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1 |  INTRODUCTION

The sea surface temperature (SST) is a key essential climate 
variable (ECV, e.g. Bojinski et al., 2014) and a key essen-
tial ocean variables (EOV, e.g. Lindstrom et al., 2012), with 
observations and datasets of the SST used in many stud-
ies. These include, inter alia: climate monitoring reports 
(e.g. IPCC, 2014; Blunden et al., 2019); boundary layer for 

atmospheric/oceanographic model forcing (e.g. Dee et al., 
2011); validation and assessment of coupled models (e.g. 
Flato et al., 2013); air–sea interaction studies; and ecosystem 
studies (Villegas-Hernández et al., 2015).

Due to its widespread use and importance, simple gridded 
and statistically reconstructed/infilled datasets of the sea sur-
face temperature have been created. These include datasets 
spanning the period ~1,850—present on a relatively coarse 

Received: 2 January 2020 | Revised: 30 April 2020 | Accepted: 5 May 2020

DOI: 10.1002/gdj3.94  

D A T A  P A P E R

ACSIS Atlantic Ocean medium resolution SST dataset: 
Reconstructed 5-day, ½-degree, Atlantic Ocean SST (1950-2014)

Simon David Paul Williams1  |   David I. Berry2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2020 The Authors. Geoscience Data Journal published by Royal Meteorological Society and John Wiley & Sons Ltd

This article was funded by a grant from UK Natural Environment Research Council (reference NE/N018044/1) 

Dataset 

Details of the dataset(s) referred to in the paper. Include at least the name of dataset, data centre, and DOI or other unique identifier. If you are unable to 
provide this information until after publication, please contact the editorial team to organise access for the reviewers. Where possible please also provide the 
following details: 

Identifier: http://dx.doi.org/10.5285/83b0c d7e7c c6495 a90b4 cb967 ead3577 

Creator: Williams, Simon D.P; Berry, David I. 

Title: ACSIS Atlantic Ocean medium resolution SST dataset: Reconstructed 5-day, ½ degree, Atlantic Ocean SST (1950-2014) 

Publishers: Centre for Environmental Data Analysis (Ceda) 

Publication Year: 2020 

Resource Type: dataset and metadata 

Version: 1.0  

1National Oceanography Centre, Liverpool, 
UK
2National Oceanography Centre, 
Southampton, UK

Correspondence
Simon David Paul Williams, National 
Oceanography Centre, Joseph Proudman 
Building, 6 Brownlow Street, Liverpool, L3 
5DA, UK.
Email: sdwil@noc.ac.uk

Funding information
Natural Environment Research Council, 
Grant/Award Number: NE/N018044/1

Abstract
A new dataset, the ACSIS Atlantic Ocean medium resolution SST dataset, is pre-
sented. This new dataset spans the period 1950–2014 at a 5-day, ½-degree resolution 
and covers the Atlantic Ocean. The dataset is based on in situ sea surface temperature 
(SST) observations from the International Comprehensive Ocean-Atmosphere Data 
Set interpolated using Kriging to infill gaps and is available from the Centre for 
Environmental Data Analysis (CEDA) archive. Compared to existing datasets, the 
resolution is increased by a factor of 4 spatially and 6 temporally.
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resolution (e.g. Rayner et al., 2003; Hirahara et al., 2014; 
Huang et al., 2017; Kennedy et al., 2019) and datasets span-
ning the satellite era (~1980 – present) at higher resolutions 
(e.g. Merchant et al., 2014, 2019). The longer datasets typ-
ically have a monthly resolution and a spatial resolution of 
either 1° or 5°, with all the datasets based on the observations 
available within the International Comprehensive Ocean-
Atmosphere Data Set (ICOADS, Freeman et al., 2017). The 
primary differences between datasets are the treatment of bi-
ases in the observations and the infilling/gridding methods 
used. This dataset (ICOADS) is discussed further in Section 
2, including known problems with the data. The datasets 
spanning the recent past typically have much higher resolu-
tion; for example, the recent European Space Agency (ESA) 
Climate Change Initiative (CCI) SST dataset (Merchant 

et al., 2014, 2019) has a daily temporal resolution and 1/20° 
spatial resolution. These datasets are typically based on sat-
ellite data.

While the resolution of models (oceanographic, atmo-
spheric, coupled) has increased with computing power, 
the resolution of gridded SST products, particularly those 
that extend before 1980, has largely remained static. This 
is due to inadequate sampling over large regions of the 
global oceans prior to the satellite era. While the sampling 
does not justify higher resolution products over much of 
the global oceans, the North Atlantic is an exception. In 
this region, the sampling density is much higher due to the 
density of shipping lanes and trade between Europe and 
the rest of the world (e.g. see Figure 1). In this paper, we 
describe a new SST dataset, making use of the increased 

F I G U R E  1  Map of the Atlantic Ocean 
showing the number of pentads with a 
measurement for each grid cell. Maximum 
number of pentads is 4,748
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sampling to produce an intermediate resolution dataset 
for the Atlantic. The new dataset, ‘ACSIS Atlantic Ocean 
medium resolution SST dataset’, contains spatially inter-
polated estimates of the sea surface temperature on a 0.5° 
spatial grid, 5-day temporal resolution and spans the period 
1950 – 2014. Section 2 describes the source observations 
and interpolation methods. Section 3 provides information 
on the new dataset, its location and format. Section 4 de-
scribes uses of the dataset and its limitations.

2 |  DATA PRODUCTION 
METHODS

2.1 | Input data, spatial domain and data 
selection

2.1.1 | Input data

The new dataset described in this paper is based on the 
SST observations available from the ICOADS Release 
3 (ICOADS R3.0 hereafter; Freeman et al., 2017). The 
ICOADS R3.0 contains weather reports made on board 
ships, including the upper ocean, spanning the period 
~1650–2014. Data from other platforms, for example drift-
ing buoys, are also included. A near real-time (NRT) up-
date to ICOADS, ICOADS R3.0.1, is available but there 
have been issues with the data included in this update 
(Freeman et al., 2019). Consequently, only R3.0 has been 
used. Once the issues with the NRT update have been re-
solved, an updated version of the new dataset described in 
this paper will be produced.

The early weather reports in ICOADS are typically based 
on visual observations of the weather (present weather, wind 
force, sea state, ice), with instrumental observations (air 
temperature, sea temperature, pressure) beginning in the 
mid-19th century. More recently, the observations have in-
cluded instrumental observations of wind speed and humid-
ity. Beginning in the late 1980s and early 1990s, there are 
an increasing number of drifting buoy observations, with the 
drifting buoys dominating the in situ SST record from the 
mid-2000s onwards (e.g. Huang et al., 2017).

The SST observations were made using a variety of 
methods, ranging from measuring the temperature of a 
sample of water collected in a canvas bucket, through en-
gine intake measurements to infrared radiometric observa-
tions (Kent et al., 2007), with the bucket and engine intake 
measurements the most common. Each method of obser-
vation has suffered from distinct biases and, as the meth-
ods used have changed over time, time varying biases exist 
in the raw data. For example, the measurements based on 
samples collected in buckets are biased cold due to cooling 
of the water sample in the buckets prior to measurement. 

Similarly, the temperature measurements of water sampled 
from the engine cooling intake tend to be biased high due 
to heat from the engine room. Prior authors and dataset 
developers (e.g. Kennedy et al., 2011a; Kennedy et al., 
2011b; Hirahara et al., 2014; Huang et al., 2017; Kennedy 
et al., 2019) have applied bias corrections to reduce the 
impact of the biases on the climate record. A summary of 
the prior work on understanding and reducing the impact of 
these biases and the impact on the uncertainty in the SST 
climate record can be found in Kennedy (2014) and Kent 
et al. (2017). Recent work by others has included the exam-
ination of biases in different types of buckets (e.g. Carella 
et al., 2017; Chan and Huybers, 2019).

Within the new dataset, nearly all observations for the 
period 1950 – 2014 and within the selected spatial domain 
(section 2.1.1) from ICOADS R3.0 have been used. This in-
cludes all ship based and drifting buoy observations. Those 
from moored buoys and other platforms have been excluded 
due to either a short period of record (e.g. Argo) or sparse 
point locations (e.g. moored buoys). In addition to ICOADS 
R3.0, global daily-mean sea surface temperatures, presented 
on a 0.05° latitude–longitude grid, with gaps between avail-
able daily observations filled by statistical means, spanning 
1981 to 2016 from the ESA SST CCI SST version 2.0 product 
(SST CCI analysis, Good et al., 2019; Merchant et al., 2019) 
have been used to define covariances between grid cells 
(Section 2.3), estimate the sampling uncertainty (Section 2.2) 
and define the climatology.

2.1.2 | Spatial Domain and Selection of Data

The Atlantic Ocean in this dataset is as defined in the 
International Hydrographic Organization (IHO) publication 
S23, ‘Limits of oceans and Seas’ 3rd edition. Individual grid 
points are masked by this region and by the presence of data 
in the CCI SST gridded dataset. The extent of the grid cover-
ing the entire Atlantic Ocean is from 60°S to 68°N and 98°W 
to 20°E and the temporal coverage is from 1 January 1950 
to 31 December 2014 with the first five-day period centred 
around mid-day GMT 3 January 1950. This produces a full 
grid of 256 × 236 points spatially, and 4,748 time steps. There 
are, in total, 33,080 grid cells per time step to interpolate and 
a total of 157,063,840 grid boxes. There are 83,536,825 ob-
servations from ships and drifting buoys in the region during 
the period occupying 22,790,841 grid boxes (14.5% of the 
total number of grid boxes) of which 14,291,205 have one 
single observation (63%) and 3,904,988 have two observa-
tions (17%). The maximum number of observations in a sin-
gle grid cell is 1,121 from 10 individual buoys from a point 
in the middle of the North Atlantic (25.25°N, 37.75°W). We 
only used data from the ICOADS dataset if the trimming flag 
was less than or equal to 5.
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2.2 | Initial Gridding

2.2.1 | Calculation of Super-observations

For each grid box where there are data, we calculated the mean, 
median, trimmed mean (5th percentile at each end), sample stand-
ard deviation, sample trimmed standard deviation and interquar-
tile range. The trimmed mean and sample standard deviations 
only differ from the mean and sample standard deviation if there 
are more than 10 observations in the grid box. Also recorded in 
the gridded ICOADS data file are the number of buoys and ships 
per grid box and the number of unique ships and buoys. These 
are useful if attempting to calculate the input data uncertainties.

The super-observations are then expressed as residuals 
from the 1981–2014 Climatology derived from the CCI SST 

analysis. The climatology consists of a mean together with 
annual, semi-annual and tri-annual terms fitted using least 
squares. We chose to use the CCI SST analysis rather than 
from the ICOADS dataset itself because there are regions, 
especially the Southern Atlantic Ocean (Figure 1) where the 
data are too sparse to derive a good climatology. The clima-
tology does not include the trend since it may not reflect that 
over the whole 1950–2014 period.

2.2.2 | Uncertainties

In order to interpolate the SST at global and regional levels, 
it is important to produce a realistic estimate of the obser-
vational uncertainties in the measurements. As discussed in 

F I G U R E  2  Regional Variability of 
SST for the Atlantic Region in terms of the 
standard deviation derived from the CCI 
SST analysis dataset
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Kennedy et al (2011a, 2014), the observational uncertainties 
are a product of three main errors; random measurement, bias 
and sampling errors. They estimated the measurement error 
to be 0.74°C and 0.26°C for ships and drifting buoys, respec-
tively, and the bias error to be 0.71°C and 0.29°C for those 
platforms. We also performed several tests on the ICOADS 
data to derive estimates of the measurement and bias error. 
These included fits to the sample standard deviations as a 
function of the number of ships and buoys and unique ships 
and buoys per grid box, direct comparison with the CCI SST 
analysis for a small sample of grids with abundant data and 
examining the distribution of sample standard deviations 
from grid cells with there was either only one vessel or all 
the vessels were different. We estimate the uncertainties to 
be 1.47°C and 0.38°C for the ship and buoy bias error and 
0.73°C and 0.24°C for the measurement errors, respectively. 
Our bias errors are larger than Kennedy et al (2011a) because 
individual measurement biases had not been removed from 
the ICOADS data prior to this (see Bias Reduction section 
below). This will imply that we are slightly cautious with our 
bias error when propagating to our observational uncertain-
ties for the interpolation.

The sampling error is the error that arises when a finite 
number of observations are used to estimate a grid box aver-
age from a field that is spatially varying in that area. The sam-
pling uncertainty term was given by Kennedy et al (2011a) 
by the following equation.

where n is the number of observations in a grid box; �2

s
 is 

the variance of the SST anomalies at a point and assumed to 
be constant within a given grid box. 

−

r is the average correla-
tion between any two points within the grid box. Kennedy 
et al (2011a) calculated �2

s

−

r from grid boxes with very large 
n and estimated 

−

r by calculating inter-grid box correlations 
and taking averages in space and combining these with their 

equivalent time correlations. Here, we use the CCI SST anal-

ysis to derive �2

s

(
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r
)

 by simply estimating the variance 

from the intra-grid values. Since the CCI SST analysis is 
daily with a resolution of 1/20th degree that gives 10x10x5 
values with which to calculate the variance in each grid box 
Figure 2. We note that estimating sampling uncertainty from 
the SST CCI analysis assumes that spatial variability at very 
small scales is correct. However, the SST CCI analysis al-
ready encodes assumptions about the small-scale spatial 
structure and its relationship to observational error in the sat-
ellite retrievals and therefore may bias the sample uncertainty 
estimates but we feel this is still a sensible approach to as-
signing sampling uncertainties for each grid box.

The sampling uncertainty from a single observation, 
√

�
2
s

(

1−
−

r
)

, has a seasonal cycle, particularly in coastal 

zones, upwelling regions, fronts and narrow currents. We 
also see this in the ICOADS grids where we have a pleni-
tude of data for example, Figure 3. To take this into account 
and extend the sampling uncertainty over the whole time 
frame of the dataset, we fit a climatology (mean, annual, 
semi-annual, tri-annual) to the CCI grid box variability and 
use this to derive our sampling uncertainty for the interpo-
lation. Since the standard deviations are not normally dis-
tributed and to avoid producing anything negative, we fit 
the climatology in least squares assuming a log-normal 
distribution.

2.3 | Interpolation

Many methods have been used previously for reconstructing 
historical sea surface temperature records, including optimal in-
terpolation (Lorenc, 1981; Reynolds and Smith, 1994) or Simple 
Kriging (Krige, 1951; Cressie, 1990); optimal smoothing, 
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F I G U R E  3  Example time series of the standard deviations from the ICOADS data (green dots and line) and the CCI data brown dots). Thick 
green and brown lines are the least-squares fit to the ICOADS and CCI data, respectively. Grid cell is point 54,501 in the Southern North Sea
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Kalman Filter and reduced space optimal interpolation (Kaplan 
et al., 1998); variational Bayesian principal component analysis 
(VBPCA; Ilin and Kaplan, 2009); and reduced space Kalman 
smoother (Karspeck et al, 2012). Here, we use Simple Kriging, 
interpolating the super-observations calculated in 2.2.1. to esti-
mate spatially complete fields of the SST. As part of the Kriging 
process, the mean field is subtracted from the super-observa-
tions by subtracting the climatological mean to give anomalies. 
These are then interpolated by using Equations 2 and 3: 

and 

Where zk are the interpolated values, and their covari-
ance (Czk

), over the whole grid, C is the spatial covariance 
of the signal, R is a diagonal matrix (nominally, if disregard-
ing observational correlations,) of the estimated variances of 
the errors in the observations, H is a matrix that maps the 
data for a given epoch to the full set of grid points, and d 
is the full vector of climatology-removed observations (0 for 
missing observations). The spatial covariance terms C have 
been estimated using the ESA CCI SST analysis data. Rather 
than estimating the spatial covariances using a parametric ap-
proach, for example using variograms, we have estimated the 
covariance between grid boxes directly from the ESA CCI 
SST analysis data. Figure 4 illustrates the range in variation 
in the cross-correlation for three points in the Atlantic Ocean 
derived from the ESA CI SST derived covariance. A point 
in the vicinity of the Gulf Stream (Figure 4, middle) has a 
smaller correlation distance than the other two points. This is 
similar to the approach taken by Church et al. (2004) when 
reconstructing global sea level using tide gauges and a satel-
lite altimetry field. In this dataset, we have ignored inter-grid 
observational correlations in R simply because we assert that 
given the temporal scale used and that we are interpolating 
spatially, the correlations would have a negligible effect in 
the interpolation. However, note that intra-grid correlations 
are accounted for via the methodology described below. We 
can take two approaches here to estimate the variance of the 
super-observations calculated in 2.2.1. First, we can calculate 
a theoretical uncertainty based on the values derived in 2.2.2 
and using the equation (adapted from Kennedy et al., 2011a 
equation 8). 

where ns and nb (ns+nb =n) are the number of ship and 
buoy measurements in a grid box and ms and mb are the 
number of ships and buoys in a grid box. Also �m_ship and 
�m_buoy are the ship and buoy measurement uncertainties 
and �b_ship and �b_buoy are the bias uncertainties. For sim-
plicity, this assumes that each of the m ships and buoys 
makes the same number of observations in the grid box and 
the measurement and bias uncertainties are the same for all 
ships and buoys.

A second approach is to use the sample standard devia-
tions (or the trimmed sample standard deviations) as these re-
flect the true variations in the observations. If the error came 
from just one source, then we would calculate the uncertainty 
of the observation as

where �2

sample
 is the sample standard deviation. However, 

where there are more than one source of noise, and these de-
pend on the number of ships, buoys and the number of mea-
surements; this is too simplistic. In addition, where the 
sample sizes are small, the sample standard deviations are 
likely to be biased (Cochran, 1934) or not quantifiable if 
there is only one observation in the grid cell. Therefore, we 
take a hybrid approach to estimating the measurement uncer-
tainties. For grid cells with only one or two observations, we 
use the estimates from Equation 4. For all other grid cells, we 
calculate a predicted sample standard deviation using the 
measurement, bias and sample uncertainties and taking care 
of biases due to small sample sizes. If a grid cell sample stan-
dard deviation is less than the predicted value, we use the 
estimates from Equation 4. If it is larger, then we take the 
ratio of the predicted sample standard deviation and 
Equation 4 and scale the sample standard deviation by this 
ratio.

2.4 | Bias reduction

As noted in section 2.1.1, the SST observations contain biases 
and prior authors have developed bias corrections to reduce 
the impacts of these biases. Rather than developing a new 
bias correction, we have interpolated the bias correction from 
the HadSST.0.0.0 dataset (Kennedy et al., 2019) to our analy-
sis grid. The bias correction was derived by taking the differ-
ence between the median and the unadjusted SST anomalies 
grids (HadSST.4.0.0.0_median.nc and HadSST.4.0.0.0_un-
adjusted.nc). This interpolated bias adjustment has then 
been subtracted from the super-observations to give a bias-
adjusted dataset.

(2)zk =CHT
(

HCHT
+HRHT

)−1
Hd

(3)Czk
=C−CHT

(

HCHT
+HRHT

)−1
HC

(4)

�
2

err
=

1

n

(

ns�
2

mship
+nb�

2

mbuoy

ns+nb

)

+
1

n2

(

n2
s

ms

�
2

bship
+

n2
b

mb

�
2

bbuoy

)

+
1

n
�
2

s

(

1−
−

r
)

(5)�
2

err
=
1

n
�
2

sample



   | 7WILLIAMS And BERRY

2.5 | Verification

To validate the data, we again use the SST CCI analy-
sis dataset. Figure 5 shows a map of mean absolute error 
(MAE) for the differences between our interpolated results 
and the CCI SST analysis residuals (CCI SST analysis 
minus the climatology). We calculate an overall mean ab-
solute error of 0.39°C. We also calculate the MAE for the 
whole region as a function of time step (Figure  6). The 
MAE has gradually reduced from around 0.45°C in the 
early 1980s to about 0.35°C now. We also examined the 
correlation and coherence between the two datasets both 
spatially and temporally (Figure 7). The magnitude squared 
coherence (Stoica and Moses, 2005) acts as a form of cor-
relation in the frequency domain. We see that the spatially 
averaged coherence between the two datasets increases at 
longer periods (Figure 7). The obvious drops in coherence 
are at the annual and its harmonics which are expected be-
cause the climatology has been removed from both sets. 
The increasing correlation at longer periods can also be 
seen in the middle panels of Figure 7 which show averaged 
coherence at low, median and high frequencies. Lower co-
herence between the two datasets at shorter periods is to 
be expected for several reasons. First, the power-law na-
ture of many geophysical series (Agnew, 1992) including 
SST (e.g. Bürgert and Hsieh, 1989) means that the largest 
signals are at the longest periods and are likely to have the 
highest correlation. Secondly, random measurement noise 
will manifest itself more at higher frequencies for the same 
reason as above, reducing the correlations at short periods. 
Finally, the CCI SST analysis is subject to some degree of 

smoothing when infilling gaps in observations (Merchant 
et al., 2019). This again will be at short periods and wave-
lengths, reducing the correlation there. Overall the cor-
relation (Figure  7, top right) is greatest in the Northern 
Atlantic Ocean except in the region of the gulf stream. It is 
not necessarily where the data is the densest (Figure 1) but 
tracks more where the SST variation is lowest (Figure 2). 
However, in the Southern Atlantic Ocean, the lower corre-
lation outside of the regions of high variability is probably 
due to data density. Overall the correlation has increased 
over time from the start of the CCI dataset to the present 
(Figure  7, bottom). Finally, note that Figure  7 top right 
and middle left are similar since they both reflect the low-
frequency correlation. However, Figure  7 top left is the 
Pearson correlation coefficient calculated in the time do-
main and the coherence in Figure 7 middle left is calculated 
in the spectral domain.

Figure  8(top) shows a map of the uncertainty averaged 
over 1950 – 2014. Over the majority of the ocean, the un-
certainty is in the range 0.2–0.4°C, increasing to over 1°C in 
the high variability regions. Figure 8(bottom) shows the time 
series of the spatially averaged uncertainty over the same 
period. The uncertainty decreases from ~0.45°C during the 
1950s to just over 0.3°C by 2014. The impact of the drifting 
buoy network can be seen in the mid-2000s, with a sharp de-
crease in the uncertainty.

Figure  9 shows the mean anomaly (w.r.t. 1981–2014) 
for a sample month (January 1963) from HadSST4.0.0.0, 
ERSST5 (Huang et al., 2017) and the new dataset at their 
native spatial resolutions, 5°, 2° and 0.5°, respectively. 
Also shown are the products averaged or interpolated to 

F I G U R E  4  Correlation for three grid points in the Atlantic Ocean. Left, central North Atlantic; middle, in the vicinity of the Gulf Stream; 
right, central South Atlantic
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the other resolutions. In general, good agreement is seen 
between the different products but with some differences. 
These are expected due to different gridding methods and/
or bias adjustments. The increased spatial variability and 
finer structures are clearly visible in the new product. 
Figure  10 shows a time series of the spatially averaged 

anomaly (w.r.t 1981–2014) for the three datasets. Again, 
there is generally good agreement overall but with differ-
ences between individual time periods.

To validate the estimated (formal) uncertainties derived 
from Equation  4, we split the grids into groups depending 
on the formal uncertainty size in steps of 0.2°C and then 

F I G U R E  5  Map of mean absolute 
error between the ICOADS interpolated and 
the CCI SST analysis residuals

F I G U R E  6  Mean absolute error 
between the ICOADS interpolated residuals 
and the CCI SST analysis residuals as a 
function of time
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produced boxplots for the differences between this dataset 
and the CCI SST analysis (Figure 11). We use Tukey style 
whiskers (1.5 × interquartile range, IQR) past the 25th to 75th 
percentile boxes. The increasing spread with increasing for-
mal uncertainty validates those uncertainties. Overall, if we 
take the differences and divide by the formal uncertainties, 

we find that the uncertainties slightly conservative with a me-
dian value of 1.4. The formal uncertainties should therefore 
be scaled by 1.4 to be more realistic.

As a final test to validate the performance of the interpo-
lation where grid cells had no super-observations, we per-
formed an internal test with the CCI SST analysis only. Here, 

F I G U R E  7  Comparison of ICOADS interpolated SST and CCI SST analysis. Top left, average coherence as a function of period showing 
increasing coherence with period except at annual and its harmonics, which we removed from both. Top right, Pearson correlation coefficient 
for each grid cell. Middle panels, average correlation for long (left, 100–5,000 days), median (middle, 18–22 days) and short (right, 10–11 days) 
periods. Bottom, average correlation as a function of time
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we sampled the CCI SST data at the times and positions of 
the ICOADS measurements and then interpolated these in the 
same way as before. We then took all the grid cells that had 
no super-observations and compared the interpolated with the 
actual CCI SST values (Figure 12). Similar to Figure 11, we 
split the comparison as a function of the formal uncertainties. 
The scatter plots are colour-coded based on the density of the 
points in the region. Points with a density of less than 1,000 
per °C are removed for clarity. We find good correlation (0.95) 
between the interpolated values and the CCI data for unsampled 

regions for the formal uncertainties of between 0 and 0.2°C. 
As the formal uncertainties increase, the correlation decreases 
and is indicative of a slight reduction in the magnitude of the 
anomalies. We acknowledge that we are pushing the boundar-
ies with these resolutions especially in data sparse regions such 
as the Southern Hemisphere. However, we are still confident 
that the results are useful. Figure 13 is an example of a point in 
the Southern Atlantic Ocean with low correlation (0.56) and a 
small number (26) of observations. The fit is still good, partic-
ularly at long wavelengths.

F I G U R E  8  Mean uncertainty in 
ICOADS interpolated SST (top) over 
1950–2014 and (bottom) spatially averaged 
over the Atlantic Ocean
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F I G U R E  9  Monthly mean SST 
anomaly for January 1963 (w.r.t 1981–2014) 
for HadSST4 (left column), ERSST5 
(middle column) and this dataset (right 
column) at native resolution and averaged to 
the resolution of the other datasets

F I G U R E  1 0  Spatially averaged SST anomalies over Atlantic Ocean for HadSST4 (solid black), ERSST5 (dotted black) and this dataset (red 
dashed). HadSST4 and ERSST5 have been interpolated to the same grid as the new estimates (0.5°, 5 day) prior to averaging and only grid cells 
with estimates in all 3 datasets used. For comparison, the spatially complete values for the new dataset are also shown in blue. A 6-point running 
mean filter has been applied to all time series for clarity
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F I G U R E  1 1  Box plot of the ICOADS 
interpolated SST minus CCI SST analysis as 
a function of the derived formal uncertainty. 
Red lines indicate the median, box indicates 
the 25th to 75th percentile, and the whiskers 
are Tukey style (1.5 × IQR) beyond the 
percentiles. Dotted lines indicate the 
expected 25th and 75th percentile based on 
the formal uncertainty. Dashed lines indicate 
the predicted 1.5 × IQR

F I G U R E  1 2  Scatter plots of CCI SST analysis estimates mapped to ICOADS measurement times and positions and then interpolated as 
for the dataset versus the CCI SST analysis. Only grid cells that do not include ‘observations’ are included. Colours represent the density of 
points in the region. Points where the density is less than 1,000 points per °C are removed for clarity. The white ellipses are the 50th, 95th and 
99th percentiles derived from the estimated covariance between the two datasets. The results have been partitioned as a function of the formal 
uncertainties (range given in the top left of each plot)
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3 |  DATASET LOCATION AND 
FORMAT

The dataset is available from the Centre for Environmental 
Data Analysis (CEDA) archive in annual CF complaint 
NetCDF files, with a total of 65 annual files are available. 
Each file contains: the 5-day mean sea surface tempera-
ture; the corresponding climatological value, the sea sur-
face temperature anomaly and the uncertainty in the sea 
surface temperature. The data are freely open and available 
with no restrictions on use but prior registration is required 
to download the data. More information on the CEDA ar-
chive and access to the data can be found at http://archive.
ceda.ac.uk/

4 |  DATASET USE AND REUSE

The new dataset presented in this paper has been developed 
as part of the UK North Atlantic Climate System Integrated 
Study (ACSIS) for use in validating and comparing with re-
gional climate models. Other potential uses include boundary 
forcing for regional re-analyses, monitoring and assessment 
of regional climate change and other studies requiring SST at 
a resolution higher than typical for the in situ products (i.e. 
<1  month, <1°) and spanning the satellite and presatellite 
era. Future plans for the dataset include updating to use the 
ICOADS NRT updates once the known issues have been 
resolved and investigation of whether a resolution of 0.25° 
daily is feasible with the in situ data.
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