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Abstract 23 

Understanding and modelling the development of lake phytoplankton communities is a 24 

desirable goal, given the importance of these organisms to their ecosystem.  PROTECH 25 

(Phytoplankton RespOnses To Environmental CHange) is one such model which attempts to 26 

do this and its applications over the last 10 years are reviewed here.  These studies include: 27 

modelling very large lakes, linking catchment models to PROTECH, simulating oxygen 28 

concentrations, understanding the importance of nutrient source in moderating the influence 29 

of hydraulic retention time.  Furthermore, the merits of ensemble lake modelling are 30 

considered, as are the limits of short term forecasting of blooms.  Finally, climate change 31 

influences are examined with studies that include nutrient changes and an experiment that 32 

attempts to separate the influences of temperature and mixed depth.  33 

 34 

 35 

  36 



Introduction 37 

Understanding the responses of ecosystems to drivers lies at the heart of most ecological 38 

research.  Through quantification of the environment, mathematical relationships can 39 

sometimes be found which describe these responses leading to the possibility for prediction 40 

and modelling.  This quantification can be derived from observational field data or 41 

experiments and it was the latter that Colin Reynolds used in the 1980s to explore the nature 42 

of phytoplankton growth rates. 43 

   Reynolds (1989), through a series of laboratory experiments under idealised 44 

conditions, found relationships between the growth rates of a range of different lake 45 

phytoplankton species and their morphology.  Thus, if the surface area, volume and 46 

maximum linear dimension of a species was known, the response of its growth rate to 47 

changes in temperature and light availability could be estimated using equations derived from 48 

Reynolds’ experiments. 49 

 Following this work, Reynolds went on to begin the construction of a computer model 50 

with a colleague, Anthony Irish.  At its heart lies the equations of Reynolds (1989) but further 51 

enumeration was required to allow for the effects of nutrient limitation upon growth rates and 52 

various loss processes such as zooplankton grazing, sedimentation and flushing removal.  53 

With the final addition of species-specific daily vertical movements, the biological core of the 54 

new PROTECH (Phytoplankton RespOnses To Environmental CHange) model was 55 

complete.  The conception, equations and first 10 years of research of the PROTECH model 56 

was extensively reviewed in Elliott et al. (2010), but this review will consider the new 57 

PROTECH research from the last 10 years after a brief overview of the model.   58 

 59 

The PROTECH model 60 



PROTECH is a 1D-lake phytoplankton community model that works in daily time steps.  The 61 

spatial structure is constructed using bathymetry data describing the changing surface area 62 

and volume.  This creates a series of vertical layers in the model, each 0.1 m deep.  The 63 

physical thermal profile can be either calculated based on daily meteorological inputs (air 64 

temperature, wind speed and air humidity) and inflow water temperature or it can be read in 65 

from observed data or another model.  A further physical consideration is to model water 66 

exchange in the lake through inflow and outflow discharge.  In PROTECH, it is assumed the 67 

water entering the lake mixes with the surface mixed layer and the water leaving the lake also 68 

comes from this layer unless it is a reservoir system where water is abstracted at depth.   69 

 The biological component is primarily focused on the phytoplankton community.  The 70 

individual phytoplankton are characterised by their morphology, daily movement, 71 

vulnerability to grazing and nutrient requirements to reflect nitrogen-fixation and diatoms 72 

(Table 1).  The morphology information is used by the equations from Reynolds (1989) to 73 

create phytoplankton specific potential growth rates for each depth layer in the model, 74 

responding to changing temperature and light availability.  The availability of nutrients to 75 

support this growth is checked using specific thresholds (3, 80, 500 mg m-3 for phosphorus, 76 

nitrate and silica respectively) and the growth rate reduced proportionally if any nutrients are 77 

limiting.   78 

Phytoplankton biomass loss is caused by filtration-based zooplankton grazing (the 79 

phytoplankton maximum dimension must be < 50 µm, although there can be exceptions 80 

based on natural observations), sedimentation out of the water column and dilution wash-out 81 

caused by water exchange.  Thus, after balancing the growth with the losses, a daily net gain 82 

in biomass can be calculated for each layer in the model.  Clearly, the model is more detailed 83 

than this brief overview suggests and for further information it is recommended to consult 84 

Elliott et al. (2010).  Finally, at the time of the Elliott et al. (2010) review, PROTECH had 85 



been applied in the peer-reviewed literature to ten water bodies, predominately in the UK 86 

(Table 2).  However, since then the model has been used in many more new studies (Table 2), 87 

which are considered in this review. 88 

 89 

Applying PROTECH to large lakes 90 

Pre-2010, PROTECH had mainly been applied to relatively small lakes with the exception of 91 

Lake Erken, Sweden (24 km2; Elliott et al., 2007).  However, since then it has been applied to 92 

the UK’s largest lake, Lough Neagh (383 km2; Elliott et al., 2016), Pyhäjärvi in Finland (154 93 

km2; Pätynen et al., 2014) and Lake Simcoe, Canada (2899 km2; Crossman & Elliott, 2018; 94 

Crossman et al., 2019).  Given the model’s 1D nature, these studies were a new challenge and 95 

for the first two studies, yet PROTECH performed satisfactory with only one modification 96 

regarding sediment nutrient release, which is discussed below.  However, for the very large 97 

Lake Simcoe, the lake had to be divided into three separate basins where two side arms fed 98 

into the large main basin and this approach worked well with the outflows from the separate 99 

side arm simulations becoming inflows into the main basin simulation.  It is amusing to note 100 

that these two “side arms” were individually a similar size to England’s largest lake, 101 

Windermere! 102 

 Furthermore, these studies highlighted a weakness in PROTECH regarding the 103 

model’s lack of functions to elucidate nutrient release from sediments.  In such large surface 104 

area water bodies, sediment inputs can be an important source of nutrients, particularly 105 

phosphorus, and from the three lakes discussed above a forced input of phosphorus had to be 106 

added to the model using observed in-water nutrient data as a guide.  Some other lake models 107 

do include such functions (e.g. PCLake (Janse, 1997)) and it is something that will hopefully 108 

be added to PROTECH in the future.  However, one of the problems is that such a function 109 



would require knowledge of nutrient sediment concentrations, something that is rarely 110 

measured in standard programs of lake monitoring.  This lack of data has certainly been the 111 

case in many previous PROTECH studies, hence the forced introduction of nutrients to the 112 

water column using in-lake measurements of nutrients. 113 

 114 

Linking the catchment to the lake through modelling 115 

Lakes are intrinsically part of their catchment and are affected by the types of land that make 116 

up that area.  Given this connection, it is understandable that the management of catchments 117 

is a prevalent method for reducing nutrient inputs to lakes and thus improve their trophic 118 

status.  It also follows that using models that can adequately describe this connection are very 119 

useful in exploring how changes in land use might impact upon the lake phytoplankton. 120 

 An example of such a cascade of different models is Norton et al.’s (2012) study of 121 

Loweswater, UK, where a catchment model’s (GWLF; Schneidermann et al., 2002) output 122 

was used to drive PROTECH.  Loweswater was suffering from poor water quality and 123 

cyanobacteria blooms due to high nutrient inputs from the surrounding farm land.  The 124 

investigation tested the relationship between these nutrient inputs and the phytoplankton 125 

produced by the lake through the application of a number of different land use scenarios.  126 

These covered different ratios of livestock (cattle and sheep) as well as more extreme 127 

scenarios such as no livestock with all grassland or all woodland. 128 

 The wide range of phosphorus loads created by the GWLF model and these nutrient 129 

outputs were used to drive PROTECH.  The resultant outputs from the two models allowed 130 

the relationship between nutrient load and the modelled phytoplankton community to be 131 

described (Figure 1).  This was interesting because it showed that PROTECH produced two 132 

different responses to the changing phosphorus loads.  For example, the annual mean 133 



chlorophyll produced by PROTECH grew with increasing loads producing an asymptotic-like 134 

curve whereas the increase in the cyanobacteria part of the community was linear (Figure 1).  135 

Thus, the study suggested there was an escalating trend cyanobacteria dominance within the 136 

community with increasing input nutrient load, despite a declining rate in production of 137 

overall biomass. 138 

 139 

 140 

Modelling oxygen concentrations in PROTECH 141 

Oxygen was not a variable originally considered in PROTECH, so in a study that wished to 142 

simulate the potential impact of climate change on the Vendace (Coregonus albula (L.)) fish 143 

species, the Lake OXygen model (LOX; Bell et al., 2006) was added into PROTECH (Elliott 144 

& Bell, 2011).  LOX works by dividing the vertical component of the lake into two layers 145 

(epilimnion and hypolimnion) and its equations were used to create a new sub-routine in 146 

PROTECH.  By using PROTECH’s temperature and chlorophyll data, LOX can estimate the 147 

dissolved oxygen concentrations in the two layers and through a simple depth function create 148 

an oxygen profile from the surface to the bottom of the lake.   149 

If the approach of other lake models is considered, LOX’s complexity is comparable 150 

to PCLake’s oxygen calculations (Janse, 1997), but is simplistic compared to DYRESM-151 

CAEDM (Hamilton & Schladow, 1997), which uses process-based calculation throughout all 152 

of its layers,   Nevertheless, LOX proved effective both for the Vendace study in 153 

Bassenthwaite Lake, UK (R2 > 0.7 against fortnightly observed O2; Elliott & Bell, 2011) and 154 

for the Lake Simcoe, Canada, study (R2 > 0.8 against monthly mean observed O2; Crossman 155 

& Elliott, 2018) where the impacts of catchment land use changes on the lake’s oxygen 156 

concentrations were simulated. 157 



 158 

The effect of changes in hydraulic retention time 159 

Building upon previous PROTECH studies (Elliott et al., 2009; Elliott, 2010), further work 160 

explored the importance of changing hydraulic retention time upon phytoplankton.  Many 161 

aspects of weather are predicted to change in the future and in a study focused on the 162 

eutrophic Loch Leven, UK, PROTECH was used to assess the relative importance of 163 

increasing water temperature and changing retention time (Elliott & Defew, 2012).  The 164 

study showed clearly that changes in inflow, both increase and decreases, were of greater 165 

importance than temperature increase as large as 4 oC.  In general, increased inflows which 166 

caused a reduction in retention time were detrimental to the slower growing species in the 167 

model leading to the heightened presence of smaller, faster growing phytoplankton.  168 

However, this flow effect had a seasonal aspect to it because at times of year with naturally 169 

low flows (e.g. summer), an increase actually benefited the phytoplankton by providing more 170 

nutrients at a time when they were limiting growth.  This was because the source of nutrients 171 

to the lake were assumed to be diffuse leading to an increase in flow delivering a greater 172 

nutrient load to the lake. 173 

 This importance of nutrient source was explored further in a PROTECH study of 174 

Bassenthwaite Lake, UK (Jones et al., 2011).  This model experiment recognised the 175 

relationship between nutrient load to a lake and the type of nutrient source.  Specifically, this 176 

means a load derived from a point nutrient source is independent of the flow whereas a 177 

diffuse source load changes in proportion with inflow.  To test the importance of source, 32-178 

year flow scenarios were run based on a number of climate change scenarios.  These runs 179 

provided a large range of retention times over which annual and seasonal means could be 180 

calculated.   181 



The results showed that the sensitivity of nutrient source to changes in flow was 182 

seasonally dependent: winter and autumn were the least responsive with spring and summer 183 

being the most sensitive.  Furthermore, for the sensitive seasons, the nature of the relationship 184 

was greatly dependent upon nutrient source.  Thus, for the flow-independent scenarios short 185 

retention times produced less phytoplankton biomass than when retention time was long 186 

(Figure 2).  Conversely, with flow dependence, high inflows increased biomass and low 187 

flows saw little decline in chlorophyll (Figure 2).  The mechanism behind these differences 188 

was the balance between the dilution loss of biomass caused by high flows and the potential 189 

to bring more nutrients into the lake and thus stimulate more phytoplankton growth.  190 

Therefore, whilst the former is a universal effect with high flows, the latter can only happen 191 

under the flow-dependent (diffuse) conditions. 192 

 193 

Ensemble modelling 194 

Uncertainty in model parameters and construction is a constant issue.  An approach used in 195 

other disciplines (e.g. weather forecasting) is to apply different versions of the same model 196 

(the most common approach) or different models (much rarer) to the same scenarios and then 197 

amalgamate the results to provide a predicted mean and uncertainty envelope.  In ecology, 198 

though, it is a method that seems to be rarely used therefore, in Trolle et al. (2014) an 199 

ensemble of different lake models was applied to Lake Engelsholm, Denmark. 200 

 Three lake models formed the ensemble: DYRESM-CAEDYM (Hamilton & 201 

Schladow, 1997), PCLake (Janse, 1997) and PROTECH.  It should be noted that this 202 

approach of using independently created models for the ensemble is rare and clearly has a 203 

greater capability of capturing more levels of uncertainty than would be gained from simply 204 

using re-parametrisations of one model.  For calibration and validation, a three-year 205 



simulation was conducted and model performance at the daily and monthly level was 206 

assessed using observation data to determine the coefficient of determination (r2) and relative 207 

absolute error.  These statistics showed clearly that the mean values created from the three 208 

individual models’ outputs was a better fit to the observations than any individual model 209 

managed to produce.  Coupled with that, the combination of the models also produced an 210 

uncertainty range using the minimum and maximum values from the models.  This showed 211 

that the greatest area of uncertainty was during the summer where phytoplankton biomass 212 

was at its highest.  Using this baseline, a number of climate change scenarios were then run 213 

for the lake and showed that small increases in water temperature increased both the total 214 

phytoplankton and cyanobacteria biomass. 215 

 216 

Forecasting phytoplankton abundance 217 

Being able to forecast phytoplankton abundance in a way similar to weather forecasts is a 218 

challenging goal but it was attempted recently using PROTECH.  This ambitious programme 219 

of research had two phases, the first being to test and understand the behaviours of 220 

PROTECH when driven by high frequency in-lake observations (Page et al., 2017).  This was 221 

done using sub-daily buoy data collected from three lakes in the English Lake District 222 

(Blelham Tran, Esthwaite Water and Windermere).  The results revealed that the most 223 

difficult aspect of forecasting was not the future weather uncertainty but rather the 224 

uncertainty surrounding the daily nutrient load to the lake.    225 

Building upon this initial testing, a second phase of modelling used historic weather 226 

forecasts that used an ensemble of 50 simulations of 10-days-ahead weather to drive the 227 

model coupled with stochastic perturbations of model parameters (Page et al., 2018).  This 228 

allowed PROTECH, day by day, to forecast a range of possible futures and create an 229 



uncertainty envelope.  Windermere and Esthwaite Water were used for these tests and the 230 

results were compared to the benchmark prediction of persistence i.e. the chlorophyll 231 

concentration will not change over the 10-day forecast period and is reset to equal new 232 

observation data when they become available every two weeks.  Given this criteria, 233 

PROTECH was only better than the persistence forecast at a forecast range of less than six 234 

days.  In terms of the cyanobacteria forecast, the model was not successful of predicting its 235 

biomass, showing the limitations of the approach at predicting specific species although it 236 

was more successful at predicting functional types i.e. low-light or low-nutrient specialists. 237 

 238 

Climate change and nutrient load impacts 239 

Building on previous PROTECH investigations (Elliott et al., 2006; Elliott & May, 2008), 240 

two additional studies were conducted examining the combined impact changing temperature 241 

and nutrient load.  These studies explored lakes that were different to the previous studies, 242 

specially a larger lake (Windermere, UK) and a deep lake with a small surface area 243 

(Rostherne Mere, UK). 244 

 Windermere is England’s largest lake (64 m deep, 14.7 km2 surface area) and has 245 

been a focal point for tourism in the English Lake District for over 100 years (McGowan et 246 

al., 2012).  Correspondingly, the lake has been under ever-growing anthropological pressure 247 

both in terms of its usage and ecosystem health.  How those pressures would affect 248 

Windermere in the future was the subject of a PROTECH investigation where water 249 

temperature and nutrient load were altered in a factorial modelling experiment (Elliott, 2012).   250 

 Assessing the impact of these changes, it was clear that the simulated spring diatom 251 

bloom was more influenced by the changes in temperature than nutrients, showing earlier 252 

bloom peaks with increasing temperature.  However, in the summer period increasing 253 



nutrient load and water temperature synergised to enhance cyanobacteria growth.  This led to 254 

more days of exceedance of the World Health Organisation’s cyanobacteria threshold of 10 255 

mg m-3, but nutrients were the crucial factor with the reduced nutrient scenarios greatly 256 

limiting the temperature impacts. 257 

 Rostherne Mere is a very different lake to Windermere with a depth of 31 m but only 258 

a surface area of 0.49 km2 (Radbourne et al., 2019).  This basin shape leads to it having a 259 

long, stable period of stratification lasting 9-10 months and to a depth of 10 m.  Historically, 260 

the lake has suffered from eutrophication driven by external nutrient sources, which led to the 261 

diversion upstream of sewage effluent in 1991.  However, due to the strong stratification in 262 

the lake and corresponding sediment nutrient release, recovery has been very slow (Moss et 263 

al., 2005).  Therefore, to explore the potential future trajectories of recovery for Rostherne 264 

Mere, the PROTECH model was applied (Radbourne et al., 2019). 265 

 The study used future climate scenarios from the UKCP09 projections (Murphy et al., 266 

2009) and coupled them with a range of external and internal nutrient scenarios.  The results 267 

reinforced the importance of the internal nutrient problem, quantifying that substantial 268 

reductions in this source for decades would be needed to see improvements in the lake.  269 

However, the scenarios towards the end of 21st century actually showed a reduction in 270 

phytoplankton biomass because, with an increase in stratification length, the reliance by 271 

phytoplankton upon external nutrients increased and given that this source had been reduced, 272 

late summer biomass declined.  Nevertheless, the winter overturn of the water column still 273 

brought the considerable amounts hypolinimon nutrients to the surface, meaning that long-274 

term recovery was still hindered. 275 

 276 

Disentangling mixed depth and temperature effects 277 



The thermal structure of a lake varies annually in temperate regions with the formation and 278 

dissipation of stratification occurring in many lakes.  Physically, temperature and mixed layer 279 

depth vary together as both variables can influence each other.  However, changes in 280 

temperature and mixed depth effect phytoplankton communities in different ways with the 281 

former influencing cell metabolic processes and the latter effecting light and nutrient 282 

availability.  Given this correlation between temperature and mixing, it is very difficult to 283 

attribute cause and relative importance to any observed changes in the lake phytoplankton.284 

 Therefore, a PROTECH experiment on Blelham Tarn, UK, was conducted to separate 285 

these relative effects by forcing the modelled lake structure (Gray et al., 2019).  Essentially, 286 

this meant artificially manipulating the mixed depth in the model independently of changing 287 

the temperature and vice versa.  Whilst such a thing would be highly unlikely in the real 288 

world, it did allow great insight into the relative importance of changes in mixing and 289 

temperature.  For example, whilst stratification length was prevented from changing in the 290 

model scenarios, increasing temperature alone caused an earlier spring bloom by accelerating 291 

growth rates in the phytoplankton. Given such advances in bloom timing have been observed 292 

in lakes (e.g. Thackeray et al., 2010), this model experiment shows that although changes in 293 

stratification can be a cause of such advancement, temperature alone is capable of producing 294 

the same effect. 295 

 Another emergent model result concerned cyanobacteria blooms in the summer and 296 

autumn periods.  Here, two different types of cyanobacteria dominated with different mixed 297 

depths as temperature increased.  Thus, the Dolichospermum-type in PROTECH thrived with 298 

shallow mixing whilst the Plantothrix-type dominated with deep mixing.  This suggested that 299 

a shallowing of mixed depth in lakes where mixing is not too deep (e.g. < 5 m) would see 300 

greater blooms of buoyant cyanobactera.  Conversely, lakes that currently experience blooms 301 



of low-light tolerant phytoplankton, like Plantothrix, might see a decline in their dominance 302 

if the deeper mixing (e.g. > 10 m) seen in those lakes shallowed in the future. 303 

 304 

The legacy of Colin Reynolds: PROTECH 305 

This review forms part of a special issue celebrating the legacy of Colin Reynolds who sadly 306 

passed away in December 2018.  That legacy includes PROTECH, a model which Colin was 307 

so fundamental in conceiving and creating.  When I was lucky enough to fall under Colin’s 308 

mentorship and begin to use PROTECH, we used to joke that the model was a digitization of 309 

his brain, taking his great knowledge of phytoplankton and turning it into the “0s and 1s” 310 

binary of the computing world! 311 

 Of course, since those early days, PROTECH has continued to be applied to lakes all 312 

around the world, flourishing and developing to face new challenges and creating a growing 313 

body of research, the latest of which has been reviewed here.  I have no doubt that in the 314 

future PROTECH will continue to contribute to our understanding of lakes and their 315 

phytoplankton, and that through such work, an important part of Colin’s legacy will live on. 316 

 Finally, I would like to record here my heartfelt thanks to Colin for all the support he 317 

gave me over the years: he was a great mentor, colleague and, perhaps most importantly, 318 

friend.  You are missed by me, every day. 319 

 320 

  321 



Table 1.  Some examples of the information used by the model to simulated a given 322 

phytoplankton. 323 

Name: Chlorella Asterionella Dolichospermum 

Maximum Dimension µm 4  130 75 

Surface Area µm2 50  6690 6200 

Cell Volume µm3 33  5160 29000 

Grazed: True True False 

Diatom: False True False 

Nitrogen fixer: False False True 

Move per day: Down 0.1 m Down 0.2 m Light condition (µmol photon 

m-2 s-1): 

>100 = Down 0.3 m 

>30 =  Down 0.1 m 

<30 but >10 = No move 

<10 = Up 0.1 m 

 

 324 
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 334 

 335 

Table 2.  List of lakes and reservoirs where PROTECH has been applied and tested in peer-336 

reviewed studies.  Studies post-2010, considered in this review, are highlighted in bold. 337 

 338 
 339 

Water body (Country)  Trophic status Reference 

Bassenthwaite Lake (UK) Mesotrophic/Eutrophic Elliott et al., 2006; 

Bernhardt et al., 2008 

Blelham Tarn (UK) Eutrophic Elliott et al., 2000; Gray et 

al., 2019 
El Gergal Reservoir (Spain) Eutrophic Elliott et al., 2005 

Lake Engelsholm (Denmark) Eutrophic Trolle et al., 2014 

Esthwaite Water (UK) Eutrophic Elliott, 2010 

Lake Erken (Sweden) Mesotrophic Elliott et al., 2007 

Farmoor Reservoir (UK) Mesotrophic/Eutrophic Hutchins et al., 2018 

Loch Leven (UK) Mesotrophic/Eutrophic Elliott & May, 2008; Elliott 

& Defew, 2012 

Loweswater (UK) Eutrophic Norton et al., 2012 

Myponga Reservoir (Australia) Eutrophic Lewis et al., 2002 

Lough Neagh (UK) Eutrophic Elliott et al., 2016 

Pyhäjärvi (Finland) Mesotrophic/Eutrophic Pätynen et al., 2014 

QE II Reservoir (UK) Eutrophic Reynolds et al., 2005 

Rostherne Mere (UK) Eutrophic Radbourne at al., 2019 

Lake Simcoe (Canada) Mesotrophic Crossman & Elliott, 2018; 

Crossman et al., 2019 

Ullswater (UK) Oligotrophic Bernhardt et al., 2008 

Wastwater (UK) Oligotrophic Elliott & Thackeray, 2004 

Windermere (UK) Mesotrophic Elliott, 2012 

 340 
 341 

 342 

  343 



 344 

Fig. 1   The modelled relationship between changing Loweswater catchment soluble reactive 345 

phosphorus (SRP) load and annual mean concentrations of total (solid line) and cyanobacteria 346 

(dashed line) chlorophyll a.  Adapted from Norton et al. (2012) removing the individual 347 

scenario data points to show only the relationships. 348 
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 356 

Fig. 2.  Illustration of the modelled relationship between summer mean chlorophyll and 357 

retention time when the nutrient source for the lake is either flow independent (solid line) or 358 

flow dependent (dotted line). 359 

 360 
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