

The work is structured as follows: in Section 2 we introduce the methodology of extracting IARs and provide an34

overview of the available training data; in Section 3 we give an overview of how to train and test the U-net algorithm35

and our strategy for confirming the correct behavior of the neural network. In Section 4 we report the results of our36

experiments, discussing them briefly in Section 5.37
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2. Extracting IARs from spectrograms38

2.1. Using signal and image processing techniques39

In September 2012, two search coil magnetometers were installed at the British Geological Survey’s Eskdalemuir40

Observatory, situated in a rural region of the Scottish Borders, UK. These instruments continuously sample changes in41

themagnetic field of the Earth at 100 times per second (i.e. 100Hz). The sensors capture geophysical information about42

IARs although signal processing using an FFT is required to uncover them. To process the raw data, a Butterworth43

bandpass-filter between frequencies of 0.5 and 10 Hz is applied. After filtering, 100 seconds of data (corresponding44

to 10,000 samples) are converted into a periodogram using a bespoke Welch periodogram algorithm with a Hanning45

window applied. For each 24 hour period, 864 periodograms are stacked to produce a spectrogram image. Figure46

1 shows examples of spectrograms from the Eskdalemuir Observatory captured during 2012 and 2013. The color47

indicates the power of the signal in logarithm of pT per square root of Hz, which corresponds to the strength of the48

magnetic field at a particular frequency and time.49

Panel (a) in Figure 1 shows an example of clearly visible IARs (thin bright ‘fringes’ between 0.5 and 6 Hz), the50

first Schumann Resonance (broad bright region at 8 Hz) and a magnetospheric pulsation (around 0.5–2 Hz, 13:00 to51

17:00 UT). On the other hand, panel (c) shows a day without obvious IARs, while panel (d) illustrates the issue of52

occasional man-made noise generated by an unknown source pulsing at 1 Hz.53

Using the methodology of Beggan (2014), panels (b–d) show a prior attempt to automatically identify and delineate54

IARs based on signal and image processing techniques alone. This approach relies heavily on peak detection of the55

IARs as they rise above the general background level and the joining of these peaks using image dilation and erosion56

algorithms with fixed thresholds based on manual experimentation. The labels generated from this method are overlaid57

on the original spectrogram, where the black pixels indicate positions in the image that correspond to estimated IAR58

signals.59

As can be observed, while the identification of IARs in panel (b) is adequate, the results in panel (c) are not. In60

panel (d), we show an example of 1 Hz man-made contamination to illustrate other types of noise that are occasionally61

present in the dataset. We note that no IARs are present in panel (d), though the algorithm does pick out the 1 Hz62

harmonics. At the time of their study, Beggan (2014) had around 14 months of magnetic data available, which was63

used to create statistics of the behavior and occurrence of IARs. However, the method was not wholly successful so64

further improvements were sought, particularly to remove the reliance on manually set thresholds. The emergence of65

machine learning (ML) techniques for image segmentation in recent years prompted an investigation of their utility for66

IAR extraction.67
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Figure 1: Performance of original data analysis method from Beggan (2014) on three sample days. (Panel a). 14-15
February 2013: Unlabeled spectrogram image showing IARs as alternating darker and brighter blue patterns occurring
between 18:00 and 06:00. Note also the first Schumann Resonance at ∼ 8 Hz. (Panel b) As panel (a) but labelled (black
dotted lines) with IARs. (Panel c) 13–14 June 2013: Example of poor performance of IAR labelling. (Panel d) 25-25 May
2013: Labelling of vertical lines associated with local man-made electrical interference.

2.2. Using Machine Learning techniques for image segmentation68

An alternative to the approach based on signal and image processing techniques proposed by Beggan (2014) can69

be found in machine learning, which is a field of study concerned with the automation of learning using mathematics70

and statistics. In particular, we seek a ML tool that is capable of robustly identifying the ‘fringe’ pattern of IARs in71

spectrograms. Machine learning has recently been a driving force behind the huge progress made in tackling a variety72

of computer vision problems, such as object detection, motion tracking, action recognition, human pose estimation73

and semantic segmentation (see Voulodimos et al. (2018) for a review). The results of these applications have been74

so promising that the whole field of computer vision is shifting towards being ML-based, relinquishing the need for75

pipelines of specialized, hand-crafted methods.76

Deep learning is a branch of ML that is concerned with the formulation of computational models that include77

multiple, successive processing layers, which allows data to be represented using an abstraction hierarchy; the typi-78

cal example for this is a neural network. Modern neural networks tend to fall into one of the following categories:79

convolutional neural networks, recurrent neural networks, recursive neural networks and generative adversarial net-80

works. The application of neural networks to geological problems has increased in recent years: Conway et al. (2019)81

used a network to invert magnetotelluric data to determine subsurface conductivity, Karimpouli and Tahmasebi (2019)82
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segmented different mineral phases in thin-section images and Miller et al. (2018) identified cirrus clouds in satellite83

imagery.84

Convolutional neural networks (CNNs) constitute a specialized type of neural network that has been successfully85

employed in a wide range of ML tasks, including classification of text and images. These networks are inspired by the86

structure of the biological visual system (Hubel and Wiesel, 1962; Fukushima, 1980) and it is therefore unsurprising87

that CNNs constitute one of the most important types of ML models for visual understanding. CNNs have been used88

to identify micro-seismic events (Wilkins et al., 2020) and to classify rock type in drilled cores (Baraboshkin et al.,89

2020), as well as to detect volcanic craters on Mars (Palafox et al., 2017). In particular, a subcategory of CNNs known90

as fully convolutional networks (FCNs) has demonstrated excellent performance for the semantic segmentation task91

(Long et al., 2015).92

U-net is a FCN originally described by Ronneberger et al. (2015) and winner of the Cell Tracking Challenge at the93

International Symposium on Biomedical Imaging in 2015. This FCN is able to perform classification at the pixel level94

while maintaining global structure within an image. In short, it does this by first downsampling the input image and95

learning its high-level features, followed by upsampling and localization of the identified image features. Moreover,96

U-net can leverage data augmentation in order to compensate for cases where only small labelled datasets are available,97

such as in the biomedical imaging domain. With a curated dataset of labelled images it is possible to efficiently train98

U-net in a supervised fashion.99

3. Training and testing U-net100

Since their installation, the search coil magnetometers at the Eskdalemuir Observatory have recorded data for∼95%101

of the time, allowing spectrograms for 2312 calendar days between 01-Sep-2012 and 01-Jan-2019 to be generated. A102

single spectrogram consists of 864 periodograms with a time resolution of 100 seconds and a frequency resolution103

of ∼0.02 Hz per point, using the Nyquist frequency of 50 Hz and a 4096-point FFT. The spectrograms are saved as104

images with a fixed size of 1100 x 1400 pixels.105

Wemanually selected 178 spectrograms with well-defined IARs to form our initial dataset, based on visual inspec-106

tion of the 2312 images. Consistent with the use of U-net by Ronneberger et al. (2015), we used grayscale images107

instead of color ones in order to simplify the processing of the input images during training. We truncated the spectro-108

grams between 18:00 and 06:00 Universal Time (UT) as IARs do not occur during daylight hours (though we ignore109

seasonal changes at present) and also to reduce the input image size to 1100 x 700 pixels.110

Two sets of labelled images were created from the 178 manually selected images. The first set of labelled images111

(Training Set A) were based on the outputs of the Beggan (2014) method, while the second set (Training Set B) were112

manually drawn on top of the training images by eye using a graphics package. The labelled images consist of either113
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Figure 2: Example of three (out of 178) training and labelled images. (Left column). Training images with IARs. (Centre
column). Training Set A labelled images based on the results from Beggan (2014). (Right column). Training Set B
labelled images created from visual interpretation of the IARs. Day 027: 30-Jul-2013; Day 117: 19-Jul-2016; Day 174:
04-Sep-2018.

black or white pixels, where black pixels correspond to IARs and white pixels correspond to background (i.e. no signal)114

in the associated training example. Training Set A tends to capture the numerical peaks while Training Set B is based115

on visual interpretation by the scientist responsible. Both training sets, in effect, highlight the position of the fringes,116

which are generally brighter than the background. Figure 2 shows three example days with the unlabeled training image117

in the left column, the IARs detected using the method by Beggan (2014) in the central column (Training Set A) and118

the manually picked IARs in the right column (Training Set B). The examples demonstrate that even with reasonably119

clear IARs, the definition of their location and extent is actually quite subjective.120

We coded up the U-net FCN using Keras and TensorFlow in Python 3.6 using freely available packages. The code121

was run under various Linux environments ranging from laptops to multicore virtual machines and on the University122

of Edinburgh Cirrus HPC platform, which included facilities for GPU processing (EPCC, 2019).123

3.1. U-net hyperparameter selection, metrics and model evaluation strategy124

In order to efficiently train a neural network like U-net using an optimization algorithm with backpropagation125

(Rumelhart et al., 1986), a number of so-called ‘hyperparameters‘ must be selected. Without sufficient tuning, the126
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optimization algorithm may not converge to a good solution, may converge slowly or may not even converge at all.127

Furthermore, another key aspect of training a neural network lies in the choice of model evaluationmetrics and strategy.128

Evaluation metrics help determine how the model generated by training the network generalizes on unseen data.129

We based our study on a publicly available implementation of U-net devised by Zhixu (2017) who segmented130

neuronal structures in electron microscopic stacks as part of the (now public) dataset presented at the International131

Symposium on Biomedical Imaging in 2015 (Table 1). For our training of U-net on the labelled IAR datasets, a series132

of experiments were made to search for optimal hyperparameter values, as detailed in this section.133

Table 1
List of initial hyperparameters values for training U-net based on the im-
plementation of the neural network by Zhixu (2017).

Hyperparameter Value

Batch size 2
Dropout 0.5
# Epochs 5
Learning rate 10−4

Loss function Binary cross-entropy
Optimizer Adam
Weight initializer he normal

Although accuracy is the most common metric for monitoring the training of a ML algorithm and its performance134

on test data, it is less useful and informative in situations where there is a class imbalance; that is, when there are vastly135

different numbers of pixel samples per image between the different target classes (the background and IAR signal136

classes in our case). Another example is if there is a substantial variation in the cost of different prediction errors137

(Chawla, 2005; Hossin and Sulaiman, 2015). Accuracy is clearly not suitable for our application, as a single labelled138

image typically contains about 10 times more white pixels (background class) than black pixels (IAR class). Hence,139

using accuracy would give a larger influence to the background class compared to the IAR class. In this scenario it140

would be easy to achieve a high accuracy without correctly segmenting the IAR i.e. by naively labelling every pixel141

as background rather than IAR.142

Instead, the Intersection over Union (IoU) metric is used to quantify the percent overlap between the ground truth143

(i.e. training labels) provided before training and the prediction output generated during training (Levandowsky and144

Winter, 1971). A true positive (TP) represents a pixel that is correctly predicted to belong to the given class according145

to the ground truth, whereas a true negative (TN) represents a pixel that is correctly identified as not belonging to the146

given class. Moreover, a false positive (FP) represents a pixel that is incorrectly predicted to belong to the given class,147

while a false negative (FN) represents a pixel that is incorrectly predicted as not belonging to the given class. The IoU148

metric is calculated by counting the number of pixels that are correctly predicted (i.e. pixels with the same location and149

class label in both the ground truth and prediction output) divided by the sum of the number of pixels present across150
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both the ground truth and prediction output: IoU = TP / (TP + FP + FN).151

We chose k-fold cross-validation as the method used to estimate model performance. K-fold cross-validation is a152

resampling method where a model of interest is repeatedly re-fit to different selections of samples from the training set153

in order to obtain additional information about the fitted model (James et al., 2013). In particular, the dataset is split154

into k parts and the training process is repeated k number of times. For each of these k iterations, a different ‘fold’155

of the dataset is picked to be the validation set and the remaining k-1 folds are used as training set. On each of these156

iterations, the value for the evaluation metric and loss function, including the loss on the validation set, are computed.157

Ideally, the average of these values is the same as that obtained with the model trained on the entire dataset directly158

without k-fold cross-validation.159

Empirically, a value of 5 or 10 for k is known to generate estimates for the loss function and evaluation metric that160

do not exhibit high bias or variance (James et al., 2013). Based on our experiments conducted with k set to 2, 5 or 10,161

it was found that a value of 2 exhibits the best trade-off between training dynamics (i.e. optimal values for training loss162

and IoU evaluation metric) and amount of variation between folds on the training set. Hence, all k-fold cross-validation163

tests were conducted with a value of k set to 2. It should be noted that while choosing a value of k is critical for model164

estimation (i.e. to provide a statistically-sound framework for choosing the best values for the hyperparameters), the165

final predictive model is generated by training U-net on the entire dataset.166

3.2. Tuning the number of epochs167

In the context of this work, an epoch constitutes a single forward and backward pass through the entire training168

set by the U-net algorithm. It is generally the case that increasing the number of epochs leads to improvements in the169

values of the evaluation metric, regardless of whether values of other hyperparameters are themselves optimal. Hence,170

as a first step the number of epochs was tuned while keeping the other hyperparameter values fixed. The U-net was171

independently trained for 1, 3, 5 and 10 epochs. The resulting training loss and IoU values are shown in Table 2.172

By considering the final loss function and IoU values reached at the end of training along with a qualitative assess-173

ment of the predictions on test data (data not shown), it appears that the neural network already performs reasonably174

well by just setting the number of epochs to 3. Further increasing the number of epochs does not have a significant175

impact on the training loss, the IoU evaluation metric or the quality of predictions on test data, though increasing176

the number of epochs brings a marginal improvement. We decided to set the number of epochs to 10 for subsequent177

experiments, as this provides certainty that the best possible final training values are always achieved regardless of the178

initial values chosen for the hyperparameters. In addition, to test whether the predictive model had overfitted to the179

training data and, as a result, failed to generalize well on unseen data, U-net was separately trained for 100 epochs. We180

observed that validation loss plateaued after 50 epochs, indicating that this is the point at which the neural network is181
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Table 2
Training loss and IoU values from U-net trained on IARs Training Sets A and B with different number of epochs. U-net
implementation was independently trained for 1, 3, 5 or 10 epochs. Final training loss and IoU values recorded at the end
of training are reported.

Number of epochs

1 3 5 10

A:Training loss 0.3800 0.2910 0.2862 0.2767
A:Training IoU 0.7719 0.8193 0.8217 0.8270

B:Training loss 0.2503 0.2026 0.1960 0.1874
B:Training IoU 0.8735 0.8953 0.8970 0.9008

Table 3
List of hyperparameter values to be explored with grid search while training U-net on IARs Training Set A with k-fold
cross-validation. Note, u. stands for uniform, while n. stands for normal. A value of 1.0 for dropout means that no
dropout is applied (Srivastava et al., 2014).

Hyperparameter Values to be explored

Batch size 2, 4, 8, 16, 32
Dropout 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Learning rate 10−2, 10−3, 10−4

Optimizer SGD with momentum, RMSprop, Adam

Weight initializer
lecun u., glorot n., glorot u.,

he n., lecun n., he u. and orthogonal

starting to overfit to the training data. This suggests that U-net is certainly not overfitting to either of the IARs datasets182

when trained for 10 epochs in subsequent experiments.183

3.3. Further U-net hyperparameter tuning184

The remaining hyperparameters needed for training U-net, namely batch size, dropout, optimizer, learning rate and185

weight initializer were tuned using a grid search (Bergstra et al., 2011) in combination with k-fold cross-validation.186

The first step of any grid search experiment is the definition of the values of the hyperparameters to be explored187

(Table 3). In particular, we decided to compare the performance of three of the most popular optimization algorithms,188

namely stochastic gradient descent (SGD) with momentum (Qian, 1999), RMSprop (Hinton et al., 2014) and Adam189

(Kingma and Ba, 2017). We also tested several popular weight initializers that are available through the Keras neural190

network library (Chollet et al., 2015). For the learning rate, we decided to explore values falling in the range ( 10−6 <191

learning_rate < 1.0 ), which includes values that are known to work well for neural networks with standardized inputs192

(Bengio, 2012). Finally, batch size values were explored as multiples of 2 (Patterson and Gibson, 2017) up to 32, since193

memory allocation issues ensued when a value of 64 was used in our particular GPU configuration.194

Based on a preliminary test, training U-net with a single permutation of the 5 hyperparameters with k set to 2 and195
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Table 4
Results of grid search for tuning batch size, optimizer and learning rate while training U-net on IARs Training Set A with
k-fold cross-validation.

Permutation

Hyperparameter 1st 2nd 3rd

Batch size 2 2 2
Learning rate 10−4 10−4 10−2

Optimizer Adam RMSprop SGD with momentum
Cross-validation score 0.2891 0.2926 0.2927

Table 5
Results of grid search for tuning dropout and weight initializer while training U-net on IARs Training Set A with k-fold
cross-validation.

Permutation

Hyperparameter 1st 2nd 3rd

Dropout 1.0 0.5 1.0
Weight initializer he uniform he uniform lecun normal
Cross-validation score 0.2889 0.2918 0.2930

number of epochs set to 10 took ∼100 seconds on a single GPU (i.e. NVIDIA Tesla V100-PCIE-16GB). Considering196

that the total number of permutations of the hyperparameter values is 3150 (5 values for batch size, 10 values for197

dropout, 3 values for learning rate, 3 values for optimizer and 7 values for weight initializer), such an experiment198

would take ∼88 hours. Due to limitations placed by the computer facility on maximum allocatable computing time,199

the immediate solution was to split the grid search into two non-exhaustive searches with permutations based on200

different subsets of the hyperparameter values.201

Agrid search experiment using k-fold cross-validationwas performed, with the initial values for dropout andweight202

initializer of the U-net implementation proposed by Zhixu (2017), while changing values for batch size, optimizer and203

learning rate. The 3 permutations of hyperparameter values with the best cross-validation scores are listed in Table 4.204

The cross-validation score is calculated as the average of validation loss over the two folds (i.e. since k is set to 2) for a205

given permutation of the hyperparameters. An additional, non-exhaustive grid search experiment was then performed206

while changing values for dropout and weight initializer on top of the best permutation of values for batch size, learning207

rate and optimizer identified in the previous grid search. The three permutations of hyperparameter values with the best208

cross-validation scores identified through the second grid search are listed in Table 5. By comparing Tables 4 and 5, it209

can be seen that the best permutations from the two individual grid searches have very similar cross-validation scores.210

It must be noted that as these experiments both technically constitute non-exhaustive grid searches, it is still not possible211

to definitely argue that the hyperparameter values identified in the two grid searches are indeed optimal. However, the212
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fact that the best permutations from both grid searches have similar cross-validation scores, combined with the fact213

that the optimal values identified by tuning 3 out of 5 hyperparameters in the first grid search correspond to the initial214

hyperparameter values used in this work suggests that the choice of initial hyperparameter values is reasonably good.215

4. Results216

U-net was separately trained using the two different labelled IAR datasets (Training Set A and Set B). The final217

training loss and IoU values after 10 epochs were 0.2767 and 0.8270 for Training set A, and 0.1874 and 0.9008 for218

Training Set B (see Table 2). It is important to recall that the ‘ground truth’ images used for training U-net on the219

IARs Training Set A are generated using imperfect labels, as the definition of IARs is probabilistic rather than dis-220

crete. Therefore, the U-net output is expected to contain predicted noise or signals that are not associated with IARs.221

However, unlike the method of Beggan (2014), the U-net classifier assigns a probability value to each of the pixels222

in the prediction output. This means that it is possible to remove or reduce some of the ‘noise’ from the prediction223

output by setting all the values that are greater than a given (inverse) probability or threshold to 1 (i.e. a white pixel,224

representing a pixel that has been classified as background).225

Different thresholds in the range 0.4-0.9 were tested on the outputs of Training Sets A and B. By visually comparing226

the thresholded prediction output against the ground truth image, we determined that thresholds of 0.5 and 0.8 offer the227

best trade-off between correct signal detection and noise removal for the trained U-net based on Training Set A and B,228

respectively. Figure 3 shows the outputs from the network trained for Training Set A and Set B. The left-hand panels229

show the same grayscale test image, with the output from each trained U-net in the second column. The third and230

fourth column show the thresholded versions of the output image. The upper row (from Training Set A) is thresholded231

at 0.5 and 0.6, respectively, while the lower row (from Training Set B) has threshold values of 0.8 and 0.9 applied to the232

respective output images. The results are surprisingly similar, given the large visual differences between the labelled233

training datasets.234

In order to confirm that the U-net has actually been trained to detect meaningful patterns in new unseen data, we235

also tested a spectrogram with no IARs visible as input. Figure 4 shows an example of the output generated when such236

an image is presented to the U-net algorithm after being trained on Training Set A. As required, the prediction on the237

negative control test image contains low-value gray pixels that are strongly blurred, suggesting that for such pixels the238

neural network is unable to classify IARs with sufficient certainty. By applying a threshold of 0.4 or 0.5, it is possible239

to nearly obtain an almost empty output. This is the outcome we desire for an image that contains no IARs. This test240

provides further support for choosing a threshold to apply to the predicted output generated from the U-net. We point241

out that further processing steps are required to extract the f andΔf parameters of interest from coherent IAR signals,242

so small amounts of spurious signal (as in images under ‘Thresholded Output’ in Figure 3) will be removed at a later243
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Input

Training Set A

Training Set B

U-net Output Thresholded Output

Figure 3: The effect of different thresholds applied to the U-net output (for an unseen test image: 15-Sep-2012). Top row
is for Training Set A and bottom row is for Training Set B. The U-net algorithm was separately trained on each training
set for 10 epochs. (Left column). Input test image. (Second column). U-net output. (Third column). Thresholded U-net
outputs for 0.5 (upper panel) and 0.8 (lower panel). (Fourth column). Thresholded U-net outputs for 0.6 (upper panel)
and 0.9 (lower panel).

stage through additional processing steps to produce the geophysically relevant parameters.244

Using the trained networks we generated predictions for the remaining ∼2100 spectrograms from the full IARs245

dataset (i.e. those not used for training).246

5. Discussion247

During the training of the U-net, we apply a quantitative metric (IoU) and a loss function as the optimization248

methods by which the neural network is able to find the weights that best map the inputs to the outputs provided during249

training. More generally, we can also assess the performance of the trained predictive model against the original data250

analysis method from a qualitative point of view. We can, for example, overlay the thresholded prediction output on251

test data on top of the ‘ground truth’ image, as illustrated in Figure 5.252

The left hand panels show two example ‘Input’ spectrograms (i.e. unlabelled images), with the associated labelled253

test images (i.e. ground truth) shown in the ‘Labelled’ column. The ‘Thresholded’ column is the U-net output thresh-254

olded with 0.5 (for Training Set A) or 0.8 (for Training Set B). The images in the ‘Overlay’ column are the result of the255

superposition of the ground truth image (i.e. ‘Labelled’ column) over the respective thresholded prediction output (i.e.256
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Figure 4: Negative control test with noisy example containing no signal. (Top left panel). Test image (26-Mar-2016) with
no visible IARs. (Top right panel). Resulting prediction output from the predictive model generated by training the U-net
algorithm with Training Set A. (Bottom left and right panels). Thresholded versions of prediction output using values of
0.4 and 0.5, respectively.

‘Thresholded’ column) for a given test image. The pixels in such images fall into one of the following three categories:257

red pixels indicate pixels that are labeled as background in both the ground truth image and the thresholded prediction258

output (namely TN); black pixels indicate pixels that are predicted as IARs in both images (namely TP); white pixels259

indicate pixels that are labelled as IARs in the ground truth, but as background in the thresholded prediction output260

(namely FN).261

The white pixels in any given image under the ‘Overlay’ column essentially highlight a portion of the putative262

IARs that are present in the labelled images, but absent when the prediction is made on the same test image with the263

U-net model. This observation highlights the main issues with the labelling methods, namely the presence of spurious264

noise from the peak detection-basedmethod and the inherent subjectivity associated with the manual digitization-based265

method, which lead to the erroneous labelling of IAR signals. In the Beggan (2014) (or Training Set A) method, the266

labelled images have many relatively short or spurious fragmented lines associated with noise (panel c in Fig. 1). In267

particular, as the white pixels in any given image of the ‘Overlay’ column for Training Set A tend to be associated with268

such fragmented lines, the trained predictive model appears to be less prone to predicting noise than the Beggan (2014)269
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method. In the manually-derived (or Training Set B) method, the labelling (see ‘Labelled’ column) can be incomplete270

or extended by the ‘eye-of-faith’ when humans tend to see patterns where none exist.271

It is therefore interesting to find that both U-net models produce very similar fringe patterns (see images in the272

‘Thresholded’ column) despite being based on completely different training sets. It could be argued that Training Set273

A is very comprehensive and captures all the bright fringes but encapsulates extraneous signal that corresponds to274

noise, while Training Set B is cleaner but not as extensive, as it has a lower overall number of training pixel samples275

corresponding to IARs. The general explanation for this result is the iterative nature of machine learning means that276

chosen patterns are reinforced when they are repeatedly linked to features in the input images; though this often not277

visually intuitive.278

In the case of Training Set A (e.g. in Figure 2), as there are many small features labelled as IAR compared279

to Training Set B, it seems counter-intuitive that they should both produce similar results. However, the power of280

machine learning lies in its ability to pick out a desired signal from noise. When the U-net is trained, the smaller and281

shorter-lived features tend to be down-weighted in the network’s overall response as they do not always correspond to282

obvious feature in the input training images. We have examined individual node responses within the U-net for training283

set A and observed the manner in which the ‘bright’ regions of the training set data are up-weighted. Where there are284

regions that are labelled but do not correspond to ‘bright’ patterns, these become down-weighted and assigned a lower285

probability.286

We also note that, as the U-net outputs a probability of a pixel being classed as an IAR feature, stronger probability287

features can be thresholded by identifying a suitable value. In Figure 3, the ‘U-net Output’ column for Training Set288

A contains ‘blurred’ (light gray) features as well as well-delineated (dark gray) features. The blurred features thus289

have a low probability of being IARs. The ‘Thresholded Output’ columns show the result of removing these by simply290

ignoring features with low probability.291

With Training Set B, that U-net has learned to associate a label with a fringe only when a fringe or bright region is292

present in the interrogated image. In Figure 3, after thresholding, this U-net labels fewer pixels in the right side of the293

output image (corresponding to the high frequency values) compared to the output image for training set A.294

That the U-net produces such robust results on relatively few images is also remarkable. Indeed, the optimal number295

of examples required to robustly train a deep neural network is a matter of ongoing research, though it appears possible296

to be successful with relatively small datasets ranging from hundreds to thousands, rather than millions, of training297

examples (Chen et al., 2017; Pesce et al., 2019). Considering this, it could be argued that with the small datasets used298

here (178 training examples), a small increase in dataset size could still have a noticeable impact on performance.299

For this application it can be concluded that, from a qualitative point of view, the trained predictive model (using300

either Training Set A or B) exhibits an ability to identify and segment most of the IAR signals, with a higher signal to301
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Figure 5: Qualitative assessment of performance of original data analysis method against predictive model generated by
training U-net on either Training Set A (top) or B (bottom). (First column from left). Spectrograms for 05-Sep-2012 and
06-Sep-2012 drawn from the test set. (Second column). Respective ‘ground truth’ images. (Third column). Respective
thresholded (with value of 0.5 or 0.8 for Training Set A or B, respectively) prediction output. (Fourth column). Overlay
of the ground truth image in the second column on the thresholded prediction output in the third column. Figure was
generated using code adapted from Zak (2019).

noise ratio than the method presented in Beggan (2014), and is able to reject most unwanted or spurious noise. This302

makes U-net a useful method for automatically extracting IARs. We also suggest that other similar types of geophysical303

signals visualized as spectrograms could be extracted using U-net, for example recurring tremors in seismic data or304

acoustic emissions from rock fracturing experiments.305
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6. Conclusion306

In this work, a novel application of the U-net neural network for automatic image segmentation of magnetic search307

coil data has been described. The objective of the work was to identify IARs and to efficiently train a neural network308

on a small, curated dataset in order to improve on an existing data analysis method. One challenge was to choose the309

best set of hyperparameter values that would enable the neural network to create a reasonably good mapping from310

input to output image. This was achieved using a robust model evaluation strategy, namely k-fold cross-validation, in311

combination with a grid search experiment. The second challenge was to make the network robust in the presence of312

faint or no IARs.313

Two predictive models were generated by separately training the U-net algorithm on two different datasets. The314

first dataset was derived from an automated process based on peak detection (Beggan, 2014), while the second was315

based on visually identified IARs drawn by hand. Both trained U-net models produced surprisingly similar results and316

perform better than the original data analysis method. The networks are also robust to noise or missing data.317

Moreover, the neural network is fast: it takes as little as ∼132 seconds on average to train U-net for 10 epochs318

with a dataset of 178 training examples on an Nvidia Tesla V-100 GPU. The resulting predictive model only takes ∼58319

milliseconds to generate a prediction output for a test image. The approach and methods that have been used in this320

work on U-net for the magnetic spectrograms are also applicable to the automatic detection and identification of other321

geophysical features with distinctive spectral or visual patterns.322

In this type of application, the use of good quality labelled data in the training phase allows expert-elucidated323

domain knowledge to be implicitly imparted to the neural network. Although tuning of hyperparameters should always324

be performed, as it allows an optimal fit to be determined, the quality of the training data is vital for a successful325

outcome. Based on the results generated in this study, we expect U-net to be of value for the analysis of geophysical326

datasets that require segmentation of a desired signal, assuming they have clearly definable patterns with minimal327

noise.328

7. Computer Code and Data Availability329

The software and example datasets for implementing U-net on the IARs spectrograms can be accessed at the330

following repository: https://github.com/marangiop/unet.331
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