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Abstract we investigate hydrology during a past climate slightly warmer than the present: the last
interglacial (LIG). With daily output of preindustrial and LIG simulations from eight new climate models
we force hydrological model PCR-GLOBWB and in turn hydrodynamic model CaMa-Flood. Compared to
preindustrial, annual mean LIG runoff, discharge, and 100-yr flood volume are considerably larger in the
Northern Hemisphere, by 14%, 25%, and 82%, respectively. Anomalies are negative in the Southern
Hemisphere. In some boreal regions, LIG runoff and discharge are lower despite higher precipitation, due to
the higher temperatures and evaporation. LIG discharge is much higher for the Niger, Congo, Nile, Ganges,
Irrawaddy, and Pearl and lower for the Mississippi, Saint Lawrence, Amazon, Parand, Orange, Zambesi,
Danube, and Ob. Discharge is seasonally postponed in tropical rivers affected by monsoon changes. Results
agree with published proxies on the sign of discharge anomaly in 15 of 23 sites where comparison is possible.

Plain Language Summary It is still uncertain how the water cycle will respond to a warmer
climate in the coming decades. To increase our understanding of the relationships between climate and
hydrology, we study the past climate of the last interglacial, which was slightly warmer than the present. We
present the results of a modeling approach, showing that while Northern Hemisphere precipitation was
higher during the last interglacial, discharge of rivers was even higher, and floods were even larger. On the
contrary, in the Southern Hemisphere precipitation, discharge and floods were lower. We show that, for
some regions, precipitation, discharge, and floods do not have the same direction of change. The seasonal
timing of discharge also changes for some large basins of the Northern Hemisphere. Finally, for 23 sites, we
compare our results to geological evidence. These results form a useful term of comparison to both
projections of the future and geological studies of past hydrology.

1. Introduction

With ongoing climate change, the need is pressing to anticipate the response of the hydrological cycle to
increasing global temperatures. This can be achieved through modeling frameworks that include emission
scenarios and simulation of climate, hydrology, and river hydrodynamics (Arnell & Gosling, 2016;
Hirabayashi et al., 2013; van Vliet et al., 2013; Ward et al., 2017). One opportunity to increase our grasp of
the Earth's hydroclimate is offered by studying past responses of hydrological systems to different climate
states that occurred during the Earth's history, on which geology grants evidence (Harrison et al., 2015;
Lunt, Elderfield, et al., 2013). As climate swung between glacials and interglacials of the Quaternary,
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global, or at least hemispheric, temperatures sometimes exceeded those of the present day (PAGES, 2016).
The most recent of those intervals is the last interglacial (LIG; 129 to 116 kyr ago). The LIG holds special rele-
vance to the future, because of the unique combination of two factors: its proximity in geological time, which
means that the conditions of most climate system components are comparable to the present, and its partial
temperature analogy with possible futures. Atmospheric surface temperatures were higher than the prein-
dustrial (PI) period and probably slightly higher than the present, with largest anomalies in the Northern
Hemisphere and particularly at its high latitudes (CAPE Members, 2006; Turney & Jones, 2010); however,
global quantifications are still inadequate (Capron et al., 2017). Global estimates of LIG sea surface tempera-
ture anomalies compared to the present range between 0°C and +0.9°C (Hoffman et al., 2017; Turney
et al., 2020) and mean ocean temperature anomaly is estimated to be approximately +1°C (Shackleton
et al., 2020). The warmth of the LIG was due to the different latitudinal distribution of seasonal insolation
and the resulting internal climate feedbacks, principally related to Arctic amplification of warming. The
LIG has been abundantly studied in terms of temperature, using climate models (e.g., Lunt, Abe-Ouchi,
etal., 2013; Otto-Bliesner et al., 2013, 2020) and with proxies covering some Northern Hemisphere continents
and many ocean subbasins (Capron et al., 2017; Hoffman et al., 2017; Turney et al., 2020), and recently also in
terms of precipitation (Nikolova et al., 2013; Pedersen et al., 2017). In particular, the higher boreal LIG pre-
cipitation likely resulted from high-latitude warming and associated reduction in boreal latitudinal tempera-
ture gradients, ultimately linked to differences in insolation (Scussolini et al., 2019). While reconstructions of
LIG runoff and river discharge are available for some locations (supporting information Table S1), for exam-
ple, for the Nile (Wu et al., 2018) and Congo rivers (Gingele et al., 1998), the hydrological implications of the
different atmospheric and land climate of the LIG remain unexplored to this day. The application of hydro-
logical modeling to study large-scale changes before the twentieth century is rare. Exceptions are the model-
ing of Holocene discharge for a set of large river basins (Aerts et al., 2006; Ward et al., 2007).

In this study we (1) model global anomalies between LIG and PI surface runoff, river discharge, and floods;
(2) validate those anomalies by comparison with the available proxies; and (3) quantify modeled anomalies
of hydrological extremes, in discharge and floods. To these ends, we use results from the latest generation of
climate models to force state-of-the-art global hydrological and hydrodynamic models. Our discharge and
flood results form the first global picture of hydrological conditions for the LIG.

2. Materials and Methods

To simulate the hydrology and hydrodynamics of the LIG and the PI, we use data from eight global climate
models of the Paleoclimate Modelling Intercomparison Project Phase 4: CESM1.2, CESM2, EC-EARTH3.2,
HadGEM3-GC3.1, IPSL-CM6-LR, MPI-ESM 1.2.01p1-LR, NorESM1-F, and NUIST-CSM. Depending on the
model, the atmosphere's resolution ranges from 1° to 2°, and simulations last between 100 and 300 yr.
Simulations are conducted at equilibrium conditions, with forcing reflecting 127 ka for the LIG and CE
1850 for the PI. From the climate models, daily total precipitation and near-surface air temperature are
inputted in the global hydrological model PCR-GLOBWB Version 2 (Sutanudjaja et al., 2018). We test the
climate model data against climate reanalysis (Text S2 and Figures S1 and S2) and determine that bias cor-
rection of climate variables prior to input in the hydrological model is not warranted. Input data are bili-
nearly interpolated to the 0.5° resolution of the hydrological simulations. The time step is daily. Potential
reference evapotranspiration is calculated from air temperature using the Hamon method (Hamon, 1963).
Simulations reflect natural conditions as much as possible, and human factors are excluded. Both LIG
and PI simulations use present-day maps for land cover, river networks, and sea levels. In hydrological simu-
lations, we let the groundwater storage adjust to the different climatology and then spin up the model for
50 yr. From PCR-GLOBWB we analyze surface runoff. We then interpolate the daily surface runoff from
PCR-GLOBWSB for input into the global hydrodynamic model CaMa-Flood (Yamazaki et al., 2011), which
solves the local inertial equation and runs at 0.25° resolution. From CaMa-Flood's output we analyze routed
river discharge, flood (inundated) area, and flood volume (i.e., flood area X flood depth) per grid cell. All
variables are averaged across the whole model time series, unless specified. Further, we investigate changes
at the river basin scale, for 27 major rivers selected to approximately cover all climatic regions (Figure S10).
We report anomalies in seasonal discharge at the river mouth in the form of average annual hydrographs,
along the boreal water year (October to September). To correctly compare the two simulations, we account
for the seasonal implications of a different Earth's orbit during the LIG by applying the angular definition of
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Figure 1. Summary of area-weighted global and hemispheric percentage anomalies between last interglacial and
preindustrial simulations, for each model and for the ensemble mean. Precipitation is calculated over land only.
Values are averaged across the entire time series, from daily values (precipitation, runoff, and discharge) and from
annual maxima (flood area and flood volume).

calendar (Bartlein & Shafer, 2019). See Text S1 for additional details on each model and simulation and Text
S2 and Figures S3-S5 for a test of the sensitivity of our results with respect to bias correction of the climate
data sets.

3. Results
3.1. Large-Scale Patterns of Runoff and Discharge

Compared to the PI simulation, the global area-weighted average precipitation rate for the LIG displays
slightly positive anomaly (i.e., rate is higher in the LIG than in the PI), namely, an ensemble mean of
+2.3% (with —0.6% to +5.0% intermodel spread) (Figure 1). This results in negligible runoff anomaly of
+0.1% (—11.7% to +4.7%) and negligible anomaly of the routed river discharge of —0.2% (—2.7% to +3.8%).
In the Northern Hemisphere anomalies are consistently positive: +16% (+5% to +24%) for precipitation,
+14% (+1% to +27%) for runoff, and +25% (+14% to +34%) for discharge. Conversely, in the Southern
Hemisphere negative LIG precipitation anomaly of —7.3% (—4.9% to —11.1%) results in negative runoff
anomaly of —10% (—21% to —5%) and in more negative discharge anomaly of —17% (—22% to —12%).
Intermodel spreads are wider in the Northern Hemisphere.

For the vast majority of regions, anomalies of LIG runoff and precipitation coincide in sign (Figure 2). In
departure from this rule, some areas present negative runoff anomaly where LIG precipitation is positive,
mostly over eastern and northern Asia, northern continental Canada, northern South America, and
Iberian Peninsula. In most of these cases, the LIG runoff coefficient is lower (Figure S7), indicating that a
smaller portion of precipitation converts into runoff. This is mainly a result of higher evaporation
(Figure S9) due to higher air temperature (Figure S6). Comparing anomalies in discharge (Figures 3 and
S11) and precipitation, areas where negative LIG discharge corresponds to positive precipitation are found
mostly over northeast Asia (Amur and Lena river basins), northern Canada, and the east coast of North
America; positive discharge corresponds to negative precipitation over smaller areas: mainly northeast
Brazil, northwestern North America, and Madagascar. Last, comparing runoff and discharge, areas of posi-
tive discharge anomaly and negative runoff emerge mostly over northeast Asia, northern South America,
Iberian Peninsula, and central Asia, whereas small areas of negative discharge and positive runoff are found
over East and central Asia, northern North America, and southern Australia.
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Runoff from PCR

Figure 2. Ensemble anomaly in annual mean precipitation from the climate models (a) and in surface runoff from hydrological model PCR-GLOBWB (b). Areas
for which more than two models (out of eight) disagree with the sign of the anomaly in precipitation and runoff are hatched. Also shown (c) are areas where

the sign of anomalies in precipitation and runoff coincides or diverges, in a discrete color scale; white indicates that either percentage anomaly is
comprised between —2% and +2%; gray indicates no runoff values.
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Figure 3. Ensemble anomaly in river discharge from hydrodynamic model CaMa-Flood, along with river discharge from published proxies, in markers.
Hatching as per Figure 2. Green (purple) stars and diamonds indicate positive (negative) anomalies from the proxies. Stars (diamonds) indicate agreement
(disagreement) with the model ensemble in the sign of anomaly. The arrow indicates the location of the proxy record in the Mississippi basin. Details and
references of proxy records are in Table S1. Discharge from hydrological model PCR-GLOBWB is shown in Figure S8 for reference.

3.2. Annual and Seasonal Discharge of Main Rivers

Annual hydrographs show much higher discharge at the river mouth in the LIG than PI for basins in Africa:
Nile, Niger, and Jubba-Shebelle (Figure 4). LIG discharge is clearly higher almost year-round for the Congo,
Irrawaddy, Lerma-Santiago, and Douro. It is clearly lower for rivers Flinders, Murray-Darling, Zambesi,
Orange, Parand, Amazon, Mississippi, Saint Lawrence, Danube, and Ob and slightly lower for the Yenisei,
Rhine, and Mackenzie. A common pattern is that several rivers with higher LIG yearly discharge display
somewhat negative anomalies in spring/summer: the Ganges-Brahmaputra-Meghna, Pearl, Lena, and
Anadyr. The opposite happens for the Rhine and Mackenzie, where positive summer anomalies emerge
amidst annually negative anomalies. Intermodel spread in the percent anomaly of seasonal and annual dis-
charge varies across rivers and tends to be larger in regions with higher LIG precipitation, runoff, and dis-
charge: in the North African monsoon and adjacent region (Nile, Niger, and Jubba-Shebelle), in the
Indian monsoon (Ganges-Brahmaputra-Meghna, Irrawaddy), in the South American monsoon (Orinoco),
and in northeast Asia (Lena, Anadyr). An exception is the large intermodel spread for the Murray-
Darling, where precipitation and runoff anomalies also diverge across models (Figure 2).

For most basins, the seasonal pattern of discharge is similar across LIG and PI simulations, except from some
rivers in the tropics, where strong changes in the timing of monsoonal precipitation and in the domains of
monsoons (Scussolini et al., 2019) result in a different shape of the hydrograph. Seasonality changes notably
for the Congo, where a bimodal LIG hydrograph substitutes a near-unimodal PI one. For several basins, the
seasonal contrast in discharge is stronger in the LIG, for example, for the Orinoco, Douro, Rhine, Ganges-
Brahmaputra-Meghna, Irrawaddy, Yangtze, and Pearl. Furthermore, in many basins the peak of annual dis-
charge is shifted forward, by days up to weeks: in the Amazon, Orange, Zambesi, Mississippi, Saint
Lawrence, Douro, Danube, Rhine, and Yangtze.

To represent changes in the annual timing of discharge, we inspect changes in the timing of the annual cen-
ter of mass of flow (CMF) (Stewart et al., 2005) (bottom lines in Figure 4). The CMF of the LIG is anticipated
by as much as 42 days in the case of the Niger and postponed by as much as 36 days in the Irrawaddy. In
many rivers of the Northern Hemisphere the CMF occurs later in the LIG (Mackenzie, Mississippi, Saint
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Figure 4. Average annual hydrographs of discharge at points near the mouth of major river basins. x axes are days in a “water year” from 1 October to 30
September. Left-hand y axis is the ensemble mean value of absolute discharge, for last interglacial (solid black lines) and preindustrial climates (dashed black
lines). Axis range is different for each reader and is omitted. Right-hand y axis is the percentage anomaly between the two climates, blue for positive (higher
discharge during LIG), and red for negative. Individual models are in thin lines, and ensemble means in thick lines. Axis range is —100% to 100%. The vertical lines
at the bottom of each panel represent the timing of the annual center of mass of flow, for LIG (solid line) and PI (dashed line). The angular calendar is applied to
the LIG data.

Lawrence, Douro, Rhine, Danube, Ob, Irrawaddy, Yenisei, and Pearl), in many cases reflecting enhanced
precipitation in summer and early autumn. The Niger and the Yangtze are the only boreal rivers for which
LIG CMF occurs substantially earlier. It must be noted that the Niger is also anomalous in that its LIG dis-
charge is +200% larger. In the Southern Hemisphere, the CMF of LIG rivers shifts substantially only in the
Orange and Zambesi, where it occurs later, and in the Mekong and Murray-Darling, where it occurs earlier.
Although the seasonal pattern changes widely in the Congo, its CMF is virtually the same. In other basins
with much higher LIG discharge (Nile and Jubba-Shebelle), the CMF shifts by only 2 days.

3.3. Extreme Discharge and Floods

Global area-weighted average anomalies in annual maxima of flood metrics are more accentuated than
anomalies in annual average precipitation, runoff, and discharge (Figure 1). Anomalies in annual maximum
of flood volume are larger than flood area. Globally, LIG simulations display +11% (with +5% to +21% inter-
model spread) flood area and +21% (+10% to +43%) flood volume. Especially in the Northern Hemisphere,
the positive anomalies are very strong, with +39% (+24% to +57%) flood area and +82% flood volume, with
very large intermodel spread for the latter: +45% to +127%. For the Southern Hemisphere, anomalies are
—17% (—20% to —15%) for flood area and —27% (—34% to —24%) for flood volume. The much larger anoma-
lies of floods metrics cannot be attributed to changes in extreme precipitation (not shown), as these are even
smaller than changes in mean precipitation. Geographic patterns of anomalies in flood area and flood
volume at the 100-yr return period (Figure S13) diverge in many regions from anomalies in runoff
(Figure 2) and discharge (Figure 3), mainly over northern Asia, North America, and India. Also, they are
more spatially heterogeneous, pointing to the relevance of subbasin processes to modeled floods. To assess
the link between precipitation intensity and hydrological extremes, we calculate annual maximum precipi-
tation in consecutive intervals of 5, 15, and 30 days (Figure S14). In the Northern Hemisphere, geographical
coincidence in the sign of anomaly is higher between flood area (or volume) and 5-day maximum precipita-
tion than between flood area (or volume) and average precipitation (Figure S13). This indicates that, in the
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Figure 5. Extremes of discharge (a) and of flood area (b) for main river basins (shown in Figure S5), for a set of return periods from 2 to 100 yr. Red and blue lines
represent last interglacial and preindustrial climates, respectively. Individual models are in thin lines, and ensemble means in thick lines. Discharge is calculated

for each basin in proximity of the river mouth; flood area is summed for the whole basin.
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model, extremes in boreal flooding are driven by intense precipitation over multiple days rather than by
average precipitation.

For discharge and flood area in the same river basins analyzed above, the ensemble-averaged extreme values
increase from return periods of 2 to 100 yr in a similar fashion (Figure 5; flood volume is omitted because the
shape of its curves is comparable to flood area). For most basins, patterns of extremes of intense precipitation
are very similar for 5-, 15-, and 30-day intervals and mostly also resemble patterns of extreme discharge and
flood area (Figure S.15). Notable deviations from this similarity emerge: (1) in the Mississippi, where LIG
discharge and flood are lower than PI, whereas extremes of intense precipitation are virtually the same
across simulations; and (2) in the Saint Lawrence and Flinders, where LIG discharge extremes are slightly
lower, whereas LIG flood area extremes are much lower.

3.4. Comparison to Proxies of Discharge/Runoff

We revise proxy studies that report patterns of LIG runoff and discharge, to compare to the modeling results.
We select mostly records of marine sediments under the influence of either discharge downstream from
main river mouths or broadly of runoff from the adjacent land. Often, the interpretation of such records is
dubious, because of the presence of multiple mechanisms that may concur to explain the proxy signal, such
as strong sea level variations of the glacial-interglacial cycles (e.g., Kujau et al., 2010) and potential shifts in
the location of river mouths that are poorly constrained topographically. We find published proxies for 32
sites, of which 23 are suitable for comparison with models (Table S1). The modeled discharge agrees with
the proxies on the sign of LIG anomaly at 15 sites: the west coast of North America; the north and west coasts
of South America; at several sites on the northern, eastern, and southern coasts of Africa; at the southeast of
India; and at western Australia (Figure 3). Disagreement occurs over the Mississippi basin and downstream
its river mouth, at the northern coast of South America (where model resolution is likely inadequate to cap-
ture small-scale gradients), the western coast of Northern Africa, the eastern Mediterranean region, over the
Limpopo basin, and at a site in Indonesia.

4. Discussion and Conclusions

Because reconstructing climatic and hydrological signals from proxies is hard, it is tempting to extend the
interpretation of proxies of, for example, precipitation, to also represent hydrological variables as runoff, dis-
charge, and flood, or conversely. Although our model results indicate that for most areas the sign of anomaly
in those variables coincides, the discrepancies that emerge for nonnegligible land portions (Figures 2, S11,
and S13) provide a cautionary message for the interpretation of proxy records. On the other hand, areas
where modeled variables diverge and areas of stronger anomaly could inform site selection for proxy recon-
structions that help shed light into mechanisms of LIG hydroclimate.

In the only modeling studies that offer points of paleoclimatic comparison for our results, Aerts et al. (2006)
and Ward et al. (2007) simulated discharge for major rivers during the mid-Holocene, when insolation and
warming anomalies were geographically comparable, though smaller in magnitude, to those of the LIG.
Their annually integrated anomalies agree in sign with our LIG ones for the Ganges, Congo, Lena,
Murray-Darling, Amazon, Zambesi, and Nile. They slightly disagree for the Danube, Rhine, and Mekong
and completely disagree for the Mississippi. Attributing discrepancies with those results is unattainable
because the effect of different climate forcing and very different modeling framework cannot be separated.
By virtue of the possible similarities in the geographic pattern of temperature anomalies, another term of
comparison for LIG discharge are the ensemble mean results of simulations for the end of this century
(2070-2100) under high-emission scenarios, although key differences in forcing between these climates
(Bony et al., 2013) limit the merit of this comparison. Our LIG positive discharge anomalies agree with future
projections from CMIP3 models (van Vliet et al., 2013) over northeast Asia, Alaska, central Africa, and the
Arabian Peninsula. LIG negative discharge anomalies agree over southern Africa and parts of North
America and of Europe. Glaring disagreement emerges over Northern Africa and the Mediterranean, tropi-
cal South America, Southeast Asia, and particularly the Himalaya region. Compared to CMIP5-based projec-
tions, anomalies in LIG discharge hydrographs are similar for Rhine, Ganges, and Yangtze and different for
Amazon, Niger, Nile, Mississippi, Mackenzie, and Lena (Krysanova et al., 2017). LIG floods are lower over
many parts of Europe, in agreement with CMIP3-based future projections (Arnell & Gosling, 2016) but in
disagreement with projections based on downscaled CMIP5 results (Alfieri et al., 2015).
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Precipitation is an uncertain product of global climate models (e.g., Huang et al., 2020; see also Text S1).
Nevertheless, precipitation from an almost identical ensemble of climate models has been validated by com-
parison to proxies (Scussolini et al., 2019). That study reports that climate models seem to reasonably repro-
duce the main features of LIG precipitation, especially in the Northern Hemisphere. Besides, comparison of
proxies with a similar ensemble of models shows broad agreement in LIG Arctic amplification of warmer
temperatures (Otto-Bliesner et al., 2020). Our proxy-model comparison on discharge and runoff supplies
additional confidence in the models' capabilities of reproducing past climate change, suggesting that even
for a cascade of climate-hydrological-hydrodynamic models there is more agreement than disagreement
with proxies. It must be noted that there are inherent limits of this model-proxy comparison. Beyond those
raised by Scussolini et al. (2019), an additional limit derives from the fact that LIG simulations are carried
out with current maps of river network, land cover, permafrost, and sea levels. Although these were likely
different in the LIG (e.g., the top of the permafrost may have been deeper in warmer boreal climate),
improvements in this direction are postponed until global data sets for this period will emerge. Further,
although we found more proxies than were found for Holocene discharge (Aerts et al., 2006), these are fewer
than for LIG precipitation (Scussolini et al., 2019), and the number of suitable comparisons is too small to
draw conclusions about the geographic pattern of model-proxy agreement. Nevertheless, with growing inter-
est and with accelerated development in the fields of paleohydrology and paleo floods (Baker, 2013; Wilhelm
etal., 2017, 2018), it is realistic that the coverage and resolution of proxies for runoff, discharge, and flooding
will increase, enabling more extensive comparison with the models presented here. Additionally, the above
mentioned forms of validation with proxies enable selecting models that best reproduce observations for the
LIG and that can therefore be assumed to better capture the internal feedbacks of the climate system in a
warmer climate. With ad hoc methodologies, this could in turn enable differential weighting of models in
the context of ensemble studies (Eyring et al., 2019).

Lastly, our hydrological results inform the study of the LIG history of ecosystems and humans at the conti-
nental scale. For example, humid LIG conditions have been inferred for sectors of North Africa that were
crucial to prehistoric human migrations (Larrasoana et al., 2013). The timing of human dispersal from
Africa is not well constrained, with current hypotheses based on genomics and archeology suggesting migra-
tions in the time window 130-50 ka, via the Bab el Mandeb strait or the Sinai Peninsula (Lépez et al., 2015),
and pioneer hydrodynamic studies indicating possible LIG migration to the Mediterranean along a western
route (Coulthard et al., 2013). For 127 ka, increased precipitation emerges from proxies and models over the
Sahel, Sahara, Arabian Peninsula, Levant, and Middle East, with further-reaching and longer monsoon sea-
sons (Scussolini et al., 2019). We here simulate higher LIG annual runoff and discharge over North Africa
and the southwestern Arabian Peninsula. All this points to the existence of a river network and to greening
of key regions that may have sustained the path of human tribes migrating across and out of the continent.

Data Availability Statement

The results of the hydrological and hydrodynamic models that form the basis for the analyses here presented
are available as netCDF files at public repository (https://doi.org/10.5281/zenodo.3677737).
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