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• Most ecosystem service (ES)models are
uncertain.

• Still, most ES studies use only a single
modelling framework.

• Ensembles of ESmodels aremore robust
to new data/models.

• Ensembles of ES are 5.0–6.1% more
accurate than individual models.

• Variation within the ensemble provides
a proxy for ensemble accuracy.
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Many ecosystem services (ES) models exist to support sustainable development decisions. However, most ES
studies use only a single modelling framework and, because of a lack of validation data, rarely assess model ac-
curacy for the study area. In line with other research themeswhich have highmodel uncertainty, such as climate
change, ensembles of ES models may better serve decision-makers by providing more robust and accurate esti-
mates, as well as provide indications of uncertainty when validation data are not available. To illustrate the ben-
efits of an ensemble approach, we highlight the variation between alternative models, demonstrating that there
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Box 1
Key definitions

Whilst relatively rare in the ES literature, f
standing model uncertainty can be found e
ture (e.g. see Araújo and New (2007), Re
and Walker et al. (2003)). Key concepts are

• Uncertainty – Any deviation from the
completely deterministic knowledge o
(Walker et al., 2003).

• Inaccuracy – The deviation from the
close a modelled value is to the meas
considered ‘true’ (Walker et al., 2003).

• Robustness – The level of confidence
conclusions derived from themodel (w
though quantified estimates in individ
rate) (Refsgaard et al., 2007).

• Model Ensemble –A collection of mode
by running simulations for more than on
conditions, model classes, model para
ary conditions (Araújo and New, 2007

• Committee averaging – A method com
each an equal weight (e.g. calculatin
and New, 2007).
are large geographic regionswhere decisions based on individual models are not robust.We test if ensembles are
more accurate by comparing the ensemble accuracy of multiple models for six ES against validation data across
sub-Saharan Africa with the accuracy of individual models. We find that ensembles are better predictors of ES,
being 5.0–6.1%more accurate than individualmodels.Wealsofind that the uncertainty (i.e. variation among con-
stituent models) of the model ensemble is negatively correlated with accuracy and so can be used as a proxy for
accuracy when validation is not possible (e.g. in data-deficient areas or when developing scenarios). Since en-
sembles are more robust, accurate and convey uncertainty, we recommend that ensemble modelling should
be more widely implemented within ES science to better support policy choices and implementation.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Planning and implementing sustainable development approaches
requires knowledge on the ecosystem services (ES; nature's contribu-
tions to people (Pascual et al., 2017)) provided in a region and how
they might respond to management choices or other drivers of change
(Guerry et al., 2015). Models can provide credible information where
empirical data on ES are sparse, which is especially the case inmany de-
veloping countries (IPBES, 2016; Suich et al., 2015). Although claims of
superiority are sometimes made for specific models, independent eval-
uations of models have often been unable to demonstrate the pre-
eminence of any individual model in terms of accuracy or other aspects
of their utility (Box 1; Table SI-1-1) (Araújo and New, 2007; Willcock
et al., 2019). When models are in disagreement, it is difficult for re-
searchers or practitioners to knowwhich model should be used to sup-
port their decision (Willcock et al., 2016). In fact, projections by
alternative models can be so variable as to compromise even the sim-
plest assessment; these results challenge the common practice of rely-
ing on one single method (Araújo and New, 2007). Put simply,
decisions based on a single ES modelling framework are unlikely to be
robust (Box 1) (Refsgaard et al., 2007; Walker et al., 2003).

Despite this lack of robustness, most ES modelling applications rely
on a single model for each ES (Bryant et al., 2018). For example, the lat-
est state-of-the-art ES models produced via the Intergovernmental
rameworks for under-
lsewhere in the litera-
fsgaard et al. (2007),
defined below:

unachievable ideal of
f the relevant system

‘true’ value (i.e. how
ured value, the latter

in the overall patterns/
hich may be high even
ual pixels are inaccu-

lled outputs produced
e set of models, initial
meters and/or bound-
).
bining models, giving
g the mean) (Araújo
Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES) rely on single model outputs with little/no validation
(Chaplin-Kramer et al., 2019). Although, few studies have explicitly
validated ES models against independent datasets, there are notable
exceptions (Bruijnzeel et al., 2011; Mulligan and Burke, 2005;
Redhead et al., 2018, 2016; Sharps et al., 2017; Willcock et al.,
2019). Willcock et al. (2019) validated multiple models for several
ES, testing their accuracy against empirical data across sub-Saharan
Africa. Whilst they found that more complex models (i.e. those
representing more processes) were sometimes more accurate (Box
1), their results suggested it would be difficult to select a priori the
most accurate of a set of models for an ES in any particular context
(Willcock et al., 2019).

One solution to inter-model variation is to utilise ensembles and
apply appropriate techniques to explore the resulting range of projec-
tions. Ensembles are produced by running simulations for more than
one set of models, initial conditions, model classes, model parameters
and/or boundary conditions (Araújo and New, 2007). For example,
since the current state and processes of the system are often uncertain,
small differences in initial conditions or model parameters could result
in large differences inmodel projections (van Soesbergen andMulligan,
2018). Similarly, different model classes (e.g. statistical models vs
process-based models) might be considered competing but equally
valid representations of a system, and hence worth exploring (Araújo
and New, 2007). If only one model is used, conclusions are dependent
on the specific assumptions of that model. If an ensemble is used, con-
clusions are not dependent on that one set of assumptions and param-
eters, hence one can consider the variation (or uncertainty) in model
outcomes and might obtain a better idea of what the reality might be.
Single model forecasts have been criticised due to their potential to re-
sult in a decision that imposes rigidity, which might have serious nega-
tive consequences if there is large uncertainty and inaccuracies (Araújo
and New, 2007).

Whilst running ensembles of models is not the norm in ES studies
(Bryant et al., 2018), this practice is commonplace in other disciplines,
most famously for climate and weather modelling (Gneiting et al.,
2005; Refsgaard et al., 2014). For example, in contrast to IPBES, Inter-
governmental Panel on Climate Change (IPCC) publications regularly
use ensembles (Collins et al., 2013). These climate change ensembles
generate a consensus prediction by measuring the central tendency
(e.g. the mean or median) for the ensemble of forecasts (Araújo and
New, 2007). Climate change ensemble forecasts might show enhanced
performance over some individual models as the averaging results in a
smoothing effect, reducing the impact of idiosyncratic responses of
any particular model in the area of space and time of interest
(Marmion et al., 2009). In short, by averagingmultiplemodels the signal
of interest emerges from the noise associatedwith individualmodel un-
certainties (Araújo and New, 2007; Knutti et al., 2010). Such, so-called,
committee averaging gives equal weight to all models. The benefits of
these techniques have been observed in multiple disciplines, ranging
from agro-ecology (Elias et al., 2017; Refsgaard et al., 2014) and niche
modelling (Aguirre-Gutiérrez et al., 2017; Crossman et al., 2012;

http://creativecommons.org/licenses/by/4.0/
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Grenouillet et al., 2011) to market forecasting (He et al., 2012) and
credit risk analysis (Lai et al., 2006).

The level of variation within an ensemble (i.e. inconsistency among
the individualmodels)may also be informative in itself. Lower variation
within an ensemble of models may indicate increased accuracy of the
ensemble mean (Puschendorf et al., 2009). Thus, ensembles may also
provide an indication of uncertaintywhen facedwith data scarcity, a po-
tential benefit that is perhaps most pronounced in many developing
countries, where data collection and model assessment efforts are
least advanced (Suich et al., 2015) but reliance on ES for wellbeing is ar-
guably the highest (Daw et al., 2011; Shackleton and Shackleton, 2012;
Suich et al., 2015).

In this paper, we demonstrate that decision-making based on single
ES models is not robust for large regions within sub-Saharan Africa as
high variation between model estimates means that using a different
model or incorporating an additional model into the decision-making
process is highly likely to result in a different decision. In addition to in-
creased robustness, we show that ensembles of ES models can provide
improved accuracy over individual models, as well as an indication of
uncertainty. Finally, we discuss how ensemblemodellingmight become
standard practice within the ES community, particularly when
supporting high-level policy decisions, such as in IPBES regional, global
and thematic assessments used in policy and decision-making.

2. Methods

Recently we validated multiple models for each of six ES in sub-
Saharan Africa (stored carbon, available water, water usage, firewood,
charcoal, and grazing resources; Table 1) using 1675 data points from
16 independent datasets (Fig. SI1-1; summarised in Table SI1-2, but
see Willcock et al. (2019) for further information). In that paper, we
used six ES modelling frameworks (InVEST (Kareiva, 2011; McKenzie
et al., 2012), Co$ting Nature (Mulligan, 2015; Mulligan et al., 2010),
WaterWorld (Mulligan, 2013), benefits transfer based on the Costanza
et al. (2014) values, LPJ-GUESS (Smith et al., 2014, 2001), and the
Scholes models (comprising two grazing models and a rainfall surplus
model) (Scholes, 1998), following Willcock et al. (2019) by using a sin-
gle set of parameters for each ES per modelling framework, with each
framework requiring different inputs (Willcock et al., 2019). We
employed two performance metrics to calculate model accuracy in
terms of each validation dataset: Spearman's ρ and mean inverse Devi-
ance (D↓ the mean absolute distance between normalised model and
validation values per data-point, inversed so that a value of 1 represents
a perfect fit). Both metrics have real-world relevance, as decision-
making canmake use of both relative (e.g. rank order of sites or options)
and absolute (e.g. the total amount or value of service delivered) values
(Willcock et al., 2016), and ρ ranks locations by their relative ES values,
whereas D↓ reflects the degree to which models consistently reflect ab-
solute values in the validation dataset (Willcock et al., 2019). In the
work reported here, we use the model outcomes and calculations, and
validation data and methods presented in Willcock et al. (2019)
(Fig. 1). This includes our approach of normalising within model varia-
tion to fall within a 0–1 scale, following Verhagen et al. (2017), which
allows comparability among the different ES studied. The codes we
used to do this are deposited here: https://github.com/dhooftman72/
ES_Ensembles. All analyses were performed in Matlab (v7.14.0.739),
with ArcGIS 10.7 used only for display purposes. P b 0.05 was viewed
as statistically significant throughout.

2.1. Creating ensembles

To depict among-model variation per service we divided the
modelled areas into km2 gridcells – except water, which is represented
in m3 ha−1 per polygon. Since all models do not cover the entire study
area, we recorded the number of models with valid values per gridcell.
For every gridcell where ≥3 modelled estimates were available, we
calculated model ensembles and mapped the standard error of the
mean (SEM) among normalised model values.

As described above, ensembles are created by combining individual
model outputs, resulting in a smoothing effect whereby the individual
model uncertainties are cancelled out and the signal of interest emerges
(Araújo and New, 2007;Marmion et al., 2009). However, there aremul-
tiple ways by which individualmodels can be combined into an ensem-
ble. For example, all models could be weighted equally (i.e. committee
averaging) or weighted by some measure of reliability or trust. Here,
we used committee averaging, but see SI3 for a further exploration of
weighting. First, we created committee two ensemble values for each
ES by calculating the arithmetic mean and median across the i individ-
ual model estimates for each modelled spatial data point (i.e. 1 km2

grid cell). To evaluate ensemble accuracy, we compared the ensemble
estimate (E) to the validation data for that spatial location as described
in Willcock et al. (2019).

2.2. Comparing ensembles estimates

To evaluate if the accuracy of the ensemble is an improvement on
the accuracy of individual models (Willcock et al., 2019), we performed
a comparison between the individual models and each ensemble (i.e.
mean and median for each ES) using accuracy statistics Spearman's ρ
and Inverse Deviance (D↓; Fig. 1). To calculate improvement percent-
ages, Spearman's ρ was normalised using Eq. (1), resulting in a 0–1
scale.

ρ0
i ¼

ρi þ 1
2

� �
ð1Þ

We analysed the proportional change in accuracy (ρ and D↓) for
all possible pairs of comparisons between: (i) the individual models,
based on the mean accuracy statistics across the group of all possible
models (described below), (ii) the different ensembles (mean/me-
dian), and (iii) the best performing model according to each valida-
tion dataset. We tested whether the accuracy of a first category
(“A”, e.g., the ensemble mean) was higher – “improved” – or lower
than a second category (“B”, e.g., the individual models). The accu-
racy level differed greatly across the 16 validation datasets and the
different ES (Willcock et al., 2019). No among ES comparison is
possible as 16 validation datasets across six ES provides too low a
level of replication per ES, but normalising each ES allows compari-
sons across the different ES as a whole. Normalising involved divid-
ing the accuracy of A by the accuracy of B for each validation
dataset. For simplicity, we refer to the 16 resulting proportions as
“improvement values”, although they could indicate a loss of
accuracy (values b1).

Next, we analysed whether the set of 16 improvement values differ
from a normal distribution with mean of 1, using a one-sample
Student's t-test (ttest-procedure in Matlab) to determine whether the
accuracy of A is significantly higher or lower than B. For ensembles
and best-fit models, this analysis involved a direct one-to-one compar-
ison for each possible pair within each validation dataset (i.e. A = the
best-fit model vs B = the mean/median ensemble). For individual
models as a group, we used an averaging method, where we took per
validation set themeanof the one-to-one comparisons between the sin-
gle value of comparator A, e.g. the best model, and the set of multiple
values of models for that validation set as B (Eq. (2)).

∑n
i
A
Bi

� �
� 1
n

� �
; ð2Þ

with n total of models for that validation set (i; 4–6 models depending
on the service; Table 1).

This was done for each of the 16 validation sets. This averaging
method allowed for a fully balanced analysis, with a single

https://github.com/dhooftman72/ES_Ensembles
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Table 1
Overview of ecosystem service models included in this study, including all ecosystem services covered and their spatial grain (adapted fromWillcock et al. (2019)). For more extensive
descriptions see Willcock et al. (2019), Bagstad et al. (2013) and Peh et al. (2013).

Model
framework

Descriptiona Ecosystem services currently available Spatial grain Ecosystem service
modelled in this
study

WaterWorld
An internally parameterised model of accumulated water run-off. This
web-based model incorporates all data required for application.

• Water Supply
1 km2 gridcells for
continental scale
calculations

Water supply

Co$ting
Nature

A web-based series of interactive maps that defines the contribution of
ecosystems to the global reservoir of a particular ES and its realisable
value (based on flows to beneficiaries of that service).

• Biodiversity Resources
• Carbon Storage & Sequestration
• Recreation value
• Hazard Mitigation
• Water Quality
• Water Supply

1 km2 gridcells for
continental scale
calculations

Water supply ≈
Clean water run-off

Stored Carbon ≈
above and below
ground carbon

LPJ-GUESS The Lund–Potsdam–Jena General Ecosystem Simulator model (Smith
et al., 2014, 2001). LPJ-GUESS is a dynamic vegetation/ecosystem model
designed for regional to global applications. The model combines
process-based representations of terrestrial vegetation dynamics and
land–atmosphere carbon and water exchanges in a modular framework.

• Carbon Storage & Sequestration
• Nitrogen Storage & Sequestration
• Water run-off

0.5 degree≈
55.6 × 55.6 km
gridcells

Water supply
Woody species
carbon
Grazing = C3/C4
carbon

InVEST
A suite of free, open-source software models from the Natural Capital
Project, used to map and value the goods and services from nature.
InVEST returns results in either biophysical or economic terms.

• Carbon: Terrestrial & Coastal Storage &
Sequestration

• Crops: Pollination & Production
• Scenic Quality, Recreation & Tourism
• Fisheries: Marine & Aquaculture Habi-
tat: Quality & Risk

• Marine Water Quality
• Water Quality: Nutrients and Sediment
• Water Supply
• Wind & Wave Energy

Any, land-use map
input data
depending

Water supply

Carbon (above
ground only)

Benefit
transfer

Bespoke adaptations of Costanza et al. (2014) for the study region in $
per hectare. Benefit transfer assumes a constant unit value per hectare
of ecosystem type and multiplies that value by the area of each type to
arrive at aggregate totals.

• Gas regulation
• Climate regulation
• Disturbance regulation
• Water regulation
• Water supply
• Erosion control
• Soil formation
• Nutrient cycling
• Waste treatment
• Pollination
• Biological control
• Habitat/Refugia
• Food production
• Raw materials
• Genetic resources
• Recreation
• Cultural

Any, land-use map
input data
depending

Water yield ≈
Water supply
Carbon ≈ Climate
regulation value
Charcoal use≈ Raw
materials value

Firewood use ≈
Rawmaterials value

Scholes
models

Interpretation of Scholes (1998). • Grazing
• Firewood
• Water supplyd

Any, input data
depending

Water
surplusd ≈ Water
supply
Grazing usee

Firewood usef

New
modelsb

Bespoke calculation of Water use per country, calculated as the sum
of all run-off per countryc divided by the full population per country as
calculated from Afripop 2010 (Stevens et al., 2015)

Bespoke models made in
this study from Willcock
et al. (2019)

All models
with Water
Supply above

Depending on
water supply
source data

Water use

Bespoke models for carbon based services grazing, charcoal and
firewood using as input the carbon stock output of the existing carbon
models and adapted using multiplication factors and spatial masks
(see Willcock et al. (2019) for full details).

Co$ting
Nature carbon

Depending on
carbon source data

Grazing use
Charcoal use
Firewood use

InVEST carbon Grazing use
Charcoal use
Firewood use

LPJ-GUESS
woody species
carbon

Charcoal use

Firewood use

Benefit
transfer
carbon

Grazing use

a All 1 × 1 km in this study, unless otherwise noted. Willcock et al. (2019) investigated the impact of spatial scale on ecosystem service models and found no significant impact (un-
published results). Thus, spatial scales are unlikely to affect results here.

b These services were not modelled in these model frameworks when we conducted our model runs (in 2016). We developed new models using carbon stock outputs from existing
models as input (see Willcock et al. (2019) for full details). The original models and their developers should not be held responsible for the results from these new models.

c Except for accumulated flow from WaterWorld which is the sum over all watersheds within countries of the maximum flow per watershed.
d Estimated as number of days that precipitation exceeds evapotranspiration, this service was added by the current study to the available Scholes models (Scholes, 1998).
e We have two Scholes grazingmodels in our study, a generic international model using freely available global data and a locally parameterised South Africanmodel (seeWillcock et al.

(2019) for full details).
f Modelled at a 5 × 5 km resolution.
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Fig. 1. A summary of the analytical framework, divided into modelling, validation and analysis subsets.
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improvement value associated with each of the 16 validation
datasets. Alternative analyses in which we included single compari-
sons for individual models per validation dataset against respective
ensemble scores (79 improvement values) showed similar results
(Table SI-1-4) as the larger variation was offset by higher degrees
of freedom (78 vs 15).

We also tested the correlation between ensemble uncertainty and
absolute accuracy using 1661 of the 1675 individual data-points for
validation (anovan-procedure in Matlab). The large sample size
meant we were able to differentiate between ES in this analysis.
We calculated ensembles from a minimum of three models and so
discarded 14 data-points since they only matched ≤2 modelled esti-
mates. For each data-point (X), we calculated the absolute accuracy
of the mean ensemble (D↓

(x)) and calculated uncertainty as the SEM
among-modelled values (Eq. (3)). For statistical comparison, we
used an SS type 1 mixed regression model with the six ES as fixed
variables and SEMX as the linear predictor, logit transformed, with
correlation coefficient β1 and constant β0, and with a per ES interac-
tion prediction with uncertainty (ESX x SEM'X). We identified a pos-
itive Spatial Autocorrelation (SA) for accuracy with a Moran's I of
0.073 (P b 0.001, based on a permutation test), using the Moran's
module from https://github.com/dhooftman72/Morans-I. This SA
has been corrected for through inclusion of a covariate within the re-
gression model prior to estimating the model parameters of interest,
with effect size βsa, describing relatedness between individual
samples caused by the spatial structure following Dormann et al.
(2007) and Brooks et al. (2016) (Eq. (4)).

SEMX ¼ σXffiffiffi
n

p
X

� �
; ð3Þ

where X represents each 1 km2 grid-cell, and n is the number of models.

D↓
Xð Þ � βsaSAx þ ESX þ β1SEM

0
X þ ESX � SEM0

X

� �þ β0 ð4Þ

With SEM0
X ¼ log 10

SEMX
1−SEMXð Þ þ 1

� �� �
.

3. Results

3.1. Variation among models shows strong spatial patterning

For sub-Saharan Africa, we found large areas for which the
variation among models was relatively low (Fig. 2). In these areas
all models provide similar normalised predictions and so a decision
based on a single model may prove robust. However, there are also
notable areas of disagreement, where variation among models was
higher. These appear to occur in transition zones between vegetation

https://github.com/dhooftman72/Morans-I


Fig. 2. Among-model variationmeasured as standard error of themean (SEM) using normalisedmodel predictions. Non-coloured areas were not modelled (i.e. are outside LCMmasks or
outside the catchments we analysed). a) Water supply per hectare of the catchment (6 models); b) Water usage (6 models) per hectare of the country; c) Carbon storage in forest
vegetation (4 models); d) Grazing use (6 models); e) Firewood usage (5 models); f) Charcoal usage (4 models). Firewood and Charcoal have four models in common that are equal
once normalised. However, Firewood contains an additional bespoke Firewood model that generates more variation making (e) and (f) slightly different (see Willcock et al. (2019) for
full model details).
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types (Fig. 2) and, for aboveground carbon storage models, in less
densely forested areas (e.g. miombo woodland; Fig. 2). These maps
of variation, as well as the mean and median normalised values, for
sub-Saharan Africa at a 1-km-resolution are available through the
Environmental Information Data Centre (EIDC; https://eidc.ac.uk/)
repository (doi:https://doi.org/10.5285/11689000-f791-4fdb-8e12-
08a7d87ad75f). See SI2 and SI3 for further uses of multiple models
(i.e. hotspots, weighted ensembles).
3.2. Ensembles perform better than individual models, on average

In general, individual models as a group were inferior to the ensem-
bles created from them: ensembles outperform individual modelling
frameworks by 5% to 6% for both ρ and D↓ (P = 0.03 and 0.008 respec-
tively; Fig. 3; Table SI1-3). Ensembles were outperformed by the best
model for each validation set by 13% (mean; P = 0.04) and 12% (me-
dian; P = 0.05) using ρ and 6% (P = 0.002) and 7% (P b 0.001) using

https://eidc.ac.uk/
https://doi.org/10.5285/11689000-f791-4fdb-8e12-08a7d87ad75f
https://doi.org/10.5285/11689000-f791-4fdb-8e12-08a7d87ad75f


Fig. 3.Mean ρ and D↓ of the individual models (as a group), themean andmedian ensembles and best-fit individual model. Dark bars= Spearman's ρ; Light bars= Inverse Deviance D↓.
Black full error bars indicate variation in proportional improvement against the individualmodels, calculated as SEMimp= CVimp x absolute difference, with CV the coefficient of variation
of proportional improvement based on standard error of the mean (SEM). Thus, error bars indicate the variation in improvement against individual models as a group to highlight the
range of improvement of ensemble techniques. N = 16 per bar. Red dashed error bars indicate the SEM among all 79 models in this study as indication of overall variation in accuracy.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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D↓. Unfortunately, which model performs best for each validation
dataset was hard to predict as no single model framework is consis-
tently more accurate than others (Table SI1-1, Willcock et al. (2019)).
A full matrix of statistical results and means and standard errors of
these pairwise comparisons is provided in Table SI1-3.

3.3. Accuracy is correlated to ensemble uncertainty

The accuracy of an ensemble in relation to validation datasets could
be in part inferred from the variation among the models within the en-
semble (Fig. 4; F-value=36.2, P b 0.001, df= 1/1637). For example, for
Fig. 4. Relationship between Uncertainty among ES models (Standard Error of the Mean of no
interactions are shown as dashed lines (although the interaction between ES and Uncertainty
correlation against uncertainty, except for water use and charcoal use. (For interpretation of t
this article.)
every 0.1 increase in the SEM among-modelled values, the inverse devi-
ance decreases by 0.054. We found no significant interaction effects
among ES and uncertainty (F-value 1.09, df 5/1637) suggesting results
are generalisable among the tested ES in this study.

4. Discussion

We have demonstrated that there is substantial variation between
ESmodels and the difficulty in predicting the best-fit model as no single
model was consistently better than others (Table SI1-1) (Willcock et al.,
2019). These areas of disagreement highlight regions where decisions
rmalised values) and the Accuracy of the ensemble (mean) for six ES. ES-specific linear
is not significant) using the same colour palette as the data points– all show a negative
he references to colour in this figure legend, the reader is referred to the web version of
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based on individualmodels are likely not robust (Fig. 2). For example, all
ESmodels agreed less in transition zones between vegetation types. The
majority of the models used here (and ES models generally) require
input from land cover maps, and transition zones between land cover
categories are likely areas of disagreement between maps. Reasons for
this might include land cover maps being produced in different years
and so locating the forest frontier in different places, maps/models
using slightly different definitions of land cover (and so drawing the
boundaries between categories in different places), or because land
cover categories are more uncertain in transition zones (Dong et al.,
2015), partly due to the difficulties of accounting for degradation
(Turner et al., 2016). However, even if vegetation transitions are also
simulated (here by a Dynamic Global Vegetation Model, LPJ-GUESS),
models are more likely to disagree at a transition zone compared to
the central area of a vegetation type. Furthermore, vegetation transi-
tions and carbon storage in sub-Saharan Africa are strongly driven by
fire, which is difficult to simulate in process-based models (Hantson
et al., 2016). The variation between models due to different initial con-
ditions (i.e. land cover maps) is not the focus of this paper, but has been
highlighted previously (van Soesbergen and Mulligan, 2018) and can
lead to large error propagation in downstream models (Estes et al.,
2018). It is likely that such disagreement is also a key factor driving var-
iation between the ES models considered here. Similarly, aboveground
carbon storage models also showed disagreement in less densely for-
ested areas (e.g. miombo woodland). Thus, these differences might
partly arise due to uncertainties in the carbon data used to parameterise
the models. Savanna and miombo ecosystems are understudied, with
tree inventory plots showing a bias towards closed canopy forests
(Phillips et al., 2002). Added to this, less densely forested areas show
higher natural variation in aboveground carbon storage when com-
pared to closed canopy forests as the land cover category definitions
typically cover a wider range of canopy cover (e.g. 10–80% vs
80–100%) (Willcock et al., 2014;Willcock et al., 2012). Thus, further col-
lection of primary data is needed, particularly in the areas of disagree-
ment highlighted here, to improve the next generation of ES models.

Despite disagreement between individualmodels, ensemble model-
ling has been mostly neglected by the ES community; e.g. a Web of Sci-
ence search (10 February 2020) for “model ensemble” and “ecosystem
service” resulted in no records. This is surprising as: 1) Ensembles are
commonly used for model types that simulate output variables closely
related to ES, but without emphasising the ES concept in the publica-
tion, such as crop models (Rosenzweig et al., 2014), Dynamic Global
Vegetation Models simulating carbon uptake (climate mitigation, e.g.
Ahlström et al. (2015)) or hydrology models simulating runoff (fresh-
water supply).; and 2) Other disciplines have found that ensembles
can show enhanced robustness and performance over some individual
models as the averaging minimises the influence of local idiosyncratic
responses of any particular model (Marmion et al., 2009). For example,
Inoue and Narihisa (2000) demonstrated that ensemble averaging clas-
sification problems resulted in 1–7% improvements in accuracy using
computational experiments and similar results are widespread in the
literature; e.g. for species distribution models (Grenouillet et al., 2011;
Marmion et al., 2009), climate change models (Refsgaard et al., 2014),
and economic models (He et al., 2012). These findings from other disci-
plinesmirror ours, that ensembles are around6%more accurate than in-
dividual models (Fig. 2, Table SI1-3). That said, if the desired model
output can be validated, then accuracy is increased further by identify-
ing and using the best-fit individual model (gaining a further 12% in-
crease in accuracy). However, using the best-fit model to support a
decision does not necessarily increase its robustness as inclusion of
new data or models may shift whichmodel is thought to be most accu-
rate (Table SI1-1) (Willcock et al., 2019).

Ensembles will likely have the highest utility when validation using
primary data is not possible (IPBES, 2016). In these situations, individual
model accuracy is not known, and committee ensemble methods can
yield cost-effective solutions decision support tools (Araújo and New,
2007) (see SI3 for a discussion on weighted ensemble techniques).
The sustainability agenda desperately requires evidence-based policies
and actions for the developing world (Clark et al., 2016). In these re-
gions, ES information is important because the rural and urban poor
are often the most dependent on ES (either directly or indirectly
(Cumming et al., 2014)), both for their livelihoods (Daw et al., 2011;
Suich et al., 2015) and as a coping strategy for buffering shocks
(Shackleton and Shackleton, 2012). As such, a singlemodel of unknown
certainty could lack credibility, relevance and legitimacy – the major
reasons for the ‘implementation gap’ between ES research and its incor-
poration into policy- and decision-making (Cash et al., 2003; Clark et al.,
2016;Wonget al., 2014). Put simply, ensemblemodels offer away to re-
duce as well as acknowledge uncertainty (Bryant et al., 2018) but also
potentially offer a future avenue to include other sources of knowledge
including local and traditional knowledge in interpreting the outcomes
and uncertainty of ensembles to ensure more legitimate and salient
knowledge for use in decision making (Díaz et al., 2018; Pascual et al.,
2017). Thus,model ensemblesmaybeusefulwhen estimating scenarios
of future ES supply and use, but also for contemporary estimates in data
deficient areas such as sub-Saharan Africa (Willcock et al., 2016). Fur-
thermore, we suggest that variation among models can provide a first-
order estimate of the quality of the prediction when no other informa-
tion is available (Bryant et al., 2018; Puschendorf et al., 2009). Thus,
we believe the benefits of using an ensemble of models in decision-
making (increased robustness, increased accuracy over individual
models in general, and the ability to estimate uncertainty) substantially
outweigh the costs (reduced accuracy when compared to the best-fit
model, and additional effort required).

Such ensemble modelling is now possible, as a multitude of ES
models have now been developed, with many capable of being run
even in data-deficient regions (Willcock et al., 2019). For example,
both InVEST (https://naturalcapitalproject.stanford.edu/software/
invest) and ARIES (http://aries.integratedmodelling.org/) modelling
frameworks are now capable of modelling multiple ES consistently at
a global scale (Martínez-López et al., 2019). As a result, for many ES,
there are at least three (and often more) independent models for
every location across the world. Moreover, the increasing availability
of high-speed computing, and a move towards open access code using
open source platforms (e.g. InVEST)makes runningmultiple models in-
creasingly straightforward. Hence, it is now possible for most studies
using an ES model to shift to using multiple models. We hope this
study encourages ES researchers to do so.

However, whilst using ensembles of ES models is indeed possible,
there are several challenges that need to be overcome before it becomes
standard practice within ES science. We argue that advances are neces-
sary in two key areas: accessibility and comparability. Asmore indepen-
dent models are developed, it might be hypothesised that the ease with
which these models can be accessed might increase. Indeed, anecdotal
evidence seems to support this as, for example, InVEST historically re-
quired access to expensive ArcGIS software and ARIES required exten-
sive computational skills to run. Accompanying the wider shift
towards open science (Fecher and Friesike, 2014), InVEST now runs in-
dependently of any commercial software, where results can be mapped
using open-source GIS (Bagstad et al., 2013; Peh et al., 2013) and ARIES
models can be run by non-experts (Martínez-López et al., 2019). Simi-
larly, despite models becoming increasingly complex, the computa-
tional capacity required to run some of these models has decreased as
many modelling frameworks now make use of cloud-computing re-
sources, putting less stringent requirements on the end-user (Willcock
et al., 2019).

Accessing multiple ES models remains a difficult undertaking. For
example, whilst the software needed to run InVEST is free, it still re-
quires substantial GIS knowledge and many of the models within this
framework are ‘data-hungry’ and therefore require access to data and
substantial processing power in order to run (Willcock et al., 2019). By
contrast, ARIES and Co$ting Nature store the necessary data and

https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
http://aries.integratedmodelling.org/
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processing power on their servers, but therefore require high-speed in-
ternet access (Willcock et al., 2019). Furthermore, to benefit from the
full Co$ting Nature model outputs (i.e. disaggregate outputs of individ-
ual services) one either needs to enter a partnership with the model
owners or pay a subscription of at least 2000 GBP yr−1 (http://www.
policysupport.org/access-costs). Thus, in order to contrast or combine,
for example, carbonmodels across these frameworks you require access
to the internet, adequate data and computational power, as well as the
funds to support a model subscription fee and the extra staff time re-
quired (i.e. when compared to running a single model). Such resources
are likely out of reach of many ES researchers and practitioners and so,
for them, ES ensembles are an unfeasible ideal. However, this can be
somewhat negated if thosewith access to these resources make the en-
sembles they are able to create freely available (e.g. as we have done so
through the EIDC repository for our committee averaged ensembles and
the SEM [doi:https://doi.org/10.5285/11689000-f791-4fdb-8e12-
08a7d87ad75f]).

As well as the issues surrounding the feasibility of running ensem-
bles of models, methodological limitations remain. For example, when
validating any model (individual or ensembles) a reference of truth is
required (Box 1). Validation data have their own intrinsic inaccuracies
and so it may be good practice to validate models against more than
one dataset per ES to ensure the accuracy assessment is robust
(Willcock et al., 2019). Whilst we use multiple sets of validation data
here (Table S-1-2), data deficiency prevented further investigations
into the sources of the uncertainty we identified; e.g. running simula-
tions to vary initial conditions (e.g. spatial scale (Hou et al., 2013)),
model classes, model parameters and/or boundary conditions (Araújo
and New, 2007). This is an exciting avenue for future research, which
could also compare using ensembles of models to assess uncertainty
with other approaches (e.g. probabilistic models (Bagstad et al., 2014;
Willcock et al., 2018)). Whilst both approaches are capable of estimat-
ing uncertainty, probabilistic approaches avoid the difficulties associ-
ated with running multiple models (above) but provide little insight
into model-structural uncertainty, when compared to ensembles of
models (Stritih et al., 2019). Thus, future investigations should include
more individual models with more varied model-structures and create
ensembles using a wider variety of algorithms to deepen our current
understanding.

A further outstanding issue for enabling ensemble modelling is that
any comparisons or combinations of modelled outputs must involve
matching like-for-like variables. This can be problematic, as, at present,
a selection of models for a specific ES might, to some extent, be model-
ling different constructs. For example, Co$ting Nature's stored carbon
model includes both below- and above-ground carbon whilst other
models predict only above-ground carbon (Willcock et al., 2019). Simi-
lar issues arise when linking benefit transfer models (i.e. a valuation
output (Costanza et al., 2014)) with both relative and quantitative esti-
mates of available ES resource (i.e. T C ha−1). To reduce these issues and
enable like-for-like comparisons, our statistical analyses focused on rel-
ative ranking (see Willcock et al. (2019) for further details). Whilst rel-
ative rankings allow for some types of questions to be answered and so
are useful to support decision-making, biophysical units are required for
many sustainable development decisions (Willcock et al., 2019). For ex-
ample, it is impossible to evaluate if we are operating in the safe and just
operating space (Raworth, 2012) without unit estimates predicting if
individuals are meeting the threshold supply of a good required to sup-
port basic needs, whilst collectively not exceeding planetary thresholds
(Rockström et al., 2009). Thus, concerted effort is needed to standardise
the outputs of ESmodels to increase the ease atwhich they can be com-
pared. Such efforts are perhaps best coordinated by large, multi-
national organisations, and so the Ecosystems Service Partnership
(ESP) or IPBES could play a central role in defining key reporting met-
rics, akin to the role of the IPCC in providing good practice guidance
on the productions of emissions estimates (Knutti et al., 2010). Due to
the large quantity and diversity of ES, this is no small challenge.
However, the majority of ES modelling and mapping studies focus on
relatively few ES (Willcock et al., 2016) and so these could be
prioritised. Furthermore, there is potential to use this guidance to con-
verge with other disciplines by aligning on agreed proxies/outputs re-
quired to measure and monitor the attainment of the Sustainable
Development Goals (SDGs; https://sustainabledevelopment.un.org/)
(Xu et al., 2020). At the very least, ES studies must validate model out-
puts against independent data (Willcock et al., 2019) and transparently
convey the identified uncertainty to model users (Bryant et al., 2018;
Kleemann et al., 2020). Such practices will increase confidence in ES sci-
ence and help to reduce the implementation gap between ES models
and policy- and decision-making (Cash et al., 2003; Clark et al., 2016;
Voinov et al., 2014; Wong et al., 2014).

5. Conclusions

This study highlights that, in most instances, ensemble modelling
may provide more robust and better estimates than using single
models, as well as an indication of confidence in model predictions
when validation data are unavailable. Whilst ES science is not yet
ready for ensembles to become standard practice, ensemble modelling
should be adopted more widely in ES modelling. In future, studies of
high policy relevance (e.g. future assessments of IPBES), as well as ef-
forts to inform decisions and track progress to sustainable development
(e.g. the new Global Biodiversity Framework of the CBD and the final
decade of the SDGs) would benefit from using ensembles of models.
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