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Climate change and fishing represent two of the most important stressors facing fish
stocks. Forecasting the consequences of fishing scenarios has long been a central
part of fisheries management. More recently, the effects of changing climate have been
simulated alongside the effects of fishing to project their combined consequences
for fish stocks. Here, we use an ecological individual-based model (IBM) to make
predictions about how the Northeast Atlantic mackerel (NEAM) stock may respond to
various fishing and climate scenarios out to 2050. Inputs to the IBM include Sea Surface
Temperature (SST), chlorophyll concentration (as a proxy for prey availability) and rates
of fishing mortality F at age. The climate scenarios comprise projections of SST and
chlorophyll from an earth system model GFDL-ESM-2M under assumptions of high
(RCP 2.6) and low (RCP 8.5) climate change mitigation action. Management scenarios
comprise different levels of F, ranging from no fishing to rate Flim which represents
an undesirable situation for management. In addition to these simple management
scenarios, we also implement a hypothetical area closure in the North Sea, with different
assumptions about how much fishing mortality is relocated elsewhere when it is closed.
Our results suggest that, over the range of scenarios considered, fishing mortality has
a larger effect than climate out to 2050. This result is evident in terms of stock size
and spatial distribution in the summer months. We then show that the effects of area
closures are highly sensitive to assumptions about how fishing mortality is relocated
elsewhere after area closures. Going forward it would be useful to incorporate: (1)
fishing fleet dynamics so that the behavioral response of fishers to area closures,
and to the stock’s spatial distribution, can be better accounted for; and (2) additional
climate-related stressors such as ocean acidification, deoxygenation and changes in
prey composition.

Keywords: Atlantic mackerel, climate change, fisheries management, earth system models, individual-based
model, approximate Bayesian computation
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INTRODUCTION

Mackerel (S. scombrus, NEAM) is among the most widely-
distributed and economically valuable fish stocks in the Northeast
Atlantic (Trenkel et al., 2014; Jansen et al., 2016). An increase in
stock size over recent years has supported large catches, which
reached a peak in 2014 at around 1.4 million tons (ICES, 2019c).
As a result, the NEAM fishery is now a major contributor to
the economies of several coastal states in the Northeast Atlantic
(Jansen et al., 2016). Although current stock size is high, it
is estimated that recent levels of exploitation will lead to sub-
optimal yield in the long-term due to overfishing (ICES, 2019c).
This in part because, despite agreeing on a management strategy
in 2015, the European Union, Norway and the Faroe Islands have
since all declared quotas above those advised by the International
Council for the Exploration of the Seas (ICES) (ICES, 2019a).
Management of NEAM is further complicated by the fact that
the spatial distribution of the stock in the summer months has
recently expanded (Berge et al., 2015; Ólafsdóttir et al., 2018). It is
now found in substantial numbers in the jurisdictions of Iceland
and Greenland which previously had no share of the catch (Kooij
et al., 2015; Olafsdottir et al., 2016). Both countries have since set
unilateral quotas without international agreement (ICES, 2019a).
Given the commercial value of the NEAM stock it is crucial that
the fishery is managed appropriately in order to preserve the
economic benefits it currently provides.

Management of NEAM depends on scientific advice regarding
acceptable levels of exploitation. This advice is provided by
ICES, who assess the state of the stock using an age-structured
state-space assessment model (SAM) (Nielsen and Berg, 2014).
The first step in the stock assessment is to estimate current
levels of spawning stock biomass (SSB) and the rate of fishing
mortality (F). These outputs are then used as starting points for
forecasts of future stock status under various catch scenarios,
which inform the advisory total allowable catch (TAC) for the
following year [see ICES (2019a) and earlier advice reports].
SAM is used in stock assessment because it is able to assimilate
the large amounts of data required (e.g., catch, tag-recapture,
survey indices), and can tractably estimate many parameters.
However, like most models used for stock assessment (MacKenzie
et al., 2008; Goethel et al., 2011; Kuparinen et al., 2012), SAM
does not incorporate the spatial structure of a stock or any
environmental influence on its population dynamics. For this
reason, it is limited in its ability to make predictions about:
(1) longer-term fluctuations in the stock which may be affected
by changing climate; and (2) the effects of spatial management
measures which depend on a stock’s distribution.

Spatial management in fisheries is becoming increasingly
prevalent (Halpern et al., 2012), often in the form of seasonal
or permanent area closures in which certain stocks may not be
targeted (Hall, 2001; STECF, 2007). With respect to the NEAM
fishery, sectors of the North Sea are subject to closures for
different portions of the year. Mackerel fishing is not permitted
in the southern and central regions of the North Sea at any
time (ICES, 2019c). This measure was implemented to protect
the North Sea spawning component of the NEAM stock, which
has not recovered since being heavily depleted in the 1970s

(Jansen, 2014). The Northern region of the North Sea is subject
to a seasonal closure from February 15th to July 31st each year.
The reason that mackerel fishing is permitted in the Northern
North Sea outside of this period (August 1st to February 14th)
is that the much larger western spawning component of the
stock migrates into the area in large numbers during this
time. ICES recommends that existing area closures remain in
place to protect the North Sea spawning component (ICES,
2019c), but understanding the effects of closures is difficult.
One approach that has been used to study the effects of spatial
fishery management options is to implement them in spatially
explicit models and test how the populations respond. For
example, spatially explicit individual-based models (IBMs) have
been used predict how fish communities may respond to the
implementation of marine protected areas (Yemane et al., 2009;
Brochier et al., 2013).

In addition to exploitation, climate is likely to affect the NEAM
stock in the future. Projections using Earth System Models
(ESMs) indicate that there will be changes in temperature and
primary productivity in the North Atlantic over the twenty-
first century (Gregg et al., 2003; Henson et al., 2013; Alexander
et al., 2018). As mackerel population dynamics, such as spatial
distribution and recruitment, are highly sensitive to these drivers
(Runge et al., 1999; Borja et al., 2002; Overholtz et al., 2011;
Plourde et al., 2014; Pacariz et al., 2016; Nikolioudakis et al.,
2018; Ólafsdóttir et al., 2018), it is important to include their
effects when making predictions about the future state of the
stock. Recent years have seen the development of a first wave
of marine ecological forecast products (Payne et al., 2017)1.
These products exploit empirical relationships between biological
response variables (e.g., fish spatial distribution and recruitment)
and environmental covariates which can typically be predicted
with greater skill (Payne et al., 2017). Some ecological forecasts
have sufficient skill to be useful in a decision-making context,
but only on a seasonal basis (e.g., <6 months out) (Kaplan
et al., 2016; Payne et al., 2017). It is also possible to make
longer-term ecological projections, albeit with considerably more
uncertainty. For example, Bruge et al. (2016) projected possible
changes in the spawning distribution of NEAM out to 2100
under various climate scenarios. Long-term projections of fish
stock dynamics are likely of little direct use to decision makers
(i.e., tactical management), but can provide important, broad-
scale insight into possible directions of change under varying
climate scenarios.

Long-term (out to 2100) projections of future temperature
and primary productivity can be obtained from a number
of ESMs participating in the Coupled Model Intercomparsion
Project (CMIP) (Taylor et al., 2012). These projections are
typically available under a range of standardized greenhouse gas
emissions scenarios, such as the Representative Concentration
Pathways (RCP), which contain different assumptions about
economic activity, population growth and other socio-economic
factors (van Vuuren et al., 2011). Recently, a fisheries and
marine ecosystem model intercomparison project (FISH-MIP)
was established (Tittensor et al., 2018). In FISH-MIP physical

1www.fishforecasts.dtu.dk/forecasts
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and biogeochemical fields from CMIP projections under various
RCP scenarios are used as input to marine ecosystem models.
In this way predictions can be made about how the marine
ecosystem may respond to climate change. Thus far FISH-
MIP simulations have made simple assumptions about future
levels of fishing activity (i.e., fished or unfished) (Lotze
et al., 2018), likely because of the difficulty in specifying
harvesting regimes for numerous stocks at the global scale.
By focusing on a target stock (or subset of stocks), however,
it should be possible to predict the effects of more detailed
management scenarios alongside the effects of climate (e.g.,
Reum et al., 2020).

Here, we use an existing spatially explicit IBM (Boyd et al.,
2018, 2020) to simulate NEAM population dynamics and yield
from the fishery out to 2050 under a range of management and
climate scenarios. It should be noted from the outset that our
IBM is designed to represent the biological component of the
system, as opposed to the human dimension, and as such the
spatial distribution of fishing effort is represented in a simple
manner. Inputs to the IBM include Sea Surface Temperature
(SST), chlorophyll concentration (used as a proxy for prey
availability), and rates of fishing mortality (F). Predictions of
future SST and chlorophyll were obtained from the ESM GFDL-
ESM-2M under the highest and lowest climate mitigation action
(or RCP) scenarios. Future management scenarios comprise one
of three annual rates of F, ranging from no fishing to rate Flim.
By combining the different climate and management scenarios,
we generate six multi-stressor scenarios that span a range of
possible future conditions. In addition to these scenarios, we
also implement simple spatial management measures. These
measures comprise a hypothetical area closure in the Northern
North Sea, with different assumptions about how much fishing
mortality is relocated elsewhere when it is closed. We quantify
changes to the stock under each scenario in terms of three
outputs: (1) SSB, which is a key output in the stock assessment
because it represents the stock’s reproductive potential; (2)
the summer distribution, which is relevant to the division
of the NEAM catch allocation among national fisheries; and
(3) yield from the fishery. The results are discussed in the
context of the utility of long-term projections for scientific and
management purposes.

MATERIALS AND METHODS

IBM Description
In this section we give a brief overview of the IBM (Boyd et al.,
2018, 2020) and details of its key features. For a full technical
specification see the “TRAnsparent and Comprehensive model
Evaluation” (TRACE) document in Supplementary Material. In
section “Materials and Methods” of the TRACE we provide a
full model description in the standard Overview Design concepts
and Details (ODD) format (Grimm et al., 2006). The IBM was
built in the open-source software NetLogo (Wilensky, 1999),
where it comes with an easy-to-use GUI, but can be run from
the R statistical environment (R Core Team, 2019) using the
RNetLogo package (Thiele, 2017). The R and NetLogo code can

be found at https://github.com/robboyd/SEASIM-NEAM/tree/
master.

Overview
The model environment consists of dynamic maps of SST
and phytoplankton density, which we use to represent baseline
food availability (Figure 1). The fish population represents the
largest sub-unit of the NEAM stock, the western spawning
component, which has comprised a reasonably stable proportion
of the stock’s total biomass through time (∼80%) (ICES, 2014a,b,
2017). It should be noted, however, that there is evidence of
straying between the western and the much smaller North Sea
spawning component of NEAM (Jansen and Gislason, 2013),
which is not represented in the IBM. Fish are grouped into
super-individuals (SIs), which comprise a number of individuals
with identical variables (Scheffer et al., 1995). SIs are sometimes
considered to represent schools of identical individuals in
varying abundances (Shin and Cury, 2001), but the approach
is mainly used for computational tractability. SIs move around
the seascape according to their life cycles (e.g., to spawn, feed
and overwinter, Figure 1). Each has an energy budget which
determines how its characteristics (e.g., body size, life stage,
energy reserves) change in response to local food availability
and SST. Time- and age-varying fishing determines the rate of
mortality from exploitation. A constant number of new SIs enter
the model as juveniles each year, but the abundance that they
represent on entry (recruitment) is given as a function of SSB
and temperature on the spawning grounds. Abundance reduces
as fishing and natural mortalities are applied throughout life.
Population measures such as SSB and spatial distribution are
obtained by summarizing the characteristics of all the individuals
including their abundances.

State Variables and Scales
The model landscape comprises a two-dimensional grid of
patches of sea surface (Figure 1). The spatial extent spans
from 47–77◦N, and from −45◦ to 20◦E. Each patch represents
60 × 60 km (Lambert Azimuthal equal area projection) and
is characterized by prey density, sea surface temperature (SST),
mackerel density, photoperiod and horizontal current velocities.
The mackerel population is represented by a constant 4000 SIs;
as ncohort new SIs enter the model as juveniles each year, an
equal number reach terminal age (> 15 years) and are removed
from the model. While the number of SIs remains constant,
the abundance that they represent differs; a SI’s abundance is
determined by the level of recruitment in the year that it entered
the model, and all subsequent mortality. Each SI is characterized
by age, gender, life stage (egg, yolk-sac larvae, larvae, juvenile
or adult), length, mass (structural, lipid and gonad), abundance
and location. The temporal extent of the historical period spans
from January 1st 2005 to December 31st 2018, and is extended
to December 31st 2050 for projections. The model proceeds in
discrete five-day time-steps.

Sub-models
In the following we give details of the IBM’s movement,
bioenergetics and recruitment sub-models.
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FIGURE 1 | Snapshot of the IBM interface on August 1st 2009. Gray SIs in
the Nordic and North Seas are adults, and blue SIs to the west of the British
Isles are juveniles. The color of the landscape indicates phytoplankton density:
darkest green equals 0 g m−2 through light green which equals 3 g m−2.
Orange cells indicate potential spawning areas, white cells potential nursery
areas, and yellow cells indicate areas that are both potential spawning and
nursery areas. The nursery area is delimited by the 200 m isobath to the west
of the British Isles, and the potential spawning area corresponds to the
European shelf edge (−500 m < depth < −50 m). The red boxes (ICES
divisions 6a and 4a) delimit the potential overwintering areas. The easternmost
box (division 4a) is that which we close in our spatial management scenarios
(see Table 2).

Movement
In broad terms, juveniles move randomly in nursery areas,
and adults cycle between spawning, feeding and overwintering
areas (see TRACE section 2 and Figure 1). For the purposes
of this paper, we focus on the summer feeding period (July
through September). We focus on this period because: (1) the
summer distribution has recently expanded into the jurisdictions
of Iceland and Greenland, which has complicated division of the
catch allocation among states; and (2) we have recently validated
an optimal-foraging model for this period (Boyd et al., 2020),
outlined below.

In summer adults actively move in search of the most
profitable patches on which to feed. Each patch is characterized
by a profitability cue cdd which is proportional to potential
ingestion rate in that location. cdd represents the bottom-up
effect of phytoplankton density as a proxy for prey availability,
a density-dependent effect of intraspecific competition, an effect
of photoperiod (as NEAM are primarily visual feeders), and an
effect of SST (Kelvins), in the form of a modified Beddington-
DeAngelis (Beddington, 1975; DeAngelis et al., 1975) functional
response:

cdd = A (SST) pphoto
X

X + h+ c D
(1)

where X is phytoplankton density (g m−2), h is a half saturation
constant, pphoto is photoperiod (as a proportion of 24 h) at the SI’s
location, D is local mackerel density (g patch−1), c determines the
strength of the density dependence, and A(SST) is an Arrhenius

function giving the effect of SST (see Eq. 2). h was estimated by
fitting the IBM to data on NEAM SSB and weight-at-age using
rejection approximate Bayesian computation (see section “IBM
Calibration”). c was estimated using the same approach but in a
previous application of the IBM (Boyd et al. submitted). A(SST)
is given as:

A (SST) = e
−Ea

K

((
1

SST

)
−

(
1

Tref

))
(2)

where Ea is an activation energy, K is Boltzmann’s constant and
Tref is an arbitrary reference temperature.

SIs move in search of the most profitable locations (Eq. 1) at
which to feed following a gradient area search (GAS). The GAS
algorithm is similar to that presented by Tu et al. (2012); Politikos
et al. (2015), and Boyd et al. (2020). It should be noted that this
model is a slight update to that presented in Boyd et al. (2020)
as it now includes explicit effects of photoperiod and horizontal
current velocities. See TRACE section 9 for a comparison of
predicted and observed NEAM occurrence over summer. SIs
can detect the profitability of the four neighboring patches in
x and y dimensions. Positions are updated five times per time
step (i.e., once per day) to ensure that SIs cannot overshoot the
neighboring patch. Positions in x and y dimensions are updated
in continuous space, as:

xt + 1 = xt + (Dx + Rx + Cx)

yt + 1 = yt +
(
Dy + Ry + Cy

)
(3)

where Dx and Dy denote directed movements toward the most
profitable patches, Rx and Ry denote random movements, and
Cx and Cy are displacements caused by zonal and meridional
horizontal currents, respectively.

In the orientated component of Eq. (3) Dx and Dy, SIs
compare the profitability at their current location with that of the
day before. If it has become more profitable, they will continue
to swim in the same direction as the directed component of
their movement the day before. If a SI’s current environment is
less profitable than the day before, it follows a gradient search
toward what is perceived to be the most profitable patch based
on information in x and y dimensions, at realized velocity
Vr, given by:

Dx = Vr
gx√

g2
x + g2

y

Dy = Vr
gy√

g2
x + g2

y

(4)

where gx and gy are the gradients of the profitability cues (Eq. 3)
in x and y dimensions. Vr is given as minimum swimming
velocity (Vmin) plus random noise. Vmin is as a function of body
length L, as Vmin = av Lbv Acv

r , where av is a normalizing constant,
bv and cv are scaling exponents, and Ar is the caudal fin aspect
ratio (Sambilay, 1990). Vr is given by Vr = Vmin + (Vmin ε),
where ε is drawn randomly from a uniform distribution ranging
from zero to one. The directed component of the GAS algorithm
amounts to what is called a state-location orientation mechanism
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(basing new orientation on a comparison of the current and
previous environment), and there is some indication that herring
follow a similar strategy in the Norwegian sea (Fernö et al., 1998).

Following Politikos et al. (2015) we assume that movement is
directed (Dx, Dy) for 12 h day−1, and movement in the other 12 h
follows the random component of Eq. (3), Rx, Ry, given as moving
at velocity Vmin in a random direction that is not southward.
Random southward movement is not permitted because acoustic
studies have shown that NEAM infrequently swim southwards
over summer (Nøttestad et al., 2016). However, SIs may still move
southward during the oriented component of the GAS algorithm
(i.e., if feeding conditions are best on a more southerly patch), or
due to currents. Rx and Ry introduce stochasticity into the GAS
models and combine with the competition term in Eq. (1), cD, to
prevent unrealistic overcrowding on optimal patches.

The effects of horizontal currents on SIs’ locations, Cx, Cy, are
given as zonal (u) and meridional (v) current velocities (km h−1),
respectively, multiplied by the time step (here 24 h as the GAS
model operates five times per 5 day time-step).

In addition to its effect on the perceived profitability of a
patch (Eqs. 1, 2), SST delimits the possible modeled NEAM
distribution. NEAM avoid areas in which temperature is below
7◦C (Ólafsdóttir et al., 2018). To reflect this, SIs are deterred from
moving to patches on which SST is below this threshold. In the
directed component of Eq. (3), SIs are repelled from patches with
SST < 7◦C by setting profitability cues in those areas to 0. For the
random component of Eq. (3), if a SI’s orientation would direct it
on to a patch with SST < 7◦C, its heading is reversed. If currents
displace individuals on to an intolerably cold patch (or land) then
this movement is abandoned and the SI instead moves to the
centroid of the nearest suitable patch.

Bioenergetics
Individuals obtain energy from food X in the form of either
phytoplankton (a proxy for baseline food availability) or smaller
mackerel located on the same patch (see TRACE section 2 for
size-based criteria that a SI must meet to be classed as potential
prey). Over summer adults do not overlap with sufficient small
mackerel, so in Eq. (1) X refers only to phytoplankton density.
Energy uptake is proportional to Eq. (1). A proportion of the
energy ingested from food is assimilated and made available
to the vital processes maintenance (metabolic rate), growth,
reproduction and energy storage. The rates at which energy is
allocated to these processes depend on temperature and body
size. The effect of temperature is generally given by the Arrhenius
function (Eq. 2). The partitioning of energy to vital processes
depends on an individual’s life stage and time of year. See Sibly
et al. (2013) for an overview, and TRACE section 2 for full
details. Note that, while adults allocate energy to reproduction,
recruitment is modeled separately using a Ricker-style stock-
recruitment model (see section “Recruitment”).

Movement-bioenergetics coupling
The energy cost of searching for food is subsumed into an
individual’s active metabolic rate AMR. AMR is given as a
function of SST, body mass M and swimming velocity V as:

AMR = aAMR MbAMR VcAMR A(SST) (5)

where aAMR is a normalizing constant, bAMR and cAMR are scaling
exponents, and V is given by V = (Vr + Vmin)/2, i.e., assuming
that half of each day is spent at Vmin, and half at Vr.

Recruitment
In this paper, recruitment is modeled differently than in previous
applications of our IBM (Boyd et al., 2018, 2020). Here, we use a
modified Ricker stock-recruitment function because it provides
better fits to the latest recruitment estimates from the NEAM
stock assessment. The Ricker model gives recruitment R as a
function of SSB and average SST on the spawning grounds over
the months March and April, as:

R = aR SSB e−aR SSB + bR SST (6)

where aR and bR were estimated by fitting Eq. (6) (in log-linear
regression form, R2 = 0.45) to data from the stock assessment. See
TRACE section 3 for details of the Ricker model fitting process,
variable importance and model diagnostics.

On December 31st each year, ncohort new SIs (recruits) enter
the model as juveniles at a random location in the nursery area,
with abundance equal to R/ncohort. Recruits’ body lengths set at
the maximum length at the end of the first growth phase (20 cm,
Villamor et al., 2004) minus ε 3 (cm), where ε is drawn randomly
from a uniform distribution ranging from 0 to 1.

Emergent Properties
The movement and bioenergetics models describe the ways
in which individuals’ characteristics (e.g., body mass, energy
reserves, location) respond to their local food availability
and SST. By summarizing the characteristics of all the
individuals, we can obtain population measures. For example,
SSB can be obtained by summing the individual body masses
of all adults, and spatial distribution by summarizing the
locations of the SIs.

Initialization
The IBM is initialized on 1 January 1995 using estimates of
numbers-at-age from the stock assessment. This population is
then apportioned into 4000 super-individuals such that there
is an equal number of SIs in each year class. Body lengths
are calculated from age using the standard von Bertalanffy
equation, and energy reserves are set at half maximum. From
these all other state variables are calculated when the simulation
begins. Adults and juveniles are distributed randomly in the
overwintering and nursery areas, respectively (see Figure 1).
After initialization we allow the model to spin up from
1995–2005, after which point we begin to record outputs
for model calibration. See TRACE section 2 for full details
of initialization.

Model Forcing
In this section we describe the data used to force the IBM during
the historical period 1 January 2005–31 December 2018.

Environmental Inputs
Environmental inputs to the model include maps of surface
chlorophyll concentration, SST, horizontal current velocities
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and photoperiod. Chlorophyll and SST are derived from the
global ESM GFDL-ESM-2M (Dunne et al., 2013; Geophysical
Fluid Dynamics Laboratory, 2017). GFDL-ESM-2M has been
identified as a suitable candidate for forcing fisheries and
marine ecosystem models because: (1) it contains a relatively
highly resolved representation of ocean biochemistry and its
predictions correlate well with net primary productivity data;
and (2) because model drift is negligible (Lotze et al., 2018;
Tittensor et al., 2018). Environmental inputs are updated
monthly. A slight complication arises in that the historical
period as defined for CMIP (phase 5 as used here) ends in
December 2005, after which RCP scenario-driven estimates are
produced from the ESMs. This does not match the historical
period as defined in this study (everything up to 2019).
For this reason, from 2006 we had multiple environmental
trajectories (one from each RCP) from which to choose as
input to our IBM. Inspection of the environmental inputs
revealed negligible divergence between fields of chlorophyll and
SST out to 2019 from RCPs 2.6 and 8.5 (RMSEs of 0.31◦C
and 0.024 mg m−2, respectively; see TRACE section 3). For
this reason we simply took the mean of the environmental
inputs from RCPs 2.6 and 8.5 as forcing to the IBM
from 2006–2019.

Near surface (average over 0 to -30 m) horizontal current
velocities were taken from the 1/3◦ OSCAR dataset (ESR 2009).
Currents influence the movements of adults over summer
(Eq. 4), so we obtained data for the months May through
September. Outside of this period current velocities have no
effect in the IBM. It would not be appropriate to include
the effects of near surface current velocities on individuals
outside of the summer period, when mackerel may inhabit
deeper waters (e.g., −50 to −220 m over winter) (Jansen
et al., 2012). Over summer NEAM are found in the upper
water layer (average of ∼ −20 m) (Nøttestad et al., 2016). As
data are not available for the selected months prior to 2012,
we generated mean climatologies for each month over 2012–
2018. As such we do not account for inter-annual variability in
current velocities.

Data on photoperiod (as a proportion of 24 h) at all latitudes in
the IBM grid was extracted for each month using the daylength()
function in the R package geosphere (Hijmans, 2019). Values
correspond to the 15th day of each month, and are updated at the
start of each month. All environmental data required processing
for use in the IBM (e.g., re-gridding), the details of which can be
found in TRACE section 3.

Fishing Mortality
As our IBM does not explicitly represent fleet dynamics, fishing
mortality F is applied to the stock in a simple manner.
Annual rates of F at age each year were taken from the
2019 NEAM stock assessment [ICES (2019b), extracted from
stockassessment.org]. We incorporate monthly variation in F by
setting the fraction of annual F in each month proportional to
the mean historical fraction of annual NEAM catch taken in each
month (see Table 1). Unless stated otherwise (see section “Spatial
Management Scenarios”), F is applied uniformly to all individuals
within an age group regardless of their location.

TABLE 1 | Mean proportion of total annual catch taken in each month and
whether or not division 4a is closed to fishing.

Month Proportion of
annual catch

4a status

Jan 0.22 Open

Feb 0.07 Open until 15th

Mar 0.14 Closed

Apr 0.12 Closed

May 0.004 Closed

Jun 0.02 Closed

Jul 0.08 Closed

Aug 0.08 Open

Sep 0.09 Open

Oct 0.11 Open

Nov 0.05 Open

Dec 0.02 Open

Mean values are calculated over the period 1998–2018.

Future Scenarios
From 1 January 2019–31 December 2050 the IBM simulates the
NEAM population under various scenarios, each with different
assumptions about future climate and fishing pressure.

Climate Scenarios
We include two environmental scenarios representing the low
and high levels of climate change mitigation action. Both
scenarios comprise projections of chlorophyll and SST from
GFDL-ESM-2M, with forcing from RCPs 2.6 and 8.5, i.e.,
low and high greenhouse gas emissions, respectively (see van
Vuuren et al. (2011) for details). Current velocities remain
as described in section “Environmental Inputs” in the future
period for lack of available projections. It is important to note
that we do not account for other climate-related stressors (e.g.,
ocean acidification).

Fishing Scenarios
For future fishing pressure we take mean F-at-age over the
historical period 2001–2018 (Figure 2) and adjust it using one of
three multipliers. The multipliers are used to set mean F over the
most important age groups to the fishery (for NEAM 4–8 years)
at one of three rates: F = 0; FMSY (0.23 year−1), i.e., the level of
harvesting that is likely to result in maximum sustainable yield
in the long-term; and Flim (0.46 year−1), i.e., high mortality used
as an upper reference point (ICES, 2012, 2019c). Flim is slightly
larger than the highest F on record (ICES, 2019c). Monthly
variation in F is implemented as in the historical period.

Spatial Management Scenarios
In addition to changes in annual F, we also simulate the
consequences of two simple spatial management scenarios.
Currently, no mackerel fishing is permitted the Northern North
Sea (ICES division 4a, Figure 1) over the period 15 February to
31 July (ICES, 2019c). We simulate the possible consequences of
a hypothetical measure in which this seasonal closure is extended
to span the whole year. To do this we split fishing mortality into
that which is applied inside 4a, and that which is applied outside.
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FIGURE 2 | Mean F at age over 2001–2018 (black line), from which FMSY

(blue line) is calculated with a multiplier of 0.83, and Flim (red line) with a
multiplier of 1.66.

We then make assumptions about the amount of fishing mortality
that will be redistributed from inside to outside of division 4a
if it is closed. The first assumption is that none of the fishing
mortality that would have taken place in division 4a is relocated,
i.e., fishing mortality at age t Ft is set to zero inside division 4a
when it is closed, but remains unchanged elsewhere. Under this
assumption total F is reduced. The second assumption is that all
of the fishing mortality that would have been inflicted in division
4a will be uniformly redistributed elsewhere. Under the second
assumption Ft is raised outside of 4a to give redistributed fishing
mortality at age t, F′t, as:

F′t = Ft
(
1− pin, t

)−1 (7)

where pin,t is the proportion of SIs in age group t that are inside
division 4a in that time-step (see Yemane et al., 2009, for a
similar approach). Under this assumption the spatial distribution
of F changes, but the overall rate is unchanged. These scenarios
are simplistic, but represent the extremes of possible fishery
responses to area closures: relocating none or all of the fishing
mortality. As such they give the bounds of possible outcomes.

Multi-Stressor Scenarios
To generate a range of future conditions for the NEAM stock,
we combine the different assumptions about future climate and
management decisions to generate nine multi-stressor scenarios.
The first six scenarios represent each combination of RCP
(2.6 and 8.5) and annual fishing mortality rate (unfished, FMSY
and Flim). In these scenarios F is applied uniformly to all
individuals within an age group. The final three scenarios
represent the different assumptions about when ICES division

4a is closed to mackerel fishing, and if it is, how much of the
fishing pressure that would have taken place inside is relocated
elsewhere. For these latter scenarios we assume RCP = 8.5
and F = FMSY. See Table 2 for a summary of the multi-
stressor scenarios.

IBM Calibration
We calibrated the half saturation constant (h in Eq. 1), i.e., the
prey density at which ingestion rate reaches half maximum at a
given temperature. h was estimated by fitting the IBM to data
on SSB and weight-at-age using rejection approximate Bayesian
computation (ABC) (van der Vaart et al., 2015) (see TRACE
section 5 for model fits). In broad terms, we ran 2000 simulations
while randomly sampling values of h from a uniform prior
distribution. We then “accepted” the values of h that resulted
in the best-fitting 30 simulations (1.5% tolerance), giving an
approximation of its posterior distribution (see TRACE section
3 for full details of the ABC). To account for uncertainty in h, we
simulated all future scenarios (Table 2) once for each of the 30
accepted parameter values.

IBM Simulations and Outputs
The IBM simulates the full life cycle of the NEAM population
from 1 January 2005–31 December 2050. Simulations are forced
by fishing mortality F at age, phytoplankton density X and SST. F
is updated annually in the historical period, but remains constant
in the future period. SST and phytoplankton density are updated
monthly. From 2019 management and climate scenarios take
effect (Table 2).

For the purposes of this paper, key outputs from the IBM
are SSB (tonnes), annual catch (tonnes) from the fishery and
mackerel density (tonnes km−2) over the summer period (1 July
to 30 September). SSB is calculated as the sum of the body masses
of all mature individuals at spawning time (extracted 1 May).
Catch is calculated is calculated cumulatively throughout each
year from rates of fishing and natural mortality (see TRACE
section 2), and mackerel biomass-at-age, using the standard
Baranov equation (see TRACE section 2).

TABLE 2 | Summary of the multi-stressor future scenarios.

Scenario RCP Annual F 4a status F redistributed when
4a is closed?

1 2.6 0 Open No

2 8.5 0 Open No

3 2.6 FMSY Open No

4 8.5 FMSY Open No

5 2.6 Flim Open No

6 8.5 Flim Open No

7 8.5 FMSY Closed 15 Feb–31
Jul

Yes

8 8.5 FMSY Closed all year Yes

9 8.5 FMSY Closed all year No
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RESULTS

Effect of Future Scenarios on SSB and
Yield
To test how the NEAM stock size and associated yield from the
fishery may respond to future climate change and management
options, we compared future SSB and annual catch from multi-
stressor scenarios 1–6 (Table 2 and Figure 3). For both SSB and
catch we present means over the period 2021–2050. Our results
show that, for both SSB and catch, the choice of fishing mortality
has a significant effect (ANOVA, p < 0.01). As expected SSB
increases as rates of fishing mortality are lowered. The effect
of management decision on catch is more subtle. There is a
significantly higher catch under Flim than under FMSY where
RCP = 8.5 (paired t-test, p < 0.05, mean difference of 0.03 million
tons), but the mean difference is not statistically significant in
the RCP 2.6 scenario (0.009 million tons, p > 0.05). Within the
Flim and FMSY scenarios, SSB is greater in the RCP 8.5 scenarios
(paired t tests, p < 0.05, mean differences of 0.48 and 0.33 million
tons, respectively). Within the Flim and FMSY scenarios catch was
also higher in the RCP 8.5 scenario (mean differences of 0.10
and 0.08 million tons, respectively). Overall, the effect of fishing
mortality appears much greater than that of climate over the
range of scenarios considered (discussed in section “Discussion”).

Effect of Future Scenarios on the
Summer Feeding Distribution
To test how the summer feeding distribution of NEAM may
change in future, we compare mean mackerel density in July-
September over 2005–2010, with that over 2045–2050, for each
of scenarios 1–6 (Figure 4). There are positive anomalies in
the North East region south of Svalbard in all scenarios, with
the most pronounced increases of ∼ 400 tons km−2 in the
unfished scenarios. Increased density in these regions is expected
because warming opens up new habitat in the North. Another

expected finding is that, in the unfished and FMSY scenarios,
there are positive anomalies in the western region south and East
of Iceland. Again, these anomalies are most pronounced in the
unfished scenario (up to∼ 200 tons km−2). This can be explained
by an increase in stock size in these scenarios, most notably in
the unfished scenario (Figure 3). Increasing stock size provides
an incentive to move further from the traditional feeding area
(Norwegian Sea) in search of areas in which competition for food
is less intense (due to the density term, cD, in Eq. 1). Aside from
these expected results, the distribution changes are not intuitive.
Reasons for this are discussed in section “Discussion.”

Effect of Spatial Management Scenarios
To show how it may be possible to simulate the effects of spatial
management options, in Figure 5 we compare predictions of
mean SSB and catch over the period 2021–2050 from a baseline
scenario that represents the current situation (2019), to those
from two alternative scenarios. The hypothetical scenarios both
represent an extension from a seasonal to permanent closure in
ICES division 4a, with different assumptions about how much
fishing pressure is relocated elsewhere when it is closed (details in
Figure 5 caption). As expected, we found that if fishing mortality
is relocated outside division 4a when it is closed, then future
SSB does not differ from the baseline scenario (paired t-test,
p > 0.05, mean difference of 0.10 million tons). However, if
fishing mortality is not redistributed when division 4a is closed,
then future SSB is significantly higher than the baseline scenario
(paired t-test, p < 0.05, mean difference of 1.04 million tons).
To gauge the consequences of each scenario for the fishery
we also present future catch in Figure 5. It can be seen that
closing division 4a for the entire year without redistributing
fishing mortality would result in a significantly lower yield for the
fishery (paired t-test p < 0.05, mean difference of 0.11 million
tons). In summary, these results show that closing division 4a
could increase NEAM SSB, but that this will depend on the
response of the fishers in terms of how much F is redistributed.

FIGURE 3 | Left: Mean SSB at spawning time over the period 2021–2050; and right: mean annual catch from the fishery over the same period. From left to right
within each panel, boxes represent scenarios 1–6 (Table 2). Within management scenarios the left-hand boxes correspond to RCP 2.6 and the right-hand boxes to
RCP 8.5. Boxplots show medians and interquartile ranges, with the spread representing uncertainty in the parameter h and stochasticity in the IBM.
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FIGURE 4 | Change in mean mackerel density (tonnes km−2) between the start and end of a simulation for scenarios 1–6 (Table 2). Start is taken as the mean over
2005–2010, and end as the mean over 2045–2050.

A reduction in catch when F is not redistributed suggests that
fishers would be likely to redistribute their effort elsewhere should
legislation allow it.

DISCUSSION

Using an existing spatially explicit IBM, we have simulated
NEAM population dynamics and yield from the fishery out
to 2050 under a range of climate and fishing scenarios.
Environmental inputs to the IBM were obtained from the ESM
GFDL-ESM-2M assuming high and low levels of climate change
mitigation action. Management scenarios comprised a range
of levels of fishing mortality F. After testing the effects of
these simple management scenarios, we then implemented an
extension to an existing seasonal fishery closure in the Northern
North Sea, assuming a moderate level of F and low climate
mitigation action. We further divided this spatial scenario by
making assumptions about how much of the fishing mortality
that would have been inflicted in the Northern North Sea is
relocated elsewhere when it is closed. Our results suggest that,
over the range of scenarios considered, the effects of fishing
mortality are greater than those of climate. These results hold in
terms of future SSB, yield from the fishery and the extent to which
the summer distribution changes. We then showed that closing

an area to fishing may have positive effects for a stock, but that
this is highly dependent on how the fishery responds in terms of
whether or not fishing is relocated elsewhere.

In this paper we have taken a single-species approach
primarily because it allowed us to incorporate sensible
assumptions about future fishing mortality. We were able
to force the IBM with plausible rates of fishing mortality,
including a crude representation of its spatial distribution (e.g.,
inside or outside of division 4a) and intra-annual variation,
as well as the relative catchability of different age groups. This
would be difficult to achieve for numerous species or functional
groups represented in, for example, ecosystem models. Second,
we have extensively validated our IBM using data on population
dynamics, structure and spatial distribution (Boyd et al., 2018,
2020). Again, because more holistic models represent numerous
species or functional groups, it would be difficult to achieve the
same level of validation for a single species. There are, however,
processes that single-species models cannot include, notably
interspecific competition and predation (Hollowed et al., 2000).
NEAM cohabit the Nordic Seas with herring and blue whiting
in the summer months. There are contrasting reports over the
degree to which the species’ diets overlap (Langøy et al., 2012;
Bachiller et al., 2016), but recent work has shown that herring
larvae are an important prey for NEAM (Skaret et al., 2015).
Moreover, herring stock size may affect the distribution of NEAM
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FIGURE 5 | Mean SSB (left panel) and annual catch (right panel) over the period 2021–2050 under three scenarios: (1) baseline, i.e., ICES division 4a is closed
from February 15th to July 31st as at present (2019) and F is raised elsewhere to account for this; (2) division 4a is closed for the entire year and F is raised
elsewhere to account for this; and (3) division 4a is closed all year and F is not redistributed, i.e., there is an overall reduction in F. Boxplots show medians and
interquartile ranges, representing variability arising from stochasticity the IBM and uncertainty in the parameter h.

over summer (Nikolioudakis et al., 2018). When interpreting our
results, it is important to keep in mind that our IBM does not
account for interspecific interactions.

Our results suggest that, while climate is important, fishing
intensity is likely to have a much larger effect on the NEAM
stock out to 2050. This result is evident both in terms of SSB
(Figure 3), and the degree to which the summer distribution
changes (Figure 4). There are four possible explanations for
this finding. First, the relative impacts of climate and fishing
depend on the choice of scenarios. Inclusion of an “unfished”
scenario is extreme and would be expected to result in a dramatic
increase in SSB (note there is no equivalent zero emissions
scenario). However, between the more plausible FMSY and Flim
scenarios, the effect of fishing remains much greater than that
of climate. Second, the western spawning component of NEAM
may less susceptible to the effects of climate due to its latitudinal
position within the species’ thermal niche. It has been shown
that populations inhabiting the cooler parts of their species’
distribution are less negatively or more positively affected by
increasing temperature than those in the warmer regions (Free
et al., 2019). Atlantic mackerel are found as far south as Morocco
(Trenkel et al., 2014), meaning that the western spawning
component of NEAM represents one of the northernmost sub-
units of the stock. Another possibility is that the effect of climate
is smaller than fishing due to the oceanographic regime in the
North Atlantic. The ensemble of ESMs participating in CMIP
indicate that the region to the east of Greenland and south
of Iceland will not exhibit a significant increase in SST out to
2100 (Alexander et al., 2018). This could be explained by a
weakening of the Atlantic meridional overturning circulation
(AMOC) which results in reduced poleward transport of warm
water in the Atlantic (Alexander et al., 2018). Indeed, simulations
using an ensemble of 10 ESMs predict a weakening of AMOC out
to 2100, with the most marked weakening (15–60%) under RCP
8.5 (Cheng et al., 2013). Finally, the relatively small change in
the NEAM stock between climate scenarios may reflect the time

period chosen in our study. Projections of SST from the CMIP
ensemble begin to diverge around the mid-twenty-first century
(Hutchings et al., 2012, Supplementary Figure S22), and the
same is true for the projections used here (see TRACE section
3). It is possible that the effect of climate on the NEAM would
increase if simulations were conducted further into the future.

Within fishing scenarios the IBM predicts highest SSB, and
hence catch, under RCP 8.5. This is largely down to the positive
relationship between SST and recruitment included in the stock-
recruitment model. Recruitment is almost always positively
correlated with temperature for species inhabiting the cooler
regions of their thermal niche (Myers, 1998). So, while the
western component of the NEAM stock continues to spawn in
cooler regions than e.g., the southern component, the sign of
this relationship is likely to hold. This could have important
implications for the NEAM fishery if warming waters make
sustainable management easier. However, such inferences should
be made with extreme caution because we do not know if this
positive relationship will break down as waters warm. At some
temperature the relationship will shift from positive to negative
and this is not accounted for in our IBM (because we are not
able to establish the limit from historical data). If the positive
effect of temperature on recruitment ceases due to warming in
the North East Atlantic over the time period considered, then our
projections may be optimistic.

The main caveat of our approach is that we use a single ESM
to provide inputs to a single ecological model. As a result, our
predictions do not account for structural uncertainty—arising
from what processes are represented and by what functional
forms-in either of the models (Spence et al., 2018). We chose
to use the ESM GFDL-ESM-2M (Dunne et al., 2013) to provide
environmental forcing to our IBM because it has previously
been identified as suitable for this purpose as part of FISH-MIP
(Tittensor et al., 2018). Of particular relevance to our study is that
the GFDL ESM has a relatively well-developed biogeochemical
formulation and correlates well with primary productivity data
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(Tittensor et al., 2018). In addition to GFDL-ESM-2M another
ESM, IPSL-CM5A-LR, was identified by FISH-MIP as a suitable
candidate for forcing marine ecosystem models. We attempted
to include inputs from the IPSL ESM but found that an under-
prediction of SST on the NEAM spawning grounds led to
frequent recruitment failures in our IBM. With respect to the
fish population model, we are aware of other IBMs representing
NEAM (Utne et al., 2012; Heinänen et al., 2018). However, to our
knowledge these IBMs were designed primarily to represent the
stock’s spatial distribution and do not make multi-generational
predictions of stock size. For this reason, they cannot make
predictions about how the stock may develop in future. While
we do not account for variation in model structures, we have
included a wide range of possible future conditions in terms of
climate and harvesting regimes.

While our IBM captures some of the key individual level
processes that relate fish population dynamics to prey availability
and temperature, there are other climate-related stressors that
it does not account for. First, the ocean is projected to
become more acidic over the twenty-first century (Holsman
et al., 2018). It is thought that ocean acidification will have
deleterious effects on fish stocks, such as increased larval
mortality and reduced recruitment (Stiasny et al., 2016). Second,
ocean oxygen concentration is declining (deoxygenation) in
response to increasing temperature (Breitburg et al., 2018).
Oxygen concentration affects rates of energy expenditure, such
as growth and metabolism (e.g., Del Toro-Silva et al., 2008),
which is not accounted for in our bioenergetics model. Third, our
IBM uses fields of chlorophyll concentration as a proxy for prey
availability. Use of chlorophyll concentration does not account
for potential changes to the composition of prey which may occur
under novel environmental conditions (Holsman et al., 2018).
This may reduce the predictive power of our IBM if NEAM
vital rates depend on the composition of available prey. Indeed,
S. scombrus recruitment appears to be related to the prevalence of
large copepods such as Calanus species (Ringuette et al., 2002;
Jansen, 2016). This is also a problem in that zooplankton is
expected to decline at a greater rate than phytoplankton (negative
amplification) (Chust et al., 2014), and the pathways of energy
transfer from primary producers to e.g., pelagic or benthic food-
webs may change, partly in response to the composition of the
primary producers themselves (Van Denderen et al., 2018). For
these reasons our assumption that chlorophyll concentration is
near proportional to prey availability may not hold. Finally, while
our IBM captures broad scale effects of prey availability and
temperature on the NEAM stock, use of environmental fields
derived from a global ESM limited our study to a relatively coarse
(60 km2) spatial resolution (even working at this resolution
required some downscaling of the ESM outputs, see TRACE
section 3). For this reason our IBM is unable to capture mesoscale
processes, such as fronts, that could affect the distribution and
productivity of the NEAM stock (Sato et al., 2018). In all, our IBM
accounts only for broad scale effects of temperature and a proxy
for prey availability on NEAM physiology and behavior, and the
results should be interpreted with this in mind.

In addition to stock size, the future distribution of NEAM over
summer is an important output from our IBM. Over recent years

the summer feeding distribution of NEAM has expanded from
its traditional core in the Norwegian Sea, north and westward
into the jurisdictions of Iceland and Greenland (Berge et al.,
2015; Pacariz et al., 2016; Nikolioudakis et al., 2018; Ólafsdóttir
et al., 2018). This has caused political disputes over how the
catch should be allocated among coastal states in the region
(Hannesson, 2018). Our IBM predicts a north-and westward
expansion of the NEAM summer distribution under the FMSY
and unfished scenarios (Figure 4 and see Supplementary
Figure S22). This finding is expected because under these
scenarios SSB increases which forces SIs to the northern and
western fringes of the distribution where competition for food
is less intense. However, the IBM does not predict an increase
in density in Greenlandic waters out to 2050, where NEAM
have been present in large densities since ca. 2012 (Ólafsdóttir
et al., 2018). This discrepancy cannot be explained by e.g.,
temperature, which remains suitable for NEAM in this region
in all scenarios, but rather reflects the assumptions made in
our IBM. First, our foraging model assumes that SIs move in
response to local gradients in feeding opportunities (reactive
orientation). Under this assumption SIs do not reach Greenlandic
waters in appreciable numbers. It may be the case that NEAM
use a combination of reactive and predictive orientation, i.e.,
where individuals move toward areas that are predicted to be
best, when foraging. Indeed, Nøttestad et al. (2016) suggest
that NEAM may use current direction as a cue on which to
base predictive orientation. Another possibility is that changes
in the spawning distribution, which occurs in spring directly
before feeding, could influence the summer distribution. The
spawning distribution of NEAM has changed in the past (Hughes
et al., 2014) and will likely change in future (Bruge et al.,
2016), which is not captured fully by our IBM (spawning is
constrained by temperature but only occurs on the European
shelf edge). An individuals’ location once spent after spawning
is equivalent to its starting point for the feeding migration so
could influence the subsequent distribution over summer. Our
IBM can reproduce the summer distribution from Norway in the
East to Iceland in the west with high skill (Boyd et al., 2020),
but its predictions of NEAM density west of Iceland should be
viewed with caution.

Generally speaking species’ distributions are expected to
shift poleward as temperature increases (Hughes et al., 2014;
Bruge et al., 2016; Pacariz et al., 2016). However, our IBM
predicts more nuanced effects of climate on the NEAM
summer distribution. For example, density anomalies are more
positive in the northern regions under RCP 2.6, which is
usually associated with cooler conditions, than under RCP
8.5. Moreover, there are negative anomalies in the northern
Norwegian Sea under the RCP 8.5 Flim scenario, but not in
the equivalent RCP 2.6 scenario. These results can be explained
by a slight cooling of surface waters in these regions under
RCP 8.5, which may reflect the enhanced weakening of AMOC
under RCP 8.5 (Cheng et al., 2013). In summary, there are
some intuitive changes to the NEAM summer distribution
(e.g., expansion when stock size is high) out to 2050, but
a weakening of AMOC could result in more unexpected
distribution patterns.
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In addition to changes in rates of total fishing mortality,
we also simulated the effects of a hypothetical extension to
a fishery closure in the Northern North Sea. To do this
we made two simple assumptions about the redistribution of
fishing mortality from inside to outside of the area when
it is closed. Our results show that predicted stock size and
yield from the fishery are highly sensitive to these assumptions
(Figure 5). This result is intuitive, and as much as our model
in its current form can say, but does highlight the potential
value of modeling fishing pressure explicitly. Strides are being
made toward development of socio-economic IBMs [or, as
they are known in this field, agent-based models (ABMs)] in
which fishing pressure emerges from the decisions of individual
fishers (Lindkvist et al., 2020). To date, these socio-economic
ABMs have been coupled to simple models of fish population
dynamics, such as a simple logistic growth models (e.g.,
Bailey et al., 2019). In future socio-economic ABMs could be
coupled to biological IBMs such as ours, providing a detailed
description of the human-environment system. Then, variables
such as the amount of fishing pressure that is redistributed
from inside to outside an area if it is closed to fishing (as
in our simple scenario), or how the spatial distribution of
fishing effort may change in response to changes in a stock’s
distribution, would emerge. Indeed, the NEAM fishery, with
its associated geopolitical issues, may provide an interesting
candidate for studying the coupling of fisher behavior and fish
stock dynamics.

In summary, we feel that our results give valuable, broad-scale
insight into the ways in which the NEAM stock may respond
to climate and management scenarios. By simulating the stock
under a range of scenarios spanning the extremes of climate
mitigation action and fishing pressure, we hope to have given
some indication of the bounds of possible future responses.
We would like to stress, however, that our results are not
intended to be used in a decision-making context; such long-term
projections come with too much uncertainty for use in tactical
management. It is possible that our projections are optimistic as
we do not account for e.g., ocean acidification, deoxygenation
and changes in the composition of prey, all of which could
have deleterious effects on the NEAM stock. Going forward it
would be useful to extend our approach and incorporate: (1)
additional species in the IBM, such as herring and blue whiting

(though this will be time-consuming); (2) some representation
of fleet dynamics and fisher behavior in order to make more
realistic predictions about the effects of spatial management
options; and (3) additional climate-related stressors such as ocean
acidification, deoxygenation and changes in prey composition.
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