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Abstract: Ticks are known as the vectors of various zoonotic diseases such as Lyme borreliosis
and tick-borne encephalitis. Though their occurrences are increasingly reported in some parts of
China, our understanding of the pattern and determinants of ticks’ potential distribution over the
country remain limited. In this study, we took advantage of the recently compiled spatial dataset
of distribution and diversity of ticks in China, analyzed the environmental determinants of ten
frequently reported tick species and mapped the spatial distribution of these species over the country
using the MaxEnt model. We found that presence of urban fabric, cropland, and forest in a place
are key determents of tick occurrence, suggesting ticks were likely inhabited close to where people
live. Besides, precipitation in the driest month was found to have a relatively high contribution
in mapping tick distribution. The model projected that theses ticks could be widely distributed
in the Northwest, Central North, Northeast, and South China. Our results added new evidence
on the potential distribution of a variety of major tick species in China and pinpointed areas with
a high potential risk of tick bites and tick-borne diseases for raising public health awareness and
prevention responses.
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1. Introduction

Ticks are widely distributed across the world and considered to be the second most dangerous
carriers of disease causative agents next to mosquito [1,2]. Through tick bites, many of these pathogens
could be transmitted to animals and, accidentally, humans. For example, the tick-borne encephalitis
virus had caused widespread infections in East Europe, West Europe, Middle Europe, and Russia [3,4].
Since ticks can inhabit a wide range of vegetated habitats in the countryside, suburbs or even
urban areas [5–7], they are posing threats to public and veterinary health wherever their population
is established.

Understanding the environmental determinants and spatial pattern of ticks’ distribution is
fundamental to the prevention and control of tick-borne diseases. Existing studies on the ecological
distribution of ticks across the temperate Northern Hemisphere are numerous [8–10], and have
identified a range of environmental factors associated with tick occurrence, including air humidity,
precipitation, temperature, soil humidity, vegetation type, land use, and interference [11–15]. Lindgren
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et al. [16] and Danielová et al. [17] found that the latitudinal and altitudinal limits of tick distribution
have changed as the climate warms. Evaluating how these environmental factors could shape the
geographic distribution and population dynamics of ticks became one of the most important research
directions in the field of ticks and tick-borne diseases.

Models are commonly used in examining the existing spatial distribution of tick species and
projecting the potential distribution in places where data are scarce or investigations on tick’s occurrence
have not been conducted. These research goals could generally be accomplished by using either
ecological process-based tick population models [18–20] or species distribution models (SDMs) based
on data associations [21,22]. Species distribution models are frequently used in predicting the
spatial distribution of disease vectors such as mosquitoes and sandflies [23,24]. The maximum
entropy model (MaxEnt) is an artificial intelligence model based on machine learning techniques.
Its predictive performance is considered amongst the highest levels of existing SDM methods [25].
Since it is particularly useful for presence-only data, it has been widely used in predicting the potential
distribution of invasive species, the planning of species reserves, and the response to spatial distribution
of species to climate change [26].

Previous SDM studies on tick distribution mainly used climatic variables (temperature, precipitation,
etc.) to predict the climate suitability for tick occurrence [27–29]. However, the spatial pattern of tick
habitats has also known to be affected through a series of anthropogenic and environmental factors and
processes related to land-use/land-cover change (LUCC) [30]. At the local level, LUCC could alter not
only local surface conditions but also change microclimatic conditions [31], which could further affect
the habitat suitability of ticks at various extents. On the global scale, surface vegetation change may
gradually impact on global atmospheric circulation which could, in turn, alter the climatic conditions
at lower levels [32,33]. Moreover, the construction of impervious infrastructure (such as buildings
and roads) that replaced (semi-)natural open land could destroy the habitats of ticks and their host
animals [34]. With the development of remote sensing techniques, the spatio-temporal dynamics of
LUCC could be better monitored and characterized for a more comprehensive quantification of a
species–response curve along the environmental gradient, contributing to an improved predictability
power of SDM [35].

However, existing studies on tick distribution at the national level remain rare in China where ticks
were found to be widely distributed, and the public awareness on tick-borne diseases are limited [36,37].
With the implementation of large-scale afforestation strategy in China, the extent of forested areas in
China has shown a rapid growth trend [38]. This potentially enlarges the distribution of ticks, as forests
are known as ticks’ most favorite habitat type [39,40]. Meanwhile, the expanding eco-tourism industry
and rising number of outdoor leisure pursuers in China [41] could infer increased human visitation in
tick-infested areas and, thus, increased tick–human contact rate. Provided such a situation, studies on
ticks and tick-borne diseases recently gained attention, and there has been an increasing number of
studies on reporting cases of tick-borne infections in humans or livestock, and the clinical treatment
of tick-borne diseases [42,43]. Nevertheless, existing shreds of evidence on the wide range of ticks’
major host animals in China have been extensively summarized in several recent review articles [44,45].
Knowledge of the spatial pattern and underpinning factors of tick distribution remain very limited.

The main objectives of this study were to: (i) identify key environmental factors on the known
spatial distribution of ticks in China and (ii) map the potential spatial distribution model of major
species of ticks in China. We made use of the recently compiled information on the known spatial
distribution samples of major species of ticks in China [42,43]. We then collected and prepared
bioclimatic, soil, and land-use factors from various sources as the potential determinants of tick
distribution. By using a set of different machine learning techniques, we analyzed the effects of these
factors on the occurrence of ticks. Finally, the MaxEnt model was used to project the potential spatial
distribution of major tick species across China.
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2. Materials and Methods

2.1. Processing Tick Occurrence Data

In our previous study, a spatial dataset of 123 tick species distributed over 1100 locations was
compiled based on peer-reviewed Chinese and English literature published between 1960 and 2017 [43].
In order to select suitable tick occurrence data, we kept the data at lower (i.e., prefectural, county,
township, and finer) levels. The remaining occurrence data were refined using the Spatial Distribution
Modeling toolbox (SDMToolbox 1.1c) [27]. We then removed duplicate points with identical coordinates,
leaving 976 (out of 5731) data points for the modelling exercise. Finally, we selected ten tick species
(Figure 1) which had a number of location records higher than the minimum sample size required to
obtain a good performance of the MaxEnt model, i.e., 13 for widespread species [46], including Argas
persicus (61 records), Dermacentor marginatus (96 records), Dermacentor nuttalli (65 records), Dermacentor
silvarum (99 records), Haemaphysalis concinna (45 records), Haemaphysalis longicornis (122 records),
Ixodes granulatus (37 records), Rhipicephalus microplus (41 records), Rhipicephalus sanguineus sensu lato
(17 records) and Rhipicephalus turanicus (28 records). These species were reported to associate with a
range of disease causative agents in mainland China, including tick-borne encephalitis virus, spotted fever
group rickettsiae, Anaplasmataceae, Borrelia burgdorferi sensu lato, Babesia spp. and severe fever with
thrombocytopenia syndrome virus [45,47].
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Figure 1. Distribution of selected major tick species in China.

2.2. Preparing Environmental Data

We collected bioclimatic, soil, land-use, and vegetation data from various sources to extract
variables potentially important to tick survival.

Bioclimatic variables (10′) from the World Climate Database (WorldClim) were collected. The WorldClim
database provided 19 bioclimatic variables commonly used in biogeographical studies [48,49], including
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monthlymaximumtemperature, monthlyminimumtemperature, monthlyaveragetemperature, precipitation,
etc. These variables were derived from monthly meteorological records from 1970 to 2000.

Land use data (1 km) were retrieved from the Resource and Environment Data Cloud Platform
of Chinese Academy of Sciences, containing several major types of land uses, i.e., cropland, forest,
grassland, value shrubland, urban fabric, water surfaces, etc. These data were generated based on the
classification of the Landsat images. The processing steps and quality control methods applied to these
data were explained in Xu et al. [50].

Soil variables (1 km) used in the analysis were extracted from the Harmonized World Soil Database
(HWSD, version 1.1, established by the Food and Agriculture Organization (FAO) of the United Nations
and International Institute for Applied Systems Analysis (IIASA)), covering information on soil pH,
organic carbon content, available water content, and texture.

The normalized difference vegetation index (NDVI) was downloaded from the EarthExplorer
data platform of the United States Geological Survey (USGS). The NDVI is one of the most commonly
used indicators to reflect the growth and nutrition condition of plants. The MODIS (the Moderate
Resolution Imaging Spectroradiometer) 16 Day NDVI (250 m) datasets covering the whole of China
were collected and merged.

All of these variables were rescaled on a 10′ grid (with cell size: ~340 km2) identical to that of the
WorldClim dataset. In line with a previous study [27], the uncertainty inherent in the tick distribution
data were regarded to occur on this scale. Then, all these variables were examined for multicollinearity
which could cause model over-fitting. We checked correlations between each pair of the variables using
the Pearson’s r coefficient and carefully removed variables highly correlated with the other variables
(Pearson’s |r| > 0.8). Finally, 29 factors were screened out for further analysis and modelling (Table 1).

Table 1. Environmental variables used in mapping tick distribution.

Symbol Variables Unit

BIO1 Annual Mean Temperature °C
BIO2 Mean Diurnal Temperature Range (Mean of monthly) °C
BIO3 Isothermality (BIO2/BIO7) (×100) /
BIO4 Temperature Seasonality (standard deviation × 100) /
BIO5 Maximum Temperature of the Warmest Month °C
BIO6 Minimum Temperature of the Coldest Month °C
BIO7 Temperature Annual Range (BIO5–BIO6) °C

BIO10 Mean Temperature of the Warmest Quarter °C
BIO11 Mean Temperature of the Coldest Quarter °C
BIO12 Annual Precipitation mm
BIO13 Precipitation of the Wettest Month mm
BIO14 Precipitation of the Driest Month mm
BIO15 Precipitation Seasonality (Coefficient of Variation) /
BIO16 Precipitation of the Wettest Quarter mm
PREC Monthly Precipitation mm
TMAX Monthly Maximum Temperature °C
TMIN Monthly Minimum Temperature °C

TMEAN Monthly Mean Temperature °C
CROP Extent of Cropland m2

FOREST Extent of Forest m2

GRASS Extent of Grassland m2

SHRUB Extent of Shrubland m2

URBAN Extent of Urban Fabric m2

OLU Extent of other Land Use Types m2

T_PH_H2O PH Value of the Topsoil −Log(H+)
T_OC Organic Carbon Content of the Topsoil %weight

AWC_CLASS Soil Available Water Content /
T_TEXTURE Soil Texture of the Topsoil /

NDVI Normalized Vegetation Index /
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2.3. Identifying Key Factors

For each of the selected tick species, we firstly used the MaxEnt model to identify the key factors
of tick distribution in China. The georeferenced tick occurrence dataset was divided randomly into
two parts: 25% of the data were used to construct the model (and identify the main contributing
factors) and the remaining 75% were used for model calibration. MaxEnt model is based on the second
theorem of thermodynamics, and a statistical explanation on this model is detailed in Reference [51].
In the study of the potential distribution of species, the species and the environment they inhabit could
be regarded as a system. A stable relationship between species and environment can be achieved
when the system reached the maximum entropy, and then the contribution of different factors on the
distribution of species can be estimated. We applied the same model parameter settings suggested
by Raghavan et al. [27] and Alkishe et al. [10]. We used the jackknife function to identify the most
important environmental factor.

In order to check the robustness of their importance in projecting tick presence, five other machine
learning (ML) techniques were applied, including gradient boosting decision tree (GBDT), extremely
randomized trees (ERT), random forest (RF), and the L1 and L2 support vector machines (SVM_L1
and SVM_L2). The scikit-learn software for the Python programming language was used [52,53].
A detailed explanation of these ML techniques could be found from its online user guide. The main
difference among these models was that MaxEnt, GBDT, ERT, and RF took into account non-linear
associations while SVM_L1 and SVM_L2 explored linear relationships between environmental factors
and tick occurrence. For each tick species, the same method of random sub-setting (25% and 75% used
for model construction and calibration, respectively) was applied when applying these ML algorithms.

2.4. Projecting Potential Tick Distribution

Potential distribution of each tick species was produced by the MaxEnt model built in the previous
step. The output of MaxEnt (i.e., probability distribution of tick species) was transformed and visualized
in ArcGIS software. Value 1 indicated “suitable” for ticks. A lower value indicated lower suitability
for ticks, and value 0 related to “not suitable” for ticks. The performance of all the MaxEnt models of
tick distribution were evaluated using the AUC (Area Under the Curve) value of the ROC (receiver
operating characteristics) curve. An AUC value >0.7 is adequate; >0.8 means good; and >0.9 indicates
excellent performance. Finally, the projected potential distribution was visualized in ArcGIS 10 for
comparison with existing tick occurrence records.

3. Results

3.1. Environmental Determinants of Tick Occurrence

The MaxEnt model predicted that the extent of urban fabric, cropland, and forest precipitation of
the driest month were the largest contributors to the modelling of the potential distribution of the ten
tick species (Table 2).

Table 2. Key environmental variables contributed to tick distribution.

Species Models
Environmental Variables in Order of Importance

1st
Contributor

2nd
Contributor

3rd
Contributor

4th
Contributor

5th
Contributor

Argas
persicus

MaxEnt URBAN BIO13 CROP SHRUB GRASS
GBDT URBAN BIO13 CROP BIO16 BIO15
ERT URBAN CROP BIO15 BIO13 FOREST
RF URBAN CROP BIO13 BIO15 BIO16

SVM_L1 BIO13 BIO14 BIO16 URBAN BIO7
SVM_L2 BIO14 BIO13 URBAN BIO5 BIO16
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Table 2. Cont.

Species Models
Environmental Variables in Order of Importance

1st
Contributor

2nd
Contributor

3rd
Contributor

4th
Contributor

5th
Contributor

Dermacentor
marginatus

MaxEnt BIO13 CROP URBAN TMIN T_PH_H2O
GBDT BIO13 CROP FOREST BIO15 T_PH_H2O
ERT CROP BIO15 BIO13 OLU BIO16
RF CROP BIO15 BIO13 BIO16 URBAN

SVM_L1 BIO14 BIO5 BIO11 BIO3 BIO13
SVM_L2 BIO14 BIO5 BIO3 BIO13 BIO16

Dermacentor
Nuttalli

MaxEnt URBAN BIO6 CROP TMAX BIO14
GBDT URBAN CROP TMEAN TMAX BIO12
ERT URBAN CROP TMEAN BIO1 TMIN
RF URBAN CROP BIO1 TMIN TMEAN

SVM_L1 BIO14 BIO7 BIO4 BIO16 BIO2
SVM_L2 BIO14 BIO7 BIO2 BIO6 BIO4

Dermacentor
silvarum

MaxEnt URBAN TMEAN FOREST CROP TMAX
GBDT URBAN BIO1 CROP BIO16 GRASS
ERT CROP GRASS URBAN OLU BIO12
RF URBAN CROP PREC BIO12 GRASS

SVM_L1 BIO14 BIO10 BIO1 BIO7 BIO13
SVM_L2 BIO14 BIO10 BIO4 BIO13 BIO3

Haemaphysalis
concinna

MaxEnt PREC CROP FOREST URBAN BIO4
GBDT BIO12 FOREST OLU PREC SHRUB
ERT FOREST PREC CROP BIO12 OLU
RF PREC BIO12 FOREST SHRUB BIO16

SVM_L1 BIO4 BIO14 BIO7 TMAX BIO3
SVM_L2 BIO14 BIO4 BIO3 FOREST BIO7

Haemaphysalis
longicornis

MaxEnt CROP URBAN BIO12 BIO7 TMAX
GBDT BIO6 BIO11 CROP BIO16 URBAN
ERT CROP BIO6 URBAN BIO11 BIO7
RF BIO6 BIO11 CROP URBAN TMIN

SVM_L1 BIO10 BIO13 BIO4 BIO14 BIO16
SVM_L2 BIO14 BIO3 BIO13 BIO4 URBAN

Ixodes
granulatus

MaxEnt BIO14 FOREST GRASS URBAN SHRUB
GBDT GRASS BIO6 PREC TMEAN FOREST
ERT FOREST GRASS BIO6 BIO11 TMIN
RF GRASS BIO11 BIO6 FOREST BIO16

SVM_L1 BIO2 OLU BIO7 BIO14 BIO3
SVM_L2 BIO2 OLU BIO14 BIO3 BIO7

Rhipicephalus
microplus

MaxEnt CROP BIO14 BIO6 URBAN FOREST
GBDT BIO11 URBAN TMIN BIO14 BIO6
ERT BIO11 BIO6 URBAN TMIN BIO2
RF BIO6 BIO11 TMIN URBAN PREC

SVM_L1 BIO4 BIO13 BIO7 URBAN T_OC
SVM_L2 BIO13 BIO4 URBAN OLU T_OC

Rhipicephalus
sanguineus
sensu lato

MaxEnt URBAN TMEAN GRASS BIO1 SHRUB
GBDT TMEAN TMIN BIO6 BIO5 SHRUB
ERT TMIN CROP TMEAN BIO1 BIO6
RF TMIN BIO1 TMEAN SHRUB BIO11

SVM_L1 BIO14 BIO11 URBAN BIO10 SHRUB
SVM_L2 BIO14 URBAN SHRUB BIO6 FOREST

Rhipicephalus
turanicus

MaxEnt BIO13 CROP URBAN BIO4 AWC_CLASS
GBDT CROP BIO16 BIO13 FOREST BIO4
ERT CROP OLU BIO12 BIO16 BIO13
RF CROP URBAN BIO16 BIO13 FOREST

SVM_L1 BIO13 PREC BIO12 URBAN SHRUB
SVM_L2 BIO13 PREC BIO12 BIO16 SHRUB

(i) Argas ticks—For A. persicus, the most important environmental factors in shaping their potential
habitats were the extent of urban fabric (URBAN), precipitation of the wettest month (BIO13), extents
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of cropland (CROP) and shrubland (SHRUB). The contribution of these factors to explaining the total
variation reached 82.4%.

(ii) Dermacentor ticks—For D. marginatus, the key environmental factors were precipitation of the
wettest month (BIO13), extents of cropland (CROP) and urban fabric (URBAN), minimum temperature
(TMIN), pH value of the top soil (T_PH_H2O), precipitation seasonality (BIO15) and extent of grassland
(GRASS), accounting for 81.0% of the total contribution to mapping tick distribution. The potential
distribution of D. nuttalli was mainly (81.8%) influenced by the extent of urban fabric (URBAN),
minimum temperature of the coldest month (BIO6), the extent of cropland (CROP), maximum
temperature (TMAX), precipitation of the driest month (BIO14), isothermality (BIO3) and annual mean
temperature (BIO1). The factors shaping the distribution of D. silvarum, the most (81.9%) were the
extent of urban fabric (URBAN), monthly average temperature (TMEAN), extents of forest (FOREST)
and cropland (CROP), monthly maximum temperature (TMAX), and extent of grassland (GRASS).

(iii) Haemaphysalis ticks—The distribution of H. concinna was mostly (81.7%) determined by
monthly precipitation (PREC), the extent of cropland (CROP), forest (FOREST), urban fabric (URBAN),
temperature seasonality (BIO4), soil available water content (AWC_CLASS) and extent of other land
use types (OLU). For potential distribution of H. longicornis was mainly influenced by the extent of
cropland (CROP), urban fabric (URBAN), annual precipitation (BIO12), annual temperature range
(BIO7), monthly maximum temperature (TMAX), and extent of forest (FOREST).

(iv) Ixodes ticks—The key determinants of the distribution of I. granulatus included precipitation
of the driest month (BIO14), the extent of forest (FOREST), grassland (GRASS), urban fabric (URBAN)
and shrubland (SHRUB), accounting for as high as 84.3% of the total contribution.

(v) Rhipicephalus ticks—What shaped the potential distribution of R. microplus most (81.3%) were
the extent of cropland (CROP), precipitation of the driest month (BIO14), minimum temperature of
the coldest month (BIO6), the extent of urban fabric (URBAN) and forest (FOREST), and temperature
seasonality (BIO4). For R. sanguineus sensu lato, the key factors (with 89.2% total contribution) were
the extent of urban fabric (URBAN), monthly average temperature (TMEAN), the extent of grassland
(GRASS) and annual mean temperature (BIO1). For R. turanicus, precipitation of the wettest month
(BIO13), the extent of cropland (CROP) and urban fabric (URBAN) were found to contribute to 91.8%
in predicting the distribution.

The results achieved by the other five machine learning techniques showed different degrees of
agreement with the MaxEnt model. In general, the GBDT, RF and ERT models could produce similar
results, by identifying the same set of land use factors as key determinants, i.e., extents of urban fabric
and cropland. Besides, the GBDT, RF, and ERT predicted relatively higher contribution by precipitation
of the wettest quarter and mean temperature of the coldest quarter. The support vector machines
methods (SVM_L1 and SVM_L2), however, produced some different results; they tended to lower the
influence of land use while stronger the climatic influence such as precipitation of the driest and the
wettest month.

3.2. Predicted Potential Distribution of Major Tick Species

In China, the area that had relatively high suitability for tick survival was predicted to be present
in North China: (i) northwest Xinjiang Uyghur Autonomous Region (XUAR) suitable for, Argas persicus,
Dermacentor marginatus, and Rhipicephalus turanicus ticks and (ii) northeast regions including Liaoning,
Jilin, Heilongjiang Provinces, and Inner Mongolia Autonomous Region where A. persicus, D. marginatus,
Dermacentor nuttalli, Dermacentor silvarum and Haemaphysalis concinna ticks could present. Tick species
could inhabit in South China, were H. longicornis, I. granulatus, R. microplus, and R. sanguineus sensu lato.

(i) Argas ticks—The MaxEnt model predicted that A. persicus could establish a wide potential
distribution in north China (AUC = 0.96, Figure 2a). The regions with relatively high potential of tick
presence include northwest (XUAR), central north (Inner Mongolia, Shanxi, Shaanxi, Gansu, west of
Henan, and Ningxia Provinces) and northeast (Liaoning, Jilin and Heilongjiang Provinces). Compared
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with existing tick occurrence record, the predicted distribution showed that A. persicus could have a
wider range of distribution in central north China and in the west of XUAR.
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(i): R. sanguineus sensu lato; (j): R. turanicus.

(ii) Dermacentor ticks—D. marginatus ticks were predicted to have a potential distribution across
northwest (northern XUAR), central north (Gansu, Ningxia, Shanxi, north Shaanxi, and some places in
Inner Mongolia and Hebei Provinces) and northeast (north Liaoning, west Jilin, and parts of Inner
Mongolia, and Heilongjiang Province) China (AUC = 0.96, Figure 2b). It should be noted that although
without occurrence record, Ningxia Province was predicted to have suitable habitats for D. marginatus.
It was predicted that D. Nuttalli could have an extensive potential distribution throughout the west to
Northeast China (AUC = 0.93, Figure 2c), including south Gansu, Ningxia, north Shaanxi, Shanxi, Hebei,
Liaoning, Jilin, Heilongjiang and Inner Mongolia. Another important region was the Qinghai–Tibet
Plateau including central Tibet, west Sichuan, and parts of Qinghai and XUAR. The North China Plain
(e.g., Hebei) was found suitable for D. Nuttalli while the existing evidence on their presence in the
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region was limited. Dermacentor silvarum also had potential habitats distributed over central north and
northeast China (south Gansu, west Shaanxi, Shanxi, north Hebei, Liaoning, Jilin, Heilongjiang, Beijing
and Tianjin) (AUC = 0.96, Figure 2d). Although there were some occurrence records of D. silvarum,
South China was predicted to be less suitable for D. silvarum.

(iii) Haemaphysalis ticks—Haemaphysalis concinna ticks were predicted to be widely distributed
in central (south Shaanxi, south Gansu, Henan, Shandong, Chongqing, east Sichuan, west Hubei,
west Hunan, and south Shanxi) and northeast (Liaoning, Jilin, and Heilongjiang) China (AUC = 0.96,
Figure 2e). In Liaoning Province, where occurrence records were rare, many places were found to be
suitable for H. concinna. Compared with existing evidence, the model predicted extended west, east and
south boundaries of H. concinna. Haemaphysalis longicornis ticks were predicted to mostly distributed in
central to southwest China, covering Henan, Shandong, Jiangsu, Anhui, Hubei, Chongqing, north
Zhejiang, south Liaoning, south Shaanxi and north Guizhou Provinces (AUC = 0.96, Figure 2f). Among
these areas, Chongqing Provinces had no occurrence records of H. longicornis yet.

(iv) Ixodes ticks—The potential habitat of I. granulatus was predicted to be mainly in south China,
including Yunnan, Guizhou, Jiangxi, Fujian, north Guangxi, south Zhejiang, and some parts of Anhui,
Hunan, Guangdong, Chongqing, and Taiwan (AUC = 0.98, Figure 2g). The model predicted an
extended distribution of I. granulatus in Jiangxi, Guangxi, Hunan, and Guangdong Provinces.

(v) Rhipicephalus ticks—The AUC training value of was 0.935, confirming a very good simulation
result. Rhipicephalus microplus ticks were predicted to be able to survive largely across south China
(Yunnan, Guizhou, Chongqing, Hunan, Jiangxi, Hubei, Henan, Anhui, Jiangsu, Shandong, Guangdong,
east Sichuan, Fujian, Zhejiang, south Shaanxi, Guangxi, and Taiwan) (AUC = 0.94, Figure 2h).
Rhipicephalus microplus had a predicted potential distribution far more extensive than what the existing
data could tell. For example, southeast China was rarely considered as a region suitable for R. microplus.
However, the model predicted that many places in the region had potential habitats. The potential
distribution of R. sanguineus sensu lato ticks was predicted to cover central (south Hebei, Henan, Shandong,
Jiangsu, Anhui, Hubei, and east Sichuan provinces) and south China (south Guangxi, Guangdong, Hunan,
Jiangxi, Fujian, Zhejiang, Hainan and west Taiwan) (AUC = 0.93, Figure 2i). It must be pointed out
that R. sanguineus sensu lato had a tendency of extending to the north. R. turanicus had a very limited
potential distribution in central west XUAR (AUC = 0.99, Figure 2j). They were predicted to be likely
to occur in Gansu, Inner Mongolia, and Ningxia in which no occurrence records of R. turanicus were
found previously.

4. Discussion

Early MaxEnt model applications on mapping tick distribution are dated back to 2006 when
the model was first established. The model has been recognized as efficient and adequate in
predicting the distribution of ticks with acceptable performance [54,55]. By taking advantages of
the advanced modelling method, most up-to-date tick distribution dataset in China and improved
knowledge on the population ecology of ticks [28,56], this study provided novel evidence on the
potential determinants and spatial pattern of tick distribution in China, where impacts of ticks were
understudied. It should be noted that, the model predictions could better be understood as the
environmental suitability of tick occurrence (or tick survival) rather than the real presence of tick
species. The determinants could indicate that ticks were likely to find potentially suitable habitats
given the cell-level land-use/soil/climatic conditions.

To our knowledge, this study was probably the first study on projecting the potential distribution
of multiple major tick species for the whole of China. We found that there was an extensive amount of
area in China potentially suitable for the occurrence of various tick species. Amongst the ten selected
tick species, A. persicus, D. marginatus, D. nuttalli, D. silvarum, H. concinna, and R. turanicus were
more likely to have suitable habitats in the relatively drier North China of the temperate continental
climate. Regions with larger projected suitable tick habitats include northern Xinjiang, Liaoning,
Jilin, Heilongjiang, Ningxia, Shaanxi, Shanxi, Southern Gansu, Shandong, and Henan provinces.
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South China, which is of tropical, subtropical monsoon climate (hot weather and ample rainfall in
summer; mild weather and limited rainfall in winter) was found to have suitable habitats for H. concinna,
H. longicornis, I. granulatus, R. microplus, and R. sanguineus sensu lato in Yunnan, eastern Sichuan,
Guizhou, Chongqing, Fujian, Zhejiang, and Jiangsu provinces. A relevant recent study [57] predicted
a similar pattern of climate suitability of D. marginatus presence in north Xinjiang. Finally, South
Xinjiang, west Qinghai and north Tibet were projected to be less suitable for ticks to survive, owing
to the fact that they belong to the Qinghai–Tibet Plateau which is known to have extreme weather
conditions (long and dry winter with a strong wind as well as cold and rainy summer with hail) and
low biodiversity [58].

The environmental determinants of tick occurrence identified in this study were mostly in
agreement with existing findings. Among the climatic factors included, the precipitation of the driest
month was found as a key determinant. Maintenance of tick population depends on tick feeding
on hosts or the host-seeking activities which could be influenced by climatic factors such as relative
humidity and temperature [59]. Existing studies have underlined the significant associations between
questing tick pattern and precipitation [60], vapor pressure [61] and saturation deficit [62]. Specifically,
H. concinna ticks were found to be more dependent on a humid environment, provided that precipitation
and soil moisture had a greater impact on their spatial distribution.

Moreover, the MaxEnt and the five machine learning models predicted that land use played
a more critical role in shaping tick distribution than climatic (temperature, precipitation), soil and
vegetation (NDVI) factors considered in this study. While most existing studies [10,27,63] on projecting
future tick distribution considered climatic variables solely, our findings highlighted the importance
of taking into consideration future land use pattern. The extent of cropland and forests were found
vital as they could provide (i) sheltered, humid microenvironment suitable for tick survival [64];
(ii) habitats for host animals which could provide blood meals essential for tick development and
reproduction [65,66]. The projected distribution of selected tick species was determined by different
land use factors geographically. In the center and south China, natural factors (i.e., temperature,
precipitation, soil) had better contributions than in the north. The tick species in the center and south
China (i.e., H. longicornis, R. microplus) were found to be highly associated with the extent of cropland,
suggesting these species might adapt to habitats close to human agricultural activities. On the contrary,
the tick species more prevalent in the north (i.e., H. concinna, D. silvarum) were found to be more related
to forests and grassland. Such findings pinpointed the necessarily to carefully manage the likely public
and veterinary health effect of forest land-use change; for example, the afforestation practices planted
resulted from the giant Three-North Shelter Forest Program (1978–2050).

A very interesting finding was that the extent of urban fabric was identified as a key determinant,
which seemed to be mostly neglected in studies looking into associations between tick presence
and land use. Its effects were found to be different between species: the extent of urban fabric was
positively related to the presence of A. persicus, D. nuttalli, D. silvarum and R. sanguineus sensu lato
ticks but negatively associated with the occurrence of D. marginatus, I. granulatus, and R. turanicus.
A negative association could probably mean where urban areas were dominating, tick habitats in
the wild were shrunk and damaged. However, reasons for a positive association remained unclear,
for which future studies are required. Nevertheless, a positive relationship between tick occurrence and
extent of the urban area revealed that ticks were likely inhabited close to where people live, and, thus,
a high potential risk human exposure to tick bites (and tick-borne diseases). Moreover, precipitation
of driest or wettest month had greater/weaker influence on the presence of the species which were
negatively/positively associated with the extent of the urban area. It thus seemed that urban land use
conditions were capable of altering the effects of climatic variables on projecting tick presence.

The present study has several shortcomings, for which future improvements and research
directions could be suggested. First, although the tick occurrence dataset used was the most up-to-date
open-access tick data product in China, it could only support the distribution modelling of a limited
number of tick species of the whole of the country. Future efforts on compiling a more comprehensive
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georeferenced tick dataset are therefore recommended. Second, the MaxEnt model was used since
it was confirmed to have better performance in predicting the potential distribution of species with
the presence-only data [67,68]. However, there are certain limitations for MaxEnt [69]; for example,
it could provide a large prediction for the existing conditions beyond the study area. Future studies
were suggested to make combined use of multiple modelling and evaluation approaches for coherent
model projections. Third, geographical sampling bias in the tick distribution dataset was corrected
to some extent by removing duplicated records in the same locations and ensuring the minimal
distances between sampling records. Such corrections could lead to improvement of the model’s
goodness-of-fit [70]. Future SDM studies were encouraged to conduct a careful examination and
elimination of geographical sampling bias before modelling. Fourth, we only studied the potential
distribution of ticks in China under the current environmental conditions. Projections of their future
distribution under the plausible land-use and climatic changes would also be of importance to strengthen
the prevention and control of ticks in China. Fifth, bioclimatic variables derived from remote sensing
were regarded to be able to improve the prediction performance of SDM [71]. Remote sensing techniques
can help to monitor the change of landscape over time [72]. Surface temperature data can be captured by
remote sensing products like the Operational Land Imager (OL) on Landsat 8 and the Medium Resolution
Imaging Spectrometer (MODIS), while products such as Tropical Rainfall Measurement Mission (TRMM)
and Global Precipitation Mission (GPM) can provide precipitation data [35,72].

5. Conclusions

We conducted a modelling study to project the potential distribution of ticks—an understudied
disease vector in China. By using several machine learning models, we found that the presence of
urban fabric, cropland, and forest and precipitation in the driest month in a place where the key
determents of tick occurrence. The MaxEnt model projected that ticks were widely distributed in
the Northwest, Central, North, Northeast, and South China, with the key geographical foci being
the northwest Xinjiang Uyghur Autonomous Region (for A. persicus, D. marginatus, and R. turanicus
ticks), and northeastern regions including Liaoning, Jilin, Heilongjiang Provinces and Inner Mongolia
Autonomous Region (for A. persicus, D. marginatus, D. nuttalli, D. silvarum, and H. concinna ticks). Future
research directions are suggested towards improving the quantity and quality of the tick occurrence
dataset, utilizing integrated modelling and evaluation approaches, and making future distribution
projections based on both land-use and climatic conditions.
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