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Industrial logging and agricultural expansion are driving rapid transformations of tropical

ecosystems, modifying patterns in above-ground plant and below-ground microbial

communities. However, the extent to which these changes in biodiversity drive

modifications of ecosystem process rates such as leaf litter decomposition is poorly

understood. To determine the relative effects of changes to the chemical quality of litter

and shifts in microbial decomposers on leaf litter decomposition rates, we performed

a controlled, reciprocal transplant, litter decomposition experiment across a tropical

land-use disturbance gradient. Litter mixtures and soils were collected from old growth

forest, moderately logged forest, heavily logged forest, and oil palm plantation in Sabah,

Malaysia, and combined in a fully crossed, factorial microcosm experiment maintained

under controlled environmental conditions. We found that whilst litter quality was the

most important predictor of litter mass loss, soil origin was also significant, explaining

between 5.17 and 15.43% of total variation. Microbial decomposer communities from

old growth forest had greater functional breadth relative to those from logged forests and

oil palm plantation as all litter types decomposed faster when combined with old growth

soil. The most chemically recalcitrant litter (lowest N, highest lignin, lignin:N, and C:N

ratio) from moderate logged forest decomposed faster when combined with its “home”

soil (Home-Field Advantage) whilst the most labile litter from oil palm decomposed

slowest when combined with its “home” soil. This was correlated with lower total soil

microbial biomass. Taken together, these findings demonstrate that whilst litter quality

regulated rates of litter decomposition across the disturbance gradient, soil microbial

decomposer communities were functionally dissimilar between land uses and explained

a significant proportion of variation. The impact of disturbance on soil, including microbial

community structure, should be considered alongside changes to plant communities

when assessing effects on crucial ecosystem processes such as decomposition.

Keywords: tropical forests, logging, oil palm, leaf litter decomposition, soil microbial communities, functional
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INTRODUCTION

The decomposition of non-living organicmatter is a fundamental
process in the carbon cycle, releasing CO2 whilst recycling
nutrients to support ecosystem productivity. The chemical
quality of organic matter, abiotic environmental conditions, and
microbial decomposer communities all influence decomposition
dynamics (Currie et al., 2010; Makkonen et al., 2012; Bradford
et al., 2016). Microclimate and litter traits are widely considered
as key constraints regulating rates of litter decomposition
(Meentemeyer, 1978; Gholz et al., 2000; Cornwell et al.,
2008; Wall et al., 2008; Zhang et al., 2008; Makkonen et al.,
2012; Bradford et al., 2014; Djukic et al., 2018). However,
litter decomposition is ultimately a microbially-mediated
process. Therefore, the abundance and structure of soil
decomposer communities may also drive local variation in
rates of decomposition, but the role of microbial community
composition is currently not well-understood (Bradford
et al., 2017). Identification of the factors regulating litter
decomposition rates is necessary to inform biogeochemical
models on how ecosystem organic matter stocks and thus the
magnitude of biosphere-atmosphere feedbacks will respond to
anthropogenic disturbance and future environmental change
(Bonan et al., 2013).

Globally, tropical forests are threatened by industrial logging,
fire, and deforestation for agricultural expansion with degraded
and secondary forest now comprising over half of all remaining
tropical forests (Laurance et al., 2014; Potapov et al., 2017).
Southeast Asia is a deforestation hotspot, driven primarily
by agricultural expansion of oil palm and commercial timber
plantations (Gibbs et al., 2010; Estoque et al., 2019). Remaining
lowland tropical forests in the region are heavily degraded,
due in part to the high density of commercially valuable,
dipterocarp timber species (Achard et al., 2002; Sodhi et al.,
2004). Degradation of tropical forests modifies regional above-
ground species distributions and community composition across
the tropics, driving changes to functional diversity, and leaf
litter traits (Bakker et al., 2011; Baraloto et al., 2012; Carreño-
Rocabado et al., 2012; Both et al., 2019; Ding et al., 2019). In
South East Asian dipterocarp forests, logging disturbance appears
to shift tree communities from those with resource conservative
traits, prioritizing structural and defense tissues to those with
more resource acquisitive traits promoting carbon capture and
growth (Both et al., 2019). Given the important role of leaf traits
in determining litter quality, this shift may drive changes to
rates of litter decomposition within tropical forests (Cornwell
et al., 2008). However, evidence from a field experiment showed
that subtle differences in microclimate rather than litter quality
explained most variation in litter decomposition rates (Both
et al., 2017). In contrast to tropical forests where litter inputs
are continuous and distributed across the forest floor, oil palm
plantation litter is comprised primarily of senesced fronds. These
are typically pruned manually twice a year and green fronds
may also be pruned during harvesting to access fruit bunches
(Corley and Tinker, 2015). These are stacked in piles or rows,
therefore significant aboveground C inputs occur only within the
vicinity of these frond piles in mature plantations (Ruegg et al.,

2019). Leguminous cover crops may also be planted in in young
plantations to stabilize soils and improve fertility (Luke et al.,
2019).

Tropical land-use change can also drive parallel shifts in
soil microbial decomposer communities (Tripathi et al., 2012,
2016; Rodrigues et al., 2013; Kerfahi et al., 2014; McGuire et al.,
2015; Mueller et al., 2016; Shi et al., 2019). Theory proposes
that the immense diversity of microbial communities should
confer a high level of functional redundancy, particularly with
regard to bulk processes such as litter decomposition (Nannipieri
et al., 2003; Allison and Martiny, 2008). However, experimental
work suggests that changes to bacterial and fungal community
composition can alter rates of litter decomposition (Strickland
et al., 2009b; Allison et al., 2013; Cleveland et al., 2014; Martiny
et al., 2017). The specific mechanisms underpinning functional
dissimilarity are not well-understood, but two hypotheses
have been proposed. The functional breadth hypothesis (FBH)
states that decomposer communities from recalcitrant litter
environments have wider functional abilities. This confers the
capability to degrade a wide range of substrates efficiently, at
similar rates with low enzyme activities and microbial biomass
per unit of decomposition (Van Der Heijden et al., 2008; Keiser
et al., 2011). FBH has been demonstrated with decomposer
communities from forest habitats decomposing low quality litter
(e.g., low N, high lignin content, lignin:N, and C:N ratios) faster
than communities from other ecosystems whilst high quality
litter was decomposed equivalently across ecosystems (Strickland
et al., 2009a,b; Fanin et al., 2016). Alternatively, the home-field
advantage hypothesis (HFA) states that litter decomposes more
rapidly in an environment dominated by, or in the vicinity
of the species it is derived from (Home) rather than in a
foreign environment (Away) due to functional specialization of
decomposer communities (Gholz et al., 2000). HFA has been
demonstrated in numerous ecosystems but is not universal and
appears to be highly context dependent (Ayres et al., 2009b;
Wang et al., 2013; Veen et al., 2018; Lin et al., 2019). It has also
been shown that the HFA effect becomes more pronounced as
home and away litters becomemore dissimilar (Veen et al., 2015).

In South East Asian dipterocarp forests, most trees, and plants
form arbuscular mycorrhizal associations but the canopy is often
dominated by a subset of commercially valuable tree species from
the Dipterocarpaceae family, all of which form ectomycorrhizal
(EcM) associations (Brearley, 2012). Selective removal of these
tree species can lead to a reduction in abundance and shifts
in community composition of EcM fungi (Kerfahi et al., 2014;
McGuire et al., 2015), which may influence decomposition
processes through changes to competitive dynamics with
saprotrophic fungi (Fernandez and Kennedy, 2016; Corrales
et al., 2018). In oil palm plantations, roots are heavily colonized
by arbuscular mycorrhizal fungi (AMF) (Phosri et al., 2010),
whilst EcM fungi are almost absent (McGuire et al., 2015).
Although AMF are not thought to have saprotrophic capabilities,
they can enhance rates of litter decomposition (Gui et al., 2017).

To test whether human modification of tropical ecosystems
altered the functional capabilities of microbial decomposer
communities, and to quantify the relative effects of litter
quality and microbial decomposers on litter decomposition
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rates, we conducted a controlled decomposition experiment with
reciprocal litter transplants in microcosms under controlled
environmental conditions. Using soil and litter mixtures from a
tropical land-use disturbance gradient spanning old growth (OG)
forest, moderately logged (ML) forest, heavily logged (HL) forest,
and oil palm plantation, we tested three non-exclusive hypotheses
that: (1) Litter quality would explain the majority of variation
in litter decomposition rates and thus be largely independent
of the decomposer community; (2) Soil microbial decomposer
communities from forests would have greater functional breadth
relative to oil palm plantations (i.e., microbial decomposers
from forests would decompose all litters faster than those
from oil palm) but be functionally equivalent between OG and
logged forests; (3) Higher rates of litter decomposition would be
observed where litter and soil shared a common origin (HFA).

MATERIALS AND METHODS

Study Sites
The study sites were located on orthic Acrisols in the Malaysian
state of Sabah on the island of Borneo. The regional climate is
moist tropical with annual daily mean temperature of 26.7◦C
and annual precipitation totals of ∼2,600–2,700mm (Walsh
and Newbery, 1999; Kumagai and Porporato, 2012). Four 1
ha research plots comprised of 25 20 × 20m subplots were
selected that form part of the Global Ecosystem Monitoring
(GEM) network (http://gem.tropicalforests.ox.ac.uk/). These
were chosen to represent a tropical land-use disturbance gradient
including OG tropical forest, ML tropical forest, HL tropical
forest, and monoculture oil palm plantation. The OG forest
plot was located within Danum Valley Conservation Area
(DVCA). This forest has experienced little modern disturbance
and has been protected since 1976 (Marsh and Greer, 1992).
The most common tree genera within the plot were Shorea
(Dipterocarpaceae) and Diospyros (Ebenaceae) with a low
abundance of pioneer trees (0.1 ± 0.0% of basal area) and
high basal area of standing trees (30.6 ± 3.37 m2/ha) (Riutta
et al., 2018). Plots representing ML forest, HL forest and
oil palm were within research sites located in the Kalabakan
Forest Reserve and neighboring Benta Wawasan oil palm estate.
These were established as part of the Stability of Altered
Forest Ecosystems (SAFE) project and within the Yayasan Sabah
Forest Management Area (Ewers et al., 2011) (www.safeproject.
net). In the logged forest sites, the most common tree genera
were Macaranga (Euphorbiaceae), Shorea (Dipterocarpaceae),
and Syzygium (Myrtaceae). The ML forest plot had medium
abundance of pioneer trees (6.9 ± 2.2% of basal area) and
medium basal area of standing trees (19.3± 1.7 m2/ha) whilst the
HL forest plot had the highest abundance of pioneer trees (28.1±
4.3% of basal area) and lowest standing tree basal area (6.81± 1.0
m2/ha) of the 3 forest plots (Riutta et al., 2018). Both logged forest
plots (ML, HL) were subjected to one round of logging during
the 1970’s. The ML forest plot was subsequently logged once
whilst the HL forest plot was logged three times between 1990
and 2008. Logging operations targeted primarily hardwoods from
the generaDryobalanops,Dipterocarpus, Shorea, and Parashorea.
For more detailed site characteristics and logging history of forest

plots refer to Riutta et al. (2018). For further information on
tree communities and functional traits, refer to Both et al. (2019)
with reference to the following plots: OG Forest = DAN-05,
ML Forest = SAF-04, HL Forest = SAF-01. The oil palm plot
was on its first rotation with standing palms ∼7 years old at
the time of sampling. Fertilizer (compound mixture comprised
of diammonium phosphate, potassium chloride, ammonium
sulfate, magnesium sulfate, and borax) was applied twice a year
at a rate of 3–4 kg/palm (personal communication). Senesced
fronds were stacked in rows between palms whilst inter-row
and palm circle soils were kept weed free. No cover crops
were present.

Sample Collection and Preparation
Each 1 ha plot was subdivided into 25 20 × 20m subplots
with five randomly selected for sampling. In forest plots, freshly
senesced mixed litter was first collected from a 40 × 40 cm
sampling area on the soil surface followed by removal of
the organic soil to the horizon with underlying mineral soil.
Strongly humified litter was considered as part of the organic
soil layer. In the oil palm plantation, surface soils were collected
at the edge of the frond stacks. Fresh litter was taken from
senesced fronds within the adjacent frond stacks. To account
for fronds of different ages we randomly selected 5 fronds
for sampling and collected all leaflets from each frond. Leaf
litter samples were carefully sorted by hand to remove woody
debris, partially humified leaves, and reproductive material. Only
intact leaves were retained, which were air-dried until constant
weight. Fresh soils were homogenized by passing through a 4mm
sieve to remove stones, coarse woody, and litter debris and a
subsample frozen for phospholipid fatty acid (PLFA) extraction
and microbial sequencing. Soil and dried litter samples were
sealed in plastic bags and transported on ice in a cool box to
the UK. Fresh soil was stored at 4◦C prior to establishment of
the experiment. Soil subsamples for PLFA analysis were freeze-
dried, passed through a 2mm sieve, and ground to a fine powder
using a pestle and mortar. Subsamples for total C, N, and
inorganic P analysis were dried at 65◦C for 48 h and ground
as described above. Air-dried litter was further hand sorted
to remove any remaining coarse woody debris and partially
decomposed leaves and then chopped into small (<5mm) pieces
to create a homogenous litter mixture capturing the high species
diversity of these tropical forests. Litter was then sterilized by
autoclaving twice at 121◦C and then dried at 65◦C to constant
weight. We acknowledge that autoclaving would likely change
the initial chemical composition of litter. To quantify this, a
subsample of each initial litter mixture (autoclaved and non-
autoclaved) was ground to a fine powder using a pestle and
mortar for chemical analysis (Table S1 for non-autoclaved litter
chemistry results).

Microcosm Design
Microcosms were constructed in 9 cm diameter plastic petri
dishes (Wardle et al., 1998). Fresh soils were adjusted to 70% of
maximum water holding capacity and 10 g dry weight equivalent
soil was added to each microcosm. A fine mesh (1mm) disk
was laid on top of the soil and 1 g of the autoclaved, sterilized
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litter mixture was then added. Microcosms were then partially
sealed by taping the lid around the edge to minimize moisture
loss. A small section was left open to allow for gas exchange.
Our experimental design was 4 × 4 fully factorial with all litters
being crossed with all soils. This reciprocal transplant design was
used in order to separate the relative effects of soil microbial
decomposer community and litter quality as well as interactive
effects (Reed andMartiny, 2007). Each soil and litter had five true
field replicates (n = 80 microcosms). This was replicated three
times to allow destructive harvesting at three time intervals to
capture progressive stages of litter decomposition. Microcosms
were maintained in a controlled temperature incubator at 25◦C
and weighed weekly to adjust back to 70% WHC by the addition
of de-ionized water. Microcosms were destructively harvested
after 31, 105, and 398 days. Remaining litter was removed
from the mesh disk with tweezers, dried at 65◦C for 24 h and
weighed. The percentage mass loss was used as a proxy for litter
decomposition and calculated as the remaining dry litter weight
divided by the initial dry litter weight.

Litter and Soil Analysis
The chemical composition of initial leaf litter (autoclaved and
non-autoclaved) was measured as follows: Total C and N were
quantified on an elemental analyser (NCS 2500, CE Instruments,
UK). Total P was extracted using a sulfuric acid/hydrogen
peroxide digest and analyzed on a flow injection auto analyzer
(FIAStar 5000, Foss Tecator, Denmark). Ca, K, Mg, and Al
were extracted by sulfuric acid digestion and measured using
atomic absorption spectroscopy (AAS, Perkin Elmer AAnalyst
100,MA,USA). Fiber analysis (soluble cell content, hemicellulose
+ proteins, cellulose, lignin + recalcitrants) was performed
using automated sequential digestion (ANKOM Technology,
Macedon, NY, USA).

Soil pH was measured on fresh subsamples in a 2.5:1 water:
soil slurry suspension, allowed to rest for 30min and measured
using a pH meter calibrated between pH 4–7 (pH210 Meter,
Hanna Instruments, UK). Total soil C and N was measured using
a LECO Truspec Micro elemental analyser (LECO Corporation,
USA). Inorganic P was extracted from soils using a Bray
No 1 extractant and analyzed using colorimetry on a SEAL
AutoAnalyzer 3 (Seal Analytical, UK).

PLFAs were extracted from freeze-dried soils as part of
the total lipid extract using a modified Bligh-Dyer extraction
(White et al., 1979). Identification of PLFA’s was carried out
on a GC (Agilent Technologies 6890) fitted with a flame
ionization detector (Agilent Technologies 5973). Sample PLFA
peaks were identified based on known relative retention times.
The terminal and mid-chain branched fatty acids C15:0i, C15:0a,
C16:0i C17:0i, and C17:0a were used as indicators of Gram
positive bacteria (Whitaker et al., 2014). Cyclopropyl saturated
and monounsaturated fatty acids 16:1ω7c, 7,8 cyclic C17:0,
C18:1ω7c, and 7,8 cy-C19:0 were used as indicators of Gram
negative bacteria (Rinnan and Bååth, 2009). The fatty acids
C18:2ω6,9c and C18:1ω9c were taken as indicators of fungi
(Willers et al., 2015). Total microbial biomass was calculated
as the sum of all identified PLFA’s (C13:0, C14:0, C14:1ω5c,
C15:0, C15:1ω5c, C16:0, 10Me-C16:0, C16:1ω7t, C16:1ω9c,

C16:1ω5c, C17:0, 10Me-C17:0, C18:0i, C17:1ω7c, C18:0a, C18:0,
10Me-C18:0, C18:1ω7t, C18:1ω12c, C18:1ω5c, C18:2ω6t, 9,10-
cyC19:0, C19:1ω12c, C20:0, C18:3ω6c, C20:1ω9c, C18:3ω3c,
C20:2ω6c, C22:0, C20:3ω6c, C20:4ω6c, C20:5ω3c, C24:0; plus
those listed above).

Molecular Analyses of Soil Microbial
Communities
DNA was extracted from 0.2 g frozen soil using a Powersoil R©

DNA Isolation Kit according to the manufacturer’s instructions.
Amplicon libraries were constructed according to a dual
indexing strategy with each primer consisting of the
appropriate Illumina adapter, 8-nt index sequence, a 10-
nt pad sequence, a 2-nt linker and the amplicon specific
primer (Kozich et al., 2013). For bacteria, V3-V4 16S rRNA
amplicon primers were used (CCTACGGGAGGCAGCAG
and GCTATTGGAGCTGGAATTAC) (Kozich et al., 2013).
Fungi were targeted by amplifying the ITS2 region using
amplicon primers GTGARTCATCGAATCTTTG and
TCCTCCGCTTATTGATATGC (Ihrmark et al., 2012).
Amplicons were generated using PCR and a high fidelity
DNA polymerase (Q5 Taq, New England Biolabs). Amplicon
sizes were determined using an Agilent 2200 TapeStation system
and libraries normalized using SequalPrep Normalization Plate
Kit (Thermo Fisher Scientific) and quantified using a Qubit
dsDNA HS kit (Thermo Fisher Scientific). Each amplicon library
was sequenced separately on Illumina MiSeq using V3 600 cycle
reagents at concentrations of 8 pM with a 5% PhiX Illumina
control library.

Sequences were processed in R using DADA2 to quality filter,
merge (where appropriate), de-noise, and assign taxonomies
(Callahan et al., 2016). Briefly, 16S forward reads were trimmed
to 250 bases. ITS amplicons reads were trimmed to 225 and 160
bases, forward, and reverse, respectively. Filtering settings were
maximum number of Ns (maxN) = 0, maximum number of
expected errors (maxEE) = 1. Sequences were dereplicated and
the DADA2 core sequence variant inference algorithm applied.
ITS sequences were merged using mergePairs function, whilst
forward reads were used for 16S amplicons. Chimeric sequences
were removed using removeBimeraDenovo default settings. The
actual sequence variants (ASV) were subject to taxonomic
assignment using assignTaxonomy at default settings; the training
databases used were GreenGenes v13.8 and Unite v7.2 for 16S
and ITS, respectively. Prior to analysis, samples were normalized
by rarefying to 28,859 reads for 16S and 4,349 reads for ITS.
Fungal taxa were classified as saprotrophic using FunGuild
(Nguyen et al., 2016). Only those taxa with non-ambiguous
classifications and assignments classified as “probable” or “highly
probable” were retained.

Data Analysis
All analyses were performed using R statistical software
(version 3.5.2) or SAS version 9.4 (SAS Institute, Cary NC).
Differences in initial leaf litter chemistry, soil properties, and
PLFA concentrations were tested using ANOVA with land
use as the independent variable. Tukey’s honestly significant
difference post-hoc test was used to report pairwise differences
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between land-uses. Initial PLFA profiles were represented
in two dimensions using principal components analysis
(PCA). Bacterial, fungal, and saprotrophic fungal community
composition was represented in two dimensions by principal
co-ordinates analysis (PCoA) ordination of Bray–Curtis
dissimilarities. Differences in initial microbial community
composition were tested using PERMANOVA. ANOVA was
used to test the significance of litter and soil origin as predictors
of litter mass loss at each time point. Litter mass loss was
the dependent variable whilst litter type and soil origin were
included as independent variables with an interaction term.
To determine which measured soil covariates were the best

predictors of litter mass loss we replaced the factor “soil origin”
with measured soil variables (soil chemical properties, PLFA
concentrations, bacterial, fungal, and saprotrophic fungal
richness) and performed multiple linear regression. Highly
correlated variables were removed a priori and by inspecting
variance inflation factors. The best model was selected by forward
and backward stepwise model selection using AIC as a criterion.
To determine whether initial microbial community composition
was predictive of litter mass loss at the final time point (398
day) we used the two axis scores from PCoA on bacteria,
fungal and saprotrophic fungal community composition
alongside litter type as independent variables in multiple linear

TABLE 1 | Chemical properties of autoclaved litter mixtures taken from old growth (OG) forest, moderate logged (ML) forest, heavily logged (HL) forest, and oil palm

plantation.

OG forest ML forest HL forest Oil palm

C (%) 43.38 (0.91)a 47.95 (7.45)a 39.02 (0.58)a 41.12 (0.77)a

N (%) 1.65 (0.08)a 1.44 (0.35)a 1.78 (0.05)a 1.91 (0.08)a

P (µg/g) 0.64 (0.02)a 0.37 (0.01)b 0.70 (0.02)a 1.21 (0.03)c

K (µg/g) 4.34 (0.22)a 2.18 (0.69)b 4.51 (0.21)a 5.09 (0.35)a

Ca (µg/g) 12.76 (0.44)a 9.06 (0.41)b 14.96 (0.66)c 7.70 (0.32)b

Mg (µg/g) 3.39 (0.06)a 2.06 (0.08)b 2.82 (0.07)c 2.70 (0.15)c

Al (µg/g) 2587.75 (879.88)a 3882.64 (1042.63)a 4392.22 (1530.61)a 4064.65 (825.35)a

Soluble cell content (%) 32.26 (0.77)a 31.06 (0.62)a 33.13 (0.67)a 25.24 (0.95)b

Hemicellulose + proteins (%) 7.41 (0.42)a 9.87 (0.21)a 6.98 (0.24)b 16.25 (0.50)c

Cellulose (%) 22.02 (0.32)a 21.76 (0.27)a 22.56 (0.61)a 29.46 (1.11)b

Lignin + recalcitrants (%) 38.25 (0.42)a 40.14 (0.62)a 34.39 (1.03)b 29.00 (0.39)c

C:N Ratio 26.57 (1.57)a 35.33 (2.05)b 21.98 (0.46)a 21.66 (0.59)a

Lignin:N ratio 23.43 (1.31)ab 32.58 (4.77)a 19.40 (0.84)b 15.31 (0.67)b

Data are means (n = 5) ± 1 SE. Superscript letters denote whether parameters were significantly different between land uses from pairwise Tukey’s HSD test. Significant differences (p

< 0.05) between land uses are indicated when letters are different. Non-significant differences (P > 0.05) between land-uses are indicated when letters are shared.

TABLE 2 | Soil properties, PLFA concentrations, and microbial richness (number of observed ASV’s) measured across old growth (OG) forest, moderate logged (ML)

forest, heavily logged (HL) forest, and oil palm plantation.

Parameter OG forest ML forest HL forest Oil palm

Field gravimetric moisture content (%) 28.14 (1.66)a 52.20 (7.35)b 41.80 (2.40)ab 11.42 (0.57)c

pH 6.32 (0.08)a b4.12 (0.26)b 6.06 (0.31)ac 5.34 (0.14)c

Total C (%) 10.25 (1.32)ab 26.11 (7.33)a 11.75 (1.23)ab 6.41 (1.40)b

Total N (%) 0.58 (0.06)a 1.07 (0.27)a 0.72 (0.06)a 0.46 (0.10)a

Inorganic P (µg/g) 24.02 (2.64)a 57.69 (16.56)a 47.67 (9.80)a 246.16 (165.04)a

C:N ratio 17.65 (0.67)a 23.51 (1.03)b 16.32 (0.84)a 14.06 (0.38)c

Total PLFA (µg/g soil dry weight) 72.42 (7.44)ab 93.51 (20.41)a 77.03 (6.40)ab 36.72 (3.05)b

Fungal PLFA (µg/g soil dry weight) 6.27 (0.78)a 14.17 (4.62)a 6.25 (0.65)a 4.20 (0.58)a

Bacteria PLFA (µg/g soil dry weight) 35.10 (2.52)a 44.82 (9.80)a 39.90 (3.20)a 16.83 (1.47)b

F:B Ratio 0.18 (0.01)ab 0.30 (0.06)a 0.16 (0.01)b 0.25 (0.03)ab

G+ PLFA (µg/g soil dry weight) 15.86 (1.48)a 21.31 (4.74)a 17.24 (1.17)a 9.64 (0.83)a

G- PLFA (µg/g soil dry weight) 18.07 (1.00)a 22.64 (4.93)a 22.06 (2.13)a 6.83 (0.74)b

Bacterial richness 2,247 (56)a 1,352 (199)b 2,032 (135)a 2,340 (213)a

Fungal richness 394 (13)a 260 (30)b 364 (49)a 285 (31)a

Saprotrophic fungal richness 93 (5)a 56 (9)b 76 (10)ab 55 (8)b

Data are means (n = 5) ± 1 SE. Superscript letters denote whether parameters were significantly different between land uses from Tukey’s HSD test. Significant differences (p < 0.05)

between land uses are indicated when letters are different. Non-significant differences (P > 0.05) between land-uses are indicated when letters are shared.
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FIGURE 1 | (A–C) Principal co-ordinates analysis (PCoA) ordinations of Bray–Curtis dissimilarities of bacteria, fungal, and saprotrophic fungal microbial community

composition. (D) Principal components analysis of PLFA concentrations across old–growth forest (OG), moderate logged forest (MLF), heavily logged forest (HLF), and

oil palm plantation (OP).

regression, with litter mass loss as the dependent variable. For
all regression models, the effect size (relative importance) of
each independent variable was estimated by averaging over
orderings of regressors using the relaimpo package and is
presented as a percentage of total variance (Groemping, 2006).
The Decomposer Ability Regression Test (DART) was used to
determine the relative contribution of litter quality, functional

breadth of microbial decomposers, and home-field advantage
in explaining rates of litter mass loss (Keiser et al., 2014).

Yi = α +

N∑

l=1

βlLitterli +

M∑

s=1

γsSoilssi +

k∑

h=1

ηhHomehi + ∈i
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FIGURE 2 | Relative abundance of phyla belonging to kingdoms Bacteria (A) and Fungi (B) across old-growth (OG), moderately logged forest (MLF), heavily logged

forest (HLF), and oil palm (OP). Bacterial phyla representing <2% abundance were grouped into one category (<2% Abundance) whilst fungal phyla representing

<1% abundance were also grouped into one category (<1% Abundance).

Yi is the litter mass loss for observation i, βl is the ability of
litter l, γs is the ability of the soil decomposer community s, ηh
is the HFA of h where Home = Litterl × Soils when l and s
are home field pairings. The intercept α represents the average
mass loss for all observations in the dataset after controlling for
litter, soil and home-field pairings and ε represents the error
term. The parameters to be estimated are βl (Litter Quality), γs
(Decomposer Ability) and ηh (Home-Field Advantage).

RESULTS

Litter Quality and Soil Microbial
Communities
Multiple litter chemistry parameters were different between
land uses (Table 1). Foliar P [F(3,16) = 296.55, p ≤ 0.001],
hemicellulose + proteins [F(3,16) = 140.72, p ≤ 0.001], and
cellulose [F(3,16) = 30.07, p ≤ 0.001] were higher in oil palm
litter relative to all forest sites, whilst soluble cell content [F(3,16)
= 21.85, p ≤ 0.001] and lignin + recalcitrant [F(3,16) = 54.09,
p ≤ 0.001] were lower. Lignin:N [F(3,16) = 8.51, p ≤ 0.001] and
C:N [F(3,16) = 22.41, p ≤ 0.001] ratios were highest in ML forest
litter relative to OG forest, HL forest, and oil palm (Table 1). Base

cations varied between land uses [K: F(3,16) = 9.48, p≤ 0.001, Mg:
F(3,16) = 32.83, p ≤ 0.001, Ca: F(3,16) = 49.23, p ≤ 0.001]. K and
Mg were lowest in ML forest whilst Ca was highest in HL forest
(Table 1). Foliar C, N, and Al were not different between land
uses (Table 1).

Soil properties also differed between land uses (Table 2).
Soil moisture [F(3,16) = 39.32, p ≤ 0.001], total C [F(3,16)
= 3.64, p = 0.04], and C:N ratio [F(3,16) = 27.76, p ≤

0.001] were lowest in oil palm and highest in ML forest
whilst soil pH [F(3,16) = 20.73, p ≤ 0.001] was lowest
in ML forest and highest in OG forest (Table 2). Total
PLFA [F(3,16) = 4.38, p = 0.02], bacterial PLFA [F(3,16) =

4.25, p = 0.02], and G- PLFA [F(3,16) = 7.66, p = 0.002]
concentrations were all highest in ML forest and lowest in
oil palm (Table 2). Bacterial, fungal and saprotrophic fungal
richness varied according to land use [Bacteria: F(3,16) = 7.48,
p = 0.002, Fungi: F(3,16) = 3.59, p = 0.04, Saprotrophic Fungi:
F(3,16) = 5.21, p = 0.01] (Table 2) as did initial bacterial
(16S) and fungal (ITS) community composition (Figures 1A–C)
[PERMANOVA: Bacteria: F(3,19) = 1.87, p ≤ 0.001, R2 = 0.26,
Fungi: F(3,19) = 2.47, p ≤ 0.001, R2 = 0.32, Saprotrophic
Fungi: F(3,19) = 1.58, p ≤ 0.001, R2 = 0.23]. PLFA profiles
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FIGURE 3 | Mean litter mass loss from microcosms consisting of soils and mixed litter collected from old growth (OG) forest, moderate logged forest (MLF), heavily

logged forest (HLF), and oil pam (OP). The four litter mixtures and soils were combined in a fully—factorial design (16 unique combinations) and destructively harvested

after 31, 105, and 398 days. Values are mean percentage mass loss ± 1 SE of OG, MLF, HLF, and OP litter after 31, 105, and 398 days of decomposition.

Superscript letters denote pairwise significant differences at P < 0.05 within each panel from ANOVA and Tukey’s honestly significant difference post-hoc tests.

were also significantly different between land uses (Figure 1D)
[PERMANOVA: PLFA: F(3,19) = 5.16, p ≤ 0.001, R2 = 0.49].
Initial bacterial communities across all land uses were comprised
primarily of Acidobacteria, Actinobacteria, and Proteobacteria
whilst fungal communities were dominated by taxa from
the phyla Ascomycota, Basidiomycota, and Mortierellomycota
(Figures 2A,B).

Controls on Rates of Litter Decomposition
Over the course of the 398-day experiment, significant differences
in the rates of mass loss were observed between litter mixtures.
Overall, oil palm litter decomposed faster than all forest litters
losing 12.48 ± 0.59% 1SE after 31 days, 34.97 ± 1.49% 1SE after
105 days, and 42.51± 1.48% 1SE after 398 days (Figure 3) in line
with its higher chemical quality (low lignin: N ratio). ML forest
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TABLE 3 | Two way ANOVA results for the effects of soil origin, litter type, and an

interaction term on litter mass loss (log-transformed) after 31, 105, and 398 days.

Source of

variation

df Relative

importance (%)

F P-value R2

31 day

Litter type 3 34.51 17.81 <0.001 0.59

Soil origin 3 15.43 7.96 <0.001

Litter type × soil

origin

9 8.73 1.50 0.17

Error 64

105 day

Litter type 3 66.28 61.76 <0.001 0.78

Soil origin 3 5.17 4.61 0.006

Litter type × soil

origin

9 6.10 1.90 0.07

Error 63

398 day

Litter type 3 45.98 26.74 <0.001 0.65

Soil origin 3 11.17 6.02 0.001

Litter type × soil

origin

9 8.14 1.62 0.21

Error 62

Relative importance was calculated by averaging over orders of regressors and is

presented as percentages which sum to the overall model R2.

litter decomposed slowest losing 8.31 ± 0.54% 1SE after 31 days,
19.05 ± 0.54% 1SE after 105 days, and 23.85 ± 1.82% 1SE after
398 days. Both litter and soil origin were significant predictors of
litter mass loss across all three time points (Table 3). Litter type
accounted for between 34.51 and 66.28% of total variance whilst
soil origin accounted for between 5.17 and 15.43% (Table 3). To
explore whether soil properties, microbial abundance or richness
drove the effect of soil origin, we “decomposed” the factor soil
origin into measured soil properties (soil chemical properties,
PLFA concentrations, bacterial, fungal, and saprotrophic fungal
richness) using multiple regression. This showed that at the 398
day time point, soil inorganic P, total PLFA concentrations, and
bacterial richness best explained variation in litter mass loss
rates (Table 4). Initial bacterial, fungal, and saprotrophic fungal
community composition was also predictive of litter mass loss at
398 day. However, these models explained less variation than the
previous model (Table 5).

Final litter mass loss (after 398 day) of the lowest and
highest chemical quality litters from ML forest and oil palm,
respectively, was significantly correlated with initial bacterial
and fungal community composition whilst PLFA profiles were
significantly correlated with mass loss of all litters (Table S2).
To assign a quality index to each litter and determine whether
microbial decomposer communities were different in terms
of their functional breadth and whether they perceived their
“home” litter differently (HFA), we applied the DART regression
framework. This showed that oil palm litter was of the
highest quality whilst ML forest litter was the lowest (Table 6,
Figure 4). OG and HL forest litter mixtures had intermediate

TABLE 4 | Multiple linear regression results from a model with litter mass loss

(log-transformed) at 398 day as the dependent variable and litter type, soil

inorganic P, total PLFA concentrations, and bacterial richness as independent

variables.

Source of

variation

Sum of

squares

df Relative

importance

(%)

F P-value R2

Litter type 3.67 3 47.66 33.67 <0.001 0.66

Soil inorganic P 0.36 1 3.41 10.03 0.002

Total PLFA 0.36 1 7.10 9.96 0.002

Bacterial richness 0.33 1 7.80 9.08 0.003

Error 2.58 71

Relative importance was calculated by averaging over orders of regressors and is

presented as percentages which sum to the overall model R2.

qualities. After 398 day, the functional breadth of decomposer
communities was significantly higher in OG forest and lower
in HL forest relative to the average across all sites (Table 6,
Figure 4). A positive HFA was detected for ML forest litter as it
decomposed significantly faster when combined with its “home”
soil whilst a negative HFA was observed for oil palm litter which
decomposed slower in combination with its “home” soil (Table 6,
Figure 4).

DISCUSSION

We measured how litter quality and microbial decomposer
communities varied across a tropical forest land-use
disturbance gradient and their relative importance in terms
of litter decomposition rates under controlled microclimatic
conditions (Hypothesis 1). We also tested whether microbial
decomposer communities from forests were functionally
broader than those from oil palm plantations regarding the
decomposition of litter mixtures (Hypothesis 2) and whether
decomposer communities had a functional specialization to
decompose litter from their native environments (Home-Field
Advantage) (Hypothesis 3).

Alongside climate, litter quality has been shown to be a
dominant control on rates of litter decomposition (Cornwell
et al., 2008; Makkonen et al., 2012; Cleveland et al., 2014;
Fanin et al., 2016). Our results broadly agree with these studies
and lend support to Hypothesis 1 as we found that litter
type explained the most variation in litter mass loss at all
stages of decomposition across OG, ML, HL forest, and oil
palm plantation (34.51–66.28%) (Table 3). Variation in forest
chemical litter quality was not aligned with logging history
as ML forest litter had lower quality litter than HL and OG
forest, which had similar litter qualities (Table 1, Table S1).
This probably reflects the higher heterogeneity in functional
diversity of logged tropical forests as it does not agree with
a recent study of tree community-weighted mean traits across
this gradient (Both et al., 2019). This showed that whilst leaf
tissue nutrient concentrations were primarily controlled by soil
nutrient availability, logging did drive shifts from resource
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TABLE 5 | Multiple linear regression results from a model with litter mass loss (log-transformed) at 398 day as the dependent variable, litter type, and axis scores 1 and 2

from principal co-ordinates analysis (PCoA) of initial bacteria, fungal, and saprotrophic fungal community composition as independent variables.

Source of variation Sum of squares df Relative importance (%) F P-value R2

Litter type 3.33 3 45.52 22.69 <0.001 0.53

Bacteria PCoA1 0.21 1 2.69 4.24 0.04

Bacteria PCoA2 0.27 1 5.24 5.58 0.02

Error 3.52 72

Litter type 3.32 3 45.43 23.49 <0.001 0.55

Fungi PCoA1 0.02 1 0.41 0.46 0.5

Fungi PCoA2 0.61 1 9.40 12.92 <0.001

error 72

Litter type 3.42 3 46.10 24.99 <0.001 0.57

Saprotrophic fungi PCoA1 0.31 1 4.82 6.76 0.01

Saprotrophic fungi PCoA2 0.42 1 5.70 9.26 0.003

Error 3.28 72

Relative importance was calculated by averaging over orders of regressors and is presented as percentages which sum to the overall model R2.

conservative to acquisitive traits (Both et al., 2019). Oil palm
litter had the highest foliar P concentrations and lowest lignin:
N ratios (Table 2) and decomposed ∼40% faster than all forest
litters (Figure 2).

Understanding whether microbial decomposer communities
of distinct compositions are functionally equivalent or dissimilar
concerning their ability to perform ecosystem processes such
as litter decomposition is critical for predicting ecosystem
responses to future environmental change (Allison and Martiny,
2008; Allison et al., 2013). We found that, in addition to
litter quality, soil origin was also a significant predictor
of litter mass loss at all time points and across all land-
uses explaining 5.17–15.43% of total variation (Table 3). This
finding is in agreement with similar studies in temperate
ecosystems and indicates that litter decomposition rates,
whilst largely regulated by litter quality, are not decoupled
from microbial decomposer community composition under
controlled, microclimatic conditions (Ayres et al., 2009b;
Strickland et al., 2009b; Cleveland et al., 2014; Fanin et al.,
2016).

Hypothesis 2 was not supported as microbial decomposer
communities from OG forest had significantly higher functional
breadth (i.e., they decomposed all 4 litter types faster than
the average of decomposer communities from other land-
uses) whilst decomposer communities from HL forest had the
lowest functional breadth (i.e., they decomposed all 4 litter
types slower than the average of decomposer communities from
other land-uses) (Figure 4). OG and HL forest were the most
similar in terms of both microbial decomposer community
composition (Figure 1), microbial biomass and soil abiotic
properties (Table 1) suggesting that even subtle shifts to the
compositional make-up of microbial communities can lead
to significant functional dissimilarity. Microbial decomposer
communities from the oil palm plantation had a functional
ability that was not significantly different from the average

across all plots (Figure 4). This was surprising as total microbial
biomass (Total PLFA), which has been positively associated
with rates of litter decomposition and is represented in most
decomposition models (McGuire and Treseder, 2010; Bradford
et al., 2017), was much lower in oil palm (Table 1) relative to
all forest plots. However, this result may have been confounded
by past fertilization with inorganic nutrients as fertilization with
N, P, K, and micronutrients has been shown to increase both
cellulose and leaf litter decomposition rates in tropical forest
(Hobbie and Vitousek, 2000; Kaspari et al., 2008). Soil inorganic
P concentrations were higher in oil palm than forests (Table 2).
When soil origin was replaced with soil properties, inorganic
P concentrations as well as total PLFA and bacterial richness
were positively associated with litter mass loss after 398 day. As
P is thought to be a key limiting nutrient in lowland tropical
forest ecosystems, alleviation of this limitation by fertilization
may have increased rates of forest litter decomposition in oil
palm, despite a lower abundance of microbial decomposers
(Camenzind et al., 2018).

Numerous previous studies have shown that microbial
communities decompose litter from their “home” site more
quickly than exogenous litter (the Home-Field Advantage
Hypothesis) (Gholz et al., 2000; Ayres et al., 2009b; Austin et al.,
2014; Veen et al., 2015; Lin et al., 2019). However, evidence
for this appears variable and context dependent with other
studies showing no or even negative HFA (McGuire et al.,
2010; Gießelmann et al., 2011; St. John et al., 2011). In partial
support of Hypothesis 3, we found that after 398 day, the lowest
quality litter mixture from ML forest decomposed significantly
faster than all other litters when combined with its home soil
(Figure 4). This is consistent with findings suggesting that HFA
effects are stronger for recalcitrant litter and become more
pronounced as litter types become more dissimilar (Veen et al.,
2015). This may be explained by the higher concentrations of
complex compounds in low quality litter, which require specialist
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TABLE 6 | Output from the decomposer ability regression test (DART) using mass

loss of litter mixtures from old growth (OG) forest, moderate logged (ML) forest,

heavily logged (HL) forest, and oil palm after 31, 105, and 398 days as a proxy for

decomposition.

Time point Variable Parameter estimate SE P

31 day

Intercept 9.54 0.30 <0.0001

QI: OG −0.96 0.42 0.0249

QI: MLF −1.67 0.55 0.0036

QI: HLF −0.05 0.63 0.9352

QI: OP 2.67 0.55 <0.0001

Ability: OG 0.55 0.64 0.3913

Ability: MLF −0.93 0.48 0.0578

Ability: HLF 2.06 0.54 0.0003

Ability: OP −1.69 0.49 0.0009

HFA: OG −2.83 1.03 0.0074

HFA: MLF 1.74 1.03 0.0952

HFA: HLF −1.61 1.18 0.176

HFA: OP 1.04 1.18 0.3793

105 day

Intercept 24.72 0.49 <0.0001

QI: OG −3.87 0.94 <0.0001

QI: MLF −6.16 0.64 <0.0001

QI: HLF −2.66 0.95 0.0068

QI: OP 12.68 1.02 <0.0001

Ability: OG −0.37 0.84 0.6663

Ability: MLF 0.78 1.05 0.4644

Ability: HLF 0.37 0.75 0.6276

Ability: OP −0.78 0.92 0.4026

HFA: OG 0.08 2.07 0.9704

HFA: MLF 2.49 1.61 0.1264

HFA: HLF −1.38 2.04 0.5021

HFA: OP −9.70 2.07 <0.0001

398 day

Intercept 30.85 0.73 <0.0001

QI: OG −1.03 1.48 0.4912

QI: MLF −8.54 1.16 <0.0001

QI: HLF −3.52 1.57 0.028

QI: OP 13.09 1.12 <0.0001

Ability: OG 2.71 1.04 0.0112

Ability: MLF 1.50 1.45 0.3026

Ability: HLF −3.51 1.09 0.0019

Ability: OP −0.70 1.71 0.6829

HFA: OG −3.03 2.44 0.2189

HFA: MLF 6.19 2.90 0.0362

HFA: HLF 3.58 3.54 0.316

HFA: OP −9.04 4.24 0.0365

Quality Index (QI) relates both the physical/chemical quality of the litter and how all

decomposer communities perceive the relative litter quality. Ability quantifies the overall

functional capacity of decomposer communities relative to each other across land uses

(functional breadth). Home-Field Advantage (HFA) represents whether litter combined with

its home soil decomposes faster than when combined with other soils and is given for the

four home litter × soil combinations designated by soil community origin.

decomposers (i.e., lignocellulolytic fungi) that can secrete specific
enzymes to break them down (Ayres et al., 2009b; Milcu and
Manning, 2011; Veen et al., 2015; Lin et al., 2019). We found
evidence for this specialization as initial soil bacterial, fungal,
saprotrophic fungal community composition, and PLFA profiles
were correlated to rates of ML forest litter mass loss after 398
day (Table S2). A HFA effect can also be present for labile
litter decomposition, explained by stimulation of competition for
resources amongst copiotrophic microbial decomposers (Wang
et al., 2013; Lin et al., 2019). Between 31–105 day and 105–398
day, labile oil palm litter decomposed slower in its “home” soil
environment relative to all forest soils indicating a negative
HFA effect at this stage of decomposition (Figure 4). The decay
of labile compounds is thought to be primarily mediated by
generalist microbial decomposers, which may be abundant in
soil microbial biomass (Ayres et al., 2009a; Milcu and Manning,
2011; López-Mondéjar et al., 2018; Lin et al., 2019). Therefore,
this negative HFA may be explained by lower microbial biomass
(total PLFA) and thus abundance of generalist decomposers
in oil palm relative to all forest sites (Table 1). In support of
this, initial total PLFA and PLFA profiles were correlated with
final mass loss of all litter mixtures (Table 4, Table S2). This
suggests that generalist species found across land uses, rather
than specialist decomposers regulated the decomposition of oil
palm litter.

CONCLUSIONS

These data provide evidence that under controlled climatic
conditions, litter quality regulates rates of litter decomposition
across tropical OG forest, logged forests, and oil palm
plantations. However, differences in soil microbial decomposer
community explained a smaller but significant portion of
variation in litter mass loss with OG forest decomposer
communities retaining greater functional breadth, decomposing
all litter mixtures faster relative to communities under logged
forest and oil palm. We found evidence for a HFA in
the most recalcitrant litter mixture from ML forest and
significant correlations between initial decomposer community
composition, microbial abundance, richness, and litter mass
loss after 398 day. These findings suggest that shifts in
soil microbial decomposer community structure should be
considered when assessing the impacts of disturbance on
crucial process rates, such as decomposition, in tropical
forest ecosystems.
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FIGURE 4 | DART output calculated from % litter mass loss from litter decomposition microcosms after 31, 105, and 398 days: QI (litter quality index ranking the

chemical quality of litters within the study), Ability (the functional capabilities of the microbial decomposer community to decompose all litters), and HFA (home-field

advantage or the relative advantage of a decomposer community decomposing its “home” litter type). The bars are parameter estimate means ± 1 SE. “*” above or

within bars represent a statistically significant difference from the intercept (y = 0) at p < 0.05. The intercept represents the average litter mass loss for all observations

in the dataset after controlling for litter, soil and home-field pairings.
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