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1 Abstract

2 3D X-ray micro-CT (XCT) is a non-destructive 3D imaging method, increasingly used for a wide range 

3 of applications in Earth Science. An optimal XCT image-processing workflow is derived here for 

4 accurate quantification of porosity and absolute permeability of heterogeneous sandstone samples using 

5 an assessment of key image acquisition and processing parameters: Image resolution, segmentation 

6 method, representative elementary volume (REV) size and fluid-simulation method. XCT image-based 

7 calculations obtained for heterogeneous sandstones are compared to two homogeneous standards (Berea 

8 sandstone and a sphere pack), as well as to the results from physical laboratory measurements. An 

9 optimal XCT methodology obtains porosity and permeability results within ± 2% and vary by one order 

10 of magnitude around the direct physical measurements, respectively, achieved by incorporating the clay 

11 fraction and cement matrix (porous, impermeable components) to the pore-phase for porosity 

12 calculations and into the solid-phase for permeability calculations. Two Stokes-flow finite element 

13 modelling (FEM) simulation methods, using a voxelised grid (Avizo) and tetrahedral mesh (Comsol)  

14 produce comparable results, and similarly show that a lower resolution scan (~5 µm) is unable to resolve 

15 the smallest intergranular pores, causing an underestimation of porosity by ~3.5 %. Downsampling the 

16 image-resolution post-segmentation (numerical coarsening) and pore network modelling both allow 

17 achieving of a representative elementary volume (REV) size, whilst significantly reducing fluid 

18 simulation memory requirements. For the heterogeneous sandstones, REV size for permeability (≥ 1 

19 cubic mm) is larger than for porosity (≥ 0.5 cubic mm) due to tortuosity of the fluid paths. This highlights 

20 that porosity should not be used as a reference REV for permeability calculations. The findings suggest 

21 that distinct image processing workflows for porosity and permeability would significantly enhance the 

22 accurate quantification of the two properties from XCT.

23 Key words: Microstructure, Permeability and porosity, Numerical modelling, Core, Image processing.
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24 1. Introduction

25 3D X-ray micro-CT imaging (XCT) is a non-destructive, volumetric imaging technique used for 

26 understanding the internal structure of materials. XCT has a wide range of applications in Earth Science, 

27 including palaeobiology (Tafforeau et al., 2006), volcanology (Zhu et al., 2011), mining (Ghorbani et 

28 al., 2011), hydrocarbon recovery and environmental applications such as carbon sequestration (Krevor 

29 et al., 2015). XCT for core image analysis has grown in use due to the wider availability of XCT scanners 

30 at academic institutions and industrial facilities (Shearing et al., 2018), and the easier access to high 

31 memory workstations and supercomputers, capable of performing the calculations required for 3D 

32 reconstruction and image processing of large tomographic datasets. Synchrotron-based X-ray sources 

33 are becoming more greatly accessible, which produce faster scans at high resolution and phase contrast, 

34 generating higher quality images (Fusseis et al., 2014). 

35 A number of standard physical laboratory methods can be used for quantifying the porosity and absolute 

36 permeability of rock samples, such us He-pycnometry, Hg-porosimetry and N2-permeability. Each 

37 method introduces uncertainties derived from the testing procedure and the accuracy of the sensors used.  

38 For instance, for permeability measurements, rock plugs have to be subjected to a minimum confining 

39 stress to ensure advective gas/water flow (e.g., Falcon‐Suarez et al., 2018), which may particularly affect 

40 measurements for unconsolidated samples. Furthermore, these tests are intrusive and can partially alter 

41 the original sample properties, including dissolution/precipitation effects during permeability to 

42 water/brine tests (e.g., Canal et al., 2012), incongruencies due to slip-flow effects between gas and water 

43 flow-through (Tanikawa and Shimamoto, 2009), or the inability to reuse samples after mercury 

44 porosimetry (Falcon-Suarez et al., 2018, Tanikawa and Shimamoto, 2009, Pittman, 1992). 

45 XCT analysis is a non-destructive technique, which allows a greater understanding of why porosity-

46 permeability variations exist in each sample, due to detailed visualisation of the pore- and grain-size 

47 distributions and orientations. XCT core image processing and analysis can be performed to calculate 

48 the physical properties of rocks and sediment (e.g. Callow et al., 2018). There is a common trade-off 

49 between image resolution and sample volume, which can lead to induced error and uncertainties of the 

50 calculations. However, robust XCT image processing workflows and pipelines can be used to optimise 
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51 the accuracy, repeatability and computational efficiency of the calculated physical properties (e.g. Berg 

52 et al., 2018).

53 Porosity and permeability of rock is determined using XCT image processing by classifying the rock 

54 into solid- and pore-phases. However, accurately distinguishing between solid and pore (void space) 

55 phases in granular materials that contain clays, cements and metastable solids able to precipitate in the 

56 pores (e.g., salt or hydrate), becomes more challenging. All natural sediments have some degree of 

57 heterogeneity, determined by complex variations in sediment erosion, transport, deposition and 

58 diagenetic processes, resulting in grain size and compositional variability (Worden and Burley, 2003). 

59 The majority of previous XCT-derived porosity-permeability assessment studies focus on the analysis 

60 of homogeneous sandstone samples for determining optimal image processing pipelines (e.g., 

61 Mostaghimi et al., 2013; Andra et al., 2013b; Saxena et al., 2017a). The degree of homogeneity is 

62 defined by the grain uniformity and pore size distribution, as well as the reduced proportion of clays and 

63 cement matrix. However, heterogeneous samples with a wider grain size range, a large proportion of 

64 clays and cement matrix, are more susceptible to errors associated with image processing. 

65 Heterogeneous samples may also demonstrate a greater spatial variation of measured physical 

66 properties. However, it remains unassessed the extent to which the image processing techniques used 

67 for porosity and permeability determinations of homogeneous sandstones can be readily applied to more 

68 heterogeneous samples.

69 The main sources of error and uncertainty for XCT image acquisition and processing are derived from 

70 the image resolution, image segmentation method, representative elementary volume (REV) size and 

71 the fluid flow simulation method. Image spatial resolution dictates the smallest feature that can be 

72 visually resolved and identified, which has been previously addressed by a number of authors using 

73 compositionally homogeneous sandstone samples (e.g. Saxena et al., 2017; Soulaine et al., 2016; Shah 

74 et al., 2016). Ideally, samples would be imaged at the highest image resolution and for the largest 

75 possible sample diameter. However, XCT imaging is limited to a length-scale which represents a trade-

76 off between achievable image resolution and imageable sample diameter (Cnudde and Boone, 2013). 

77 This trade-off creates errors associated with image resolution, REV size and segmentation. Image 
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78 resolution and REV can be defined as functions of average pore throat diameter (Dd) and effective grain 

79 size (Deff), respectively, for suitable comparisons between samples with varied grain and pore size 

80 distributions, as well as comparisons with other digital rock physics (DRP) studies (Eq. 1-2).

81 (1)𝑁𝐼 =
𝐷𝑑

Δ𝑥

82 (2)𝑁𝑅𝐸𝑉 =  
𝐿

𝐷𝑒𝑓𝑓

83 Where  is the ratio of Dd to voxel size (Δx), whilst  is the ratio of the cubic length of the sample 𝑁𝐼 𝑁𝑅𝐸𝑉

84 (  to Deff. A NREV value of one is equivalent to one grain diameter. For more homogeneous sandstones, 𝐿)

85 a study by Saxena et al. (2018) showed that values above 10 and NREV values above five are required 𝑁𝐼 

86 to accurately resolve the smallest pore throat diameters and achieve representative porosity-permeability 

87 calculations, respectively. 

88 Image segmentation is the process used to separate and distinguish between the solid and pore (including 

89 fluid) phases. A large number of segmentation methods are available (Iassonov et al., 2009, Schlüter et 

90 al., 2014), though this study focuses on the use of a 3D weka segmentation method which utilises open-

91 source software, is adaptable and is computationally efficient (Arganda-Carreras et al., 2017). The 

92 Trainable Weka segmentation method performed the best in an independent study of seven different 

93 segmentation methods, conducted by Berg et al. (2018). When quantifying the porosity and permeability 

94 of a rock sample, the REV size is the volume above which the derived porosity-permeability values no 

95 longer change significantly (Bear, 2018). Sample REV has also been previously addressed by multiple 

96 authors for more compositionally homogeneous sandstone (Ovaysi et al., 2014, Saxena et al., 2018, 

97 Mostaghimi et al., 2013). 

98 The lack of a standardized single method for quantifying permeability using XCT image-based 

99 technology has triggered the development of a number of flow solvers, which include both commercial 

100 and open source softwares. The software may be categorised into Voxel Based Solvers (VBS) and 

101 Lattice-Boltzmann Method (LBM) solvers. This study focuses on the former, and compares two Stokes-

102 flow finite element modelling (FEM) methods for calculation of permeability: A voxelised grid (Avizo) 
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103 and tetrahedral mesh (Comsol). Additionally, this study also calculates permeability quantified and 

104 upscaled using pore network modelling (Avizo) and MATLAB Reservoir Simulation toolbox (MRST), 

105 respectively. 

106 The ultimate aim of this study is to devise a reliable, repeatable, computationally efficient and robust 

107 XCT image processing methodology for the quantification of porosity and permeability of 

108 heterogeneous sandstones. To do this, we present an assessment of the main XCT image acquisition and 

109 processing parameters using four heterogeneous sandstone samples, which are compared to two 

110 homogeneous standards (Berea sandstone and a sphere pack), to understand the sensitivity of the 

111 porosity and permeability outputs to each parameter. We then compare four different image-based 

112 methods used to quantify permeability, to determine their validity and accuracy. The XCT results are 

113 also compared to laboratory physical measurements acquired from the same sample block (twin 

114 samples) and compared to the XCT results.

115 2. Materials and Methods

116 2.1. Sample description

117 The samples used in this study consist of two homogeneous sandstones (St1 - Berea sandstone, and St2 

118 - a sphere pack acquired from Andra et al. (2013a)) and four heterogeneous sandstones (A, A2, B and 

119 C) collected from a geological field site in Panoche Hills, California, USA (Vigorito and Hurst, 2010). 

120 The main component of the samples A-C were quartz mineral grains and a clay mineral fraction. 

121 Samples A, A2 and B are uncemented and C is cemented with silica (Opal-CT) (Figure 1). All samples 

122 were imaged using a laboratory scanner and subjected to physical laboratory tests (except for St2 and 

123 A2).  

124 For the physical laboratory tests, 25 mm length, 50 mm diameter samples were cored from a sample 

125 block representative of the samples A, B and C (Figure 1). Each sample was first oven-dried (at 50 °C), 

126 before being used to determine porosity by He-pycnometry and permeability to nitrogen (i.e., absolute 

127 permeability) under minimal confining pressure conditions (~0.8 MPa). Both determinations were 

128 repeated three times per sample. Thereafter, we refer to these tests as physical measurements. For the 
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129 XCT study, 25 mm length, 10-12 mm diameter samples were also prepared from the same precursor 

130 sample blocks (Figure 1).

131

132 2.2. X-Ray Micro-CT analysis

133 2.2.1. Image acquisition and reconstruction

134 3D X-ray micro-CT (XCT) scans of samples A-C were conducted using synchrotron X-ray imaging 

135 (Figure 2)(Bodey and Rau, 2017). The synchrotron has a parallel beam X-ray source. The specimens 

136 were pre-mounted on Scanning Electron Microscopy (SEM) stubs. The SEM stub holder at I13-2 was 

137 used to place the specimens in the path of the X-ray beam (Figure 2). 

138 3D reconstruction of the projections was performed using python-based Savu (Atwood et al., 2015). The 

139 reconstructed data for samples A-C had an isometric voxel size of 0.81 µm, while for St1 and St2 had a 

140 size of 5 µm and 3.5 µm, respectively (Figure 3). The sample volumes A-C are further processed using 

141 open-source software Fiji (ImageJ) (Schindelin et al., 2012). Following conversion from 32 bit to 8-bit 

142 greyscale data, 1728 voxel (1.4 mm in length) cubic volumes were extracted from each cylindrical 

143 sample for further analysis (Figure 2d). The reconstruction method used ensured the minimal presence 

144 of noise, blurring and imaging artefacts, which may have effected the accuracy of the subsequent image 

145 segmentation process (Figure 2c,d). See Appendix A for further details of the image acquisition and 

146 reconstruction process.

147

148 2.2.2. Image segmentation

149 Image segmentation is conducted to isolate and characterise the pore phase. Image segmentation is often 

150 challenging due to the partial volume effect, where boundaries between phases in an image are blurred 

151 to an amount directly dependent on resolution size (Wildenschild and Sheppard, 2013). Prior to image 

152 segmentation, a non-local means filter was applied to the sandstone sub-volumes (Avizo, 2018). The 

153 use of a non-local means filter ensures the removal of white noise (scatter), a common noise artefact 

154 generated by Compton scattering, while preserving boundary edges (Buades et al., 2005, Ketcham and 
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155 Carlson, 2001). The samples A-C are comprised of a solid phase, which includes quartz, feldspar and 

156 lithic grains, and a pore phase. Two additional solid components are present and distinguishable, 

157 comprising clay minerals and a cement matrix. The clay mineral and cement matrix components are 

158 initially assumed to have zero intragranular porosity, so are added to the solid phase. 

159 Image segmentation was conducted using a 3D Weka segmentation (TWS) method (Arganda-Carreras 

160 et al., 2017), a machine-learning tool which is built into Fiji. The TWS involved training a classifier 

161 using a small number of manual annotations of the two main phases (solid and pore) on a small sub-

162 volume (100 cubic voxels) of sample A. An iterative approach was adopted until an accurate 

163 segmentation result was achieved on the sample sub-volume using the Weka training features structure, 

164 edges, mean and variance (Rao and Schunck, 1991, Canny, 1986). The structure and edges training 

165 features used FeatureJ (Meijering, 2019). The trained classifier was then used to automatically segment 

166 samples A-C. A tiling algorithm was adopted to ensure an efficient segmentation on 3D datasets 

167 (Arganda-Carreras, 2018), formely a limitation of this segmentation method (Garfi et al., 2019; Berg et 

168 al., 2018). The selected tile size dictates the memory requirements of the segmentation. For example, a 

169 tile size factor of six divides the volume into 216 (63) cubic subvolumes, reducing the memory 

170 requirements by a factor of 216. The final segmentation results are qualitatively displayed in Figure 3. 

171 Furthermore, a watershed segmentation method (Beucher, 1992) was also used when assessing the effect 

172 of changing image resolution.

173 2.2.3. Pore properties

174 Voxels assigned to the pore phase define the total porosity and voxels assigned to the pore phase which 

175 are connected by a common face define the connected (effective) porosity of the samples. Total porosity 

176 can be quantified from the segmented images of the pore space as follows:

177 (3)∅t = (𝑉𝑣𝑜𝑖𝑑

𝑉𝑅𝑂𝐼) × 100

178 Where Øt  is total porosity, Vvoid is total void space volume and VROI is total region of interest (ROI) 

179 volume.
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180 A pore network model can be generated using two main methods: A maximal ball method (Dong 

181 and Blunt, 2009) and a distance ordered homotopic thinning method (Youssef et al., 2007), this study 

182 uses the later to quantify pore throat diameter (Dd). Using a skeletonization algorithm in Avizo, a one 

183 voxel thick, centred, homotopic skeleton is created, which is subsequently separated into individual pore 

184 segments to produce a pore network model. As Dd was measured using image based methods, whereby 

185 Dd is directly dependent on voxel size, the measured Dd of samples A-C (average 25 µm) represents an 

186 upper estimate of true pore throat diameter (Saxena et al., 2019a). In addition, effective grain size 

187 diameter (Deff) was quantified in 3D using a watershed separation method of the segmented image 

188 volumes in Avizo. Accurate quantification of grain size was validated with the Berea sandstone sample 

189 (St1), as well as standard (St2) of known grain diameter (100 voxels). A 3D quantification of grain size 

190 was preferred to a 2D method, as the later resulted in significant inaccuracies (see Appendix C - 

191 Supplementary data; Van Dalen and Koster, 2012).

192 Table 1 shows the maximum sample dimensions, porosity, effective grain size diameter (Deff) and pore 

193 throat sizes (Dd) for the homogeneous sandstone samples (St1-2) and the heterogeneous sandstone 

194 samples (A-C). The heterogeneous samples have lower Deff and Dd values relative to the homogeneous 

195 sandstones, with a greater percentage of lower grain size fractions (Figure 4). To assess a REV size for 

196 quantifying porosity and permeability, sample lengths ranging from 0.04 to 1.4 mm (NREV of >0-10) and 

197 0.04 to 0.5 mm (NREV of >0-3.5) were used repectively (Figure 5). In addition, sample lengths up to 2.5 

198 mm (NREV of ≤ 13) were used to assess REV sizes for porosity and permeability for samples St1-2. Two 

199 different subsampling strategies are used for the REV analysis: A nested volume sequence (Figure 5a-

200 b) and a cartesian grid of 0.5 mm (NREV = 3.5) subvolumes (Figure 5c-d). Morphology-based methods 

201 are not considered in this study due to computational constraints. A sample volume of 6003 voxels, 

202 independent of voxel size, represents the largest volume resolvable using the Stokes-flow simulation 

203 methods for all samples within the computer memory limitations of this study (See Appendix B for the 

204 computer specifications used for this study).

205 To understand the effect of varying image resolution on the output values of porosity and permeability, 

206 the reconstructed 8-bit grey-scale images for samples A-C were coarsened by a factor of six, creating 
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207 XCT images with a 5 µm (4.86 µm) voxel size (Figure 6). Downsampling to a resolution of 5 µm was 

208 used for comparison, as this is the resolution achievable using a conventional laboratory X-ray micro-

209 CT scanner with 2000 x 2000 pixel detector elements, for a sample diameter of 10 mm (du Plessis et al., 

210 2017). The 5 µm resolution images are segmented using manual annotations of the new 5 µm image, as 

211 well as with the same 3D weka classifier trained using the 1 µm (0.81 µm) voxel size images for direct 

212 comparison (Figure 6).

213

214 2.2.4. Absolute permeability simulations – Voxelised grid (Avizo)

215 Absolute permeability, the ability of a porous media to transmit a single-phase fluid, is an intrinsic 

216 property of the porous medium that can vary depending on the direction of flow. Herein, absolute 

217 permeability will be referred to as permeability. The Avizo 9.3.0 software has been used for quantifying 

218 vertical (kv) and horizontal (kh) permeability of the connected pore networks of each sample by applying 

219 a finite element image-based simulation method (Avizo, 2018). For this method, each voxel corresponds 

220 to one mesh element, thus no additional meshing process is required (Zhang et al., 2012). The simulation 

221 method has been previously validated using a glass bead pack and theoretical models (Zhang et al., 

222 2011), and successfully applied in previous studies (e.g., Callow et al., 2018, Peng et al., 2014, 2015). 

223 Bernard et al. (2005) developed the basis for the permeability simulation algorithm. The velocity of the 

224 simulated fluid flow through the sample is calculated by solving the Stokes flow equation:

225  (4)𝜇∇2𝐮 ― ∇p = 0
              ∇ ∙ 𝐮 = 0}

226 where u is the fluid velocity vector, p is the simulated fluid pressure and μ is the dynamic viscosity of 

227 the fluid. 

228 Once Eq. (4) is solved through convergence of the simulation and the volumetric flow rate (Q) is 

229 calculated, the permeability (k) can be estimated from Darcy's law:

230 (5)𝒌 =
𝝁𝑳𝑸
∆𝑷𝑨
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231 where L is the sample length in the flow direction, Q is the volumetric flow rate, ∆P is the pressure 

232 difference across the sample and A is the cross sectional area. For the experimental design, additional 

233 volume is added onto the two sample faces that are perpendicular to the main flow direction (Avizo, 

234 2018). This ensures the simulated fluid can spread freely onto the input face of the sample volume, 

235 referred to herein as experimental setups (Avizo, 2018). The purpose of the experimental setups are to 

236 generate a stabilisation zone where pressure is quasi static. See Appendix B for further details.

237

238 2.2.5. Absolute permeability simulation – Tetrahedral mesh (Comsol)

239 The Comsol permeability simulation uses the creeping flow physics module, which uses a variation of 

240 the Stokes flow equation (Eq. 4). The boundary conditions used are the same as for the Avizo simulation. 

241 A fully-coupled direct solver was used to quantify fluid flow, and then permeability was calculated using 

242 Darcy’s law (Eq. 5). 

243 To quantify permeability using the Comsol multiphysics software (Comsol, 2018) a finite element 

244 tetrahedral mesh was used. Tetrahedral mesh grids were generated for the segmented pore phase using 

245 both Avizo and ScanIP software (Avizo, 2018; Simpleware, 2019). Firstly, a surface of 2D triangular 

246 elements is generated on the walls of the voxelised pore volume. Secondly, surface quality tests are 

247 performed to check the following properties: 1) Intersection of elements; 2) orientation of elements; 3) 

248 closedness of the surface; 4) dihedral angle of elements; and 5) aspect ratio (see Avizo, 2018; 

249 Simpleware, 2019 for further details). Finally, a 3D tetrahedral mesh grid is generated from the 2D 

250 surface. 

251 In addition, boundary layer elements can be applied to a mesh grid, which are layers of anisotropic 

252 hexahedral mesh elements of constant thickness at the walls of the pore-solid interface. Boundary 

253 layers are commonly applied in computational fluid dynamic (CFD) simulations to more accurately 

254 resolve curved walls with defined boundary conditions.

255 The number of mesh elements per unit volume (mesh density) can influence the output value of 

256 absolute permeability. The number of mesh elements used for a sample volume can be defined as: 
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257 (6) 𝑁𝑀𝐸𝑆𝐻 =
𝐸𝑙

∆x

258 where  is the mean edge length of a tetrahedral mesh element and ∆x is the image voxel size. 𝐸𝑙

259 Decreasing values of   correspond to an increased mesh element density. A  value of one 𝑁𝑀𝐸𝑆𝐻 𝑁𝑀𝐸𝑆𝐻

260 represents a sample volume with tetrahedral elements equal in length to the image voxel size. 

261 A test varying the value of a tetrahedral mesh grid of sample St1 was conducted to observe the 𝑁𝑀𝐸𝑆𝐻 

262 effect on permeability (Figure 7). The test was performed on a 1003 voxel subvolume (NREV of 2.6), with 

263 and without a boundary layer (Figure 7). Without a boundary layer, a difference of 30 millidarcy (mD), 

264 equivalent to a 10 % error, was observed between the highest and lowest  value, equivalent to 𝑁𝑀𝐸𝑆𝐻

265 ~50,000 and ~350,000 mesh elements respectively (Figure 7). A difference of up to 20 mD was observed 

266 between the mesh grids generated by Avizo and ScanIP software. A mesh composing of one boundary 

267 layer is optimal, as permeability is independent of the number of mesh elements (Figure 7). However, 

268 due to the complexity of the pore network geometry, boundary layers using ScanIP and Avizo software 

269 are only possible on volumes with less than 1503 voxels; unless you apply a gaussian filter to the 

270 segmented volume, which greatly simplifies the pore network geometry. For this study, mesh grids with 

271 a NMESH of 2.6 and no boundary layer were used (Figure 7), due to computer memory limitations and 

272 sample volume size constraints.

273

274 2.2.6. Absolute permeability simulation – Upscaling (MRST)

275 Absolute permeability calculations have also been determined in this study using MATLAB Reservoir 

276 Simulation Toolbox (MRST)(Lie, 2019). Within this software package, predefined porosity-

277 permeability values can be assigned to cells of a cartesian grid to determine single upscaled calculations. 

278 An adapted version of the MRST single-phase upscaling module has been used in this study (Lie, 2019).

279
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280 2.2.7. Absolute permeability simulation – Pore network model (Avizo)

281 Further to the pore network model (PNM) generation process described above, PNM’s can also be used 

282 for calculation of absolute permeability (e.g. Zahasky et al., 2020; Raeini et al., 2019). PNM’s for 

283 permeability calculation are being used increasingly due to their improved computational efficiency 

284 compared to conventional FEM solvers (Raeini et al., 2019). 

285 The number of individual pore segments the connected pore volume are separated into may influence 

286 the output value of permeability (known in Avizo as the marker extent). Therefore, it is advisable to 

287 calibrate the degree of pore separation until an absolute permeability value is obtained that is comparable 

288 to the FEM methods, which can be done on a small sample subvolume (i.e. less than 4003 voxels). A 

289 marker extent of four was used for the samples in this study.

290 The permeability of the network is calculated using Darcy’s law (Eq. 5), whereby total flow rate is 

291 deduced from a linear system of equations of flow rate between each pore:

292 (7)𝑄 =  ∑(𝑃𝑖 ― 𝑃𝑗)𝑔𝑖𝑗 

293 where  is the volumetric flow rate, P is the pressure in each pore pair i,j and  is the hydraulic 𝑄 𝑔𝑖𝑗

294 conductance of the throat between each pore pair i,j, given by:

295  (8)𝑔𝑖𝑗 =  ( 𝜋
8µ

𝑟4
𝑖𝑗

𝑙𝑖𝑗)
296 where µ is fluid viscosity, and the throats are represented by cylindrical pipes of radius r and length l 

297 between each pore pair i,j. 

298 It is assumed that the PNM is filled with a single-phase, incompressible fluid, with steady state, laminar 

299 flow, with mass conservation for each pore body (Avizo, 2018).

300
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301 3. Results

302 3.1. X-Ray micro-CT results 

303 3.1.1. Absolute Permeability Simulation Comparison: Avizo vs Comsol

304 The Avizo and Comsol finite-element fluid simulation methods, using a voxelised grid and tetrahedral 

305 mesh respectively, are directly compared (Figure 8). Figure 9 shows good correlations for both the Avizo 

306 and Comsol simulations with slight deviations in the latter case. Slight permeability underestimations 

307 for the Comsol simulation relative to Avizo within the 1-1000 mD range can be explained by the selected 

308 mesh used for the simulations (  of 2.6 with no mesh boundary layer) (Figure 7). 𝑁𝑀𝐸𝑆𝐻

309 Apparent overestimations of permeability by the Comsol simulations are observed within the 1000-

310 10000 mD range for sample A2. The apparent discrepancy between the two simulation methods 

311 observed within the 1000-10000 mD range cannot be explained by the selected mesh grid properties, 

312 which lie within an uncertainty range of 10-20 % (0.1-0.2). For the three subvolumes that display the 

313 anomalous permeability values, where permeability (k) has been simulated in three planes of direction 

314 (subscripts x,y and z), ky has an error below 50 % (0.5), whereas errors above 200% are observed for kx 

315 and kz (2). The sample faces perpendicular to the main flow direction for the kx and kz simulation have 

316 pore volume across the entire input and output faces. The Comsol simulation does not have experimental 

317 setups added onto the faces perpendicular to the main inflow and outflow direction, to ensure that the 

318 simulation achieves a quasi-static pressure state. Therefore, the lack of experimental setups is likely the 

319 cause of the error.

320

321 3.1.2. Representative Elementary Volume REV and Image Resolution

322 3.1.2.1. Porosity and Permeability REV 

323 Using a nested volume sequence (Figure 5a-b), porosity calculations appear to be resolved at NREV 

324 values ≥ 5 for all samples (equivalent to sample lengths ≥ 0.5 mm for A-C) (Figure 10). Permeability 

325 measurements appear to be resolved at NREV ≥ 3.5 for samples A-C and NREV ≥ 5 for samples St1-2 

326 (equivalent to sample lengths ≥ 0.4 mm and ≥ 1 mm, respectively). Therefore, sample lengths of NREV 

327 ≥ 5 can be considered a REV size for permeability for homogeneous sandstone.  To observe a lower 
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328 permeability REV size for heterogeneous sandstone samples compared to more homogeneous 

329 sandstones would be highly unexpected. Therefore, the REV size for permeability calculations may not 

330 be accurately determined from one sub-volume for samples A-C, so a larger number of subvolumes will 

331 be further analysed.

332 Using a cartesian grid of subvolumes (Figure 5c-d), sample St1 subvolumes lie within a narrow 

333 permeability range of 421- 467 mD and porosity variations of ± 1.1 % when using sample lengths of 

334 NREV ≥ 10 (2.5 mm length) (omitting one outlier; Figure 11). Conversely, sample lengths equivalent to 

335 NREV ≥ 3.5 (>0.5 mm length) for samples A-C display variations of permeability over two orders of 

336 magnitude and porosity up to ± 16.8 % (Figure 11). The large scattering shown by samples A-C suggest 

337 that using only one sub-volume of sample length equivalent to NREV ≥ 3.5 is an inadequate permeability 

338 REV size for the heterogeneous sandstone cases. 

339 For samples A-C, linear best fits are plotted for permeability in the vertical (kv) and horizontal (kh) 

340 directions, to obtain estimates for each sample using the known connected porosity (Øc) calculated from 

341 the maximum sample volume size (NREV ≥ 10; Figure 11). The interpolated permeability values from 

342 the porosity-permeability curves are shown in Table 2. 

343 The cartesian grid of subvolumes have also been put in MRST. Upscaled permeability calculations are 

344 obtained for the volume averaged arithmetic, arithmetic-harmonic and harmonic means, respectively 

345 (Table 3; Appendix C - supplementary figure; Lie, 2019). In fluid mechanics, harmonic and arithmetic 

346 averaging are considered the correct method of upscaling in a stratified isotropic medium with layers 

347 perpendicular and parallel to the direction of pressure drop, respectively. The calculated arithmetic mean 

348 closely matches the interpolated permeability values (within 3-23 mD)(Table 3).  

349 The effect of downsampling image resolution for samples A-C is also assessed (Figure 12). The TWS 

350 method has been used to segment the downsampled 5 µm images and classify the solid and pore phases 

351 using manual annotations of the 5 µm images. Compared to calculations at the original resolution (0.81 

352 µm), porosity is underestimated by ≤ 3.5 % (Figure 12). Permeability values are also slightly 

353 underestimated by ≤ 16 mD, with the exception of sample C which overestimates permeability by 83 

354 mD. These slight underestimations may be due to incorrect classification of the pore phase at 5 µm voxel 
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355 resolution, highlighting the importance of having sufficient image resolution to accurately segment and 

356 classify the smallest pores. The higher permeability calculated for sample C may also be explained by 

357 the omission of the smallest pore throats. 

358 Furthermore, when applying the TWS method, a new trained classifier is required for sample images 

359 scanned at two different image resolutions. Where the classifier trained for the 1 µm images is applied 

360 to the 5 µm images, significant inaccuracies are observed, with porosity and permeability variations of 

361 up to 10 % and two orders of magnitude, respectively (Figure 12). 

362

363 3.2. Laboratory physical measurements vs X-ray micro-CT 

364 The interpolated XCT permeability values (Table 2) vary by one order of magnitude around the physical 

365 measurements (Table 4). However, the physical porosity measurements are up to 18.3 % higher than the 

366 total porosity obtained using XCT (Table 4). This large discrepancy is likely related to the intragranular 

367 porosity fraction of the clays and cement matrix in the samples. The presence of intragranular porosity 

368 for the clays and cement matrix, which lays below the resolution of the XCT image, was assigned to the 

369 solid phase for the original XCT image analysis. Reassigning part of the mineral clay fraction and 

370 cement matrix to the pore phase produce XCT total porosity values which closely match the physical 

371 measurements (Appendix C - supplementary figure). For this calculation, it is assumed that clay and 

372 silica (Opal-CT) cement contain up to 60 % and 70% intragranular porosity, respectively, which aligns 

373 with upper estimates derived from previous studies (Hurst and Nadeau, 1995, Alansari et al., 2019), as 

374 well as mass balance considerations used in this study (Appendix C - supplementary data).

375

376 4. Discussion

377 4.1. Absolute Permeability Simulation Comparison: Avizo vs Comsol softwares

378 The two simulations are comparable for the 1-1000 mD range. The overestimation of permeability using 

379 the Comsol Stokes-flow simulation within the 1000-10000 mD range evidences the importance of the 
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380 experimental setup added to the inflow and outflow direction for the Avizo simulation, which is used to 

381 achieve a quasi-static pressure state at the input and output faces of the sample volume.

382 The error of 20% induced by the chosen NMESH (mesh density) value could be mitigated by reducing the 

383 NMESH value, but this significantly increases the computational requirements of the simulation. The error 

384 could also be mitigated by introducing a boundary layer to the mesh (Figure 7). However, a boundary 

385 layer for complex pore geometries and for volume sizes >1503 voxels cannot be generated without 

386 simplifying the pore geometry using a gaussian filter (Bird et al., 2014). This study suggests a finite 

387 element solver not requiring an additional meshing process would be a preferred simulation method due 

388 to the increased time efficiency and the omittance of a mesh density (NMESH) induced error. The ability 

389 to introduce experimental setups for the creeping flow module in Comsol may also greatly improve the 

390 accuracy of the permeability calculations using this method.

391

392 4.2. Representative Elementary Volume versus Image Resolution 

393 Saxena et al. (2018) show that for homogeneous sandstones a   value > 10 is required to accurately 𝑁𝐼

394 resolve the smallest pores. For a  value of 10, the upper limit of voxel size required to resolve the 𝑁𝐼

395 dominant pore throats is 2.5 µm for heterogenous samples A-C (Eq.2), which is achieved in this study 

396 (0.81 µm). At a resolution of 0.81 µm, the maximum NREV achievable is 3.5. However for the 

397 downsampled image at 5 µm, the maximum   value is 5. This study has shown that acquiring XCT 𝑁𝐼

398 image scans at a lower resolution (i.e.  < 10) will lead to an underestimation of porosity (Figure 12). 𝑁𝐼

399 An important aspect to consider is microporosity, defined here as intergranular porosity lying below 

400 sub-voxel resolution. The quantification of microporosity for samples A-C at 5 µm resolution is ≤ 3.5 

401 %, but is unclear for 1 µm resolution. Shah et al. (2016) and Saxena et al. (2017b) show up to ± 4 %  of 

402 the total porosity attributed to the microporosity fraction is commonly omitted when compared to the 

403 true porosity of the samples if image acquisition is conducted at a lower resolution, in agreement with 

404 our study. This error range is also within the limits observed in this study when using a watershed 

405 segmentation technique (Appendix C – supplementary data).
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406 This study shows that using a 3D weka segmentation technique produces accurate segmentation results, 

407 in agreement with Berg et al. (2018), but shows the image classifiers are highly sensitive to changes in 

408 greyscale image resolution (Figure 12). The same trained classifier can be applied to sample images that 

409 have comparable petrophysical properties, and are obtained using the same image acquisition 

410 parameters, spatial resolution and reconstruction process. At a single image resolution, samples A, A2 

411 and B used the same trained classifier. These are important considerations for future machine-learning 

412 based image segmentation studies.

413 This study has also shown that acquiring XCT image scans at a lower resolution may lead to slight 

414 underestimations of permeability. This directly contrasts studies conducted on homogeneous sandstones 

415 such as Saxena et al. (2018), which commonly show that lower resolution leads to overestimations of 

416 permeability, in agreement with calculations of sample B. Overestimations occur as the smallest pores 

417 are uresolved, leading to an increased flow velocity through the porous media. Overall, permeability 

418 values at 1 µm and 5 µm are in close agreement (Figure 12). 

419 This study shows a lower REV for porosity than for permeability, which is in agreement with 

420 Mostaghimi et al. (2013) and Saxena et al. (2018). A larger REV may be required for permeability, in 

421 order to incorporate a suitable amount of tortuosity into the simulation. From Figure 10, it appeared that 

422 for samples A-C, a REV size may be achieved due to the apparent lowered change in permeability with 

423 increased sample length up to a NREV of 3.5. Coefficient of variation (COV) is used as a statistical 

424 measure of determining whether a REV size is achieved for permeability calculations. A COV (100 x 

425 standard deviation/mean) percentage value of less than 15 % is determined to be representative (Saxena 

426 et al., 2018). Shown in this study and Saxena et al. (2018), for homogeneous samples a NREV of > 5 

427 achieves a COV % of < 15 %, showing that a REV is achieved (Figure 11). However, for the 

428 heterogeneous samples (A-C) at a NREV of 3.5, the COV values are 98 %, 89 % and 177 %, respectively 

429 (Figure 11). These values far exceed the COV % values required to achieve a REV size. Therefore, to 

430 overcome the trade off between  and NREV, further image processing is conducted.𝑁𝐼

431 Quantifying permeability is much more computationally intensive than porosity using XCT images, as 

432 the fluid flow simulations require high computer memory. The best solution for obtaining REV 
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433 permeability measurements whilst preserving image resolution is to downsample the XCT image 

434 volume post-segmentation, referred to herein as numerical coarsening (NC) (Figure 13). Shah et al. 

435 (2016) showed that numerical coarsening may be an effective solution. NC by a factor of three allows 

436 the full 1.4 mm length sample volume to be simulated (NREV of 10) without inducing significant changes 

437 to the pore network geometry (Figure 13). The results of NC are summarised in Table 5. Quantitatively, 

438 minor permeability changes are observed for a NC factor of 3-8 (≤ ±50 mD), while porosity reduces 

439 linearly below 2 %. The interpolated values of porosity-permeability, acquired from the plots of 27 

440 subvolumes (Table 2) closely match the permeability values obtained from numerical coarsening (NC). 

441 For samples A, A2, B and C a revised NREV of ≥ 7 is determined (Figure 13). The simple process of NC 

442 allows permeability to be quantified on a more representative elementary volume (REV) size without 

443 compromising the accuracy of the result, whilst reducing processing time by a factor of ~ 500 (20 times 

444 faster simulation and 26 times less voxel volumes required). 

445 Another solution for obtaining REV permeability calculations whilst preserving image resolution is to 

446 simplify the pore geometry using pore network modelling (PNM). Permeability calculations using a 

447 PNM of the full 1.4 mm length sample volumes (NREV of 10) correlate well with the calculations 

448 determined using numerical coarsening (NC), and also determine a NREV of ≥ 7 for samples A, A2, B 

449 and C (Figure 13). 

450

451 4.3. Comparison of physical measurement and X-ray micro-CT image-based methods

452 The major discrepancy between the XCT analysis and physical measurements was the original 

453 difference in total porosity (up to ± 18.3 %). Pore space within the clay mineral fraction and cement 

454 matrix is highly dominated by non-connected/disconnected intragranular pores (Hay et al., 2011, 

455 Milliken and Curtis, 2016). Therefore, when computing porosity from XCT, the clay mineral fraction 

456 and cement matrix should be assigned to the pore phase. Table 6 shows porosity and permeability output 

457 for re-segmented XCT images, whereby clay minerals and cement matrix are assigned to the pore phase 

458 (Appendix C – supplementary figure). By doing this, the computed porosity is closer to the physical 

459 measurement of porosity (within ± 2 %). For the revised total porosity calculations, the clay minerals 
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460 and cement matrix are estimated to contain 60 % and 70 % intragranular porosity respectively, based on 

461 literature estimates (Hurst and Nadeau, 1995, Alansari et al., 2019) and mass balance considerations 

462 (Appendix C – supplementary data). Menke et al. (2019) and Lin et al. (2016) demonstrated that 

463 conducting two scans, differential imaging of a dry scan and brine saturated scan, can be used to 

464 determine sub-resolution microporosity. Future studies to quantify the precise intragranular 

465 microporosity of different clay minerals and cement types will be required, if XCT is to be used as the 

466 primary method for total porosity calculations of heterogeneous sandstone samples. 

467 The intermediate phase of rock and sediment sample scans is commonly assumed to be comprised of 

468 sub-resolution intergranular pores, connected to the connected macro-pore volume (e.g. Soulaine et al. 

469 2016; Lin et al. 2016; Bultreys et al., 2015). However, for heterogeneous sandstones the large proportion 

470 of disconnected intragranular clay and cement matrix generates an additional peak within the 

471 intermediate phase range. (Appendix C – supplementary figure), therefore it is not reasonable to assume 

472 that the grey values between the solid grains and macro pores only consist of sub-resolution connected 

473 microporosity. This is demonstrated by using a simple thresholding segmentation. By applying a simple 

474 interactive thresholding (or watershed) segmentation technique and assigning the physical measurement 

475 of porosity to match the threshold, a segmented image can be created with an identical calculated 

476 porosity to the physical measurement, a technique adopted in previous studies (Vogel et al., 2005, 

477 Iassonov et al., 2009, Wu et al., 2017). However, when using the same re-segmented volume for 

478 permeability, the obtained values are significantly overestimated (by up to two orders of magnitude; 

479 Table 6), in agreement with Leu et al. (2014). Therefore, for the calculation of permeability from XCT 

480 images of heterogeneous sandstones, the clay minerals and cement matrix should be assigned to the 

481 solid phase, as their intragranular pores are non-connected.

482 For the purposes of this study, the distinction has been made between more homogeneous and 

483 heterogeneous sandstones based on the textural and pore properties of the samples. Though, in reality 

484 this distinction is not well defined due to the wide spectrum of their petrophysical properties. A porosity 

485 of 11.7 % was originally assigned to the Berea sandstone (St1), following an optimal image processing 

486 workflow that considered the intermediate clay and cement fractions as part of the solid phase. After 
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487 reassigning the clay and cement fractions to the pore phase, the porosity increases to 15.82 %, but is still 

488 ~4% below the experimental porosity (19.8 %). The ~ 4% underestimation of the total porosity is 

489 explained by the spatial resolution of 5 µm used for this sample (Section 4.2; Figure 13b). This 

490 observation suggests that for all sandstone sample types, the clay fraction and cement matrix should be 

491 assigned to the solid phase for permeability calculations, and to the pore phase for total porosity 

492 calculations.

493 Applying this particular assignment, porosity and permeability can be obtained using XCT with an 

494 associated error of ± 2 % and one order of magnitude, respectively, when compared to the physical 

495 measurements using standard laboratory testing methods. Therefore, despite an optimal XCT workflow 

496 using high resolution and high-phase contrast scans, samples A-C and St1 still show a slight 

497 underestimation of total porosity relative to standard laboratory measurements (Figure 14a; Table 7). 

498 The porosity underestimation can be explained by a portion of the intergranular microporosity remaining 

499 below the maximum voxel resolution (Saxena et al. 2019b). An associated error may also be explained 

500 by conservative estimates of the clay and cement intragranular microporosity fractions, and associated 

501 mass balance considerations. To further address this uncertainty, previous works have undertaken Hg-

502 injection porosimetry analysis to obtain the pore size distribution and porosity fraction below the 

503 maximum image resolution (e.g. Swanson, 2013, Saxena et al., 2019b).  Falcon-Suarez et al 2019 report 

504 Hg-injection porosimetry analysis for heterogeneous sandstones, which show that up to 25 % of the total 

505 porosity is attributed to the combined intergranular and intragranular microporosity fraction (i.e. throat 

506 diameter < 1.6 m). These values further explain the original discrepancy observed between XCT and 

507 the physical laboratory measurements, and support the calculation enhancement derived from the 

508 proposed (clay fraction and cement matrix) phases reassignment during image segmentation. 

509 The three XCT voxelised grid image-based methods used for permeability calculation (i.e. numerical 

510 coarsening, pore network modelling and upscaling using interpolation of multiple subvolumes) show a 

511 good agreement (Figure 14b; Table 7). However, an overestimation of permeability for the XCT images 

512 relative to the physical measurements is common, despite the implementation of accurate XCT image 

513 processing techniques (Saxena et al., 2017a; Figure 14b). One reason for permeability overestimation is 
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514 the sample volume size. The maximum volume size for the XCT image was 1.4 cubic mm, whereas the 

515 volume size of the sample used in the experiment was ~200,000 mm3. Furthermore, the sample used for 

516 the laboratory experiment is ~20 times larger in vertical length (25 mm) than the maximum vertical 

517 dimension of the XCT image. The greater length may result in greater tortuosity, which may cause a 

518 reduced permeability for the physical measurements, relative to the XCT image-based calculations. 

519 From the MRST upscaled calculations, the harmonic mean most closely matches the laboratory 

520 measurements. Therefore, over a larger sample volume, the less permeable mm-scale sub-regions may 

521 have a greater effect on the output permeability at core scale. Furthermore, this study uses separate 

522 samples for the laboratory measurements and XCT calculations, despite being from the same sample 

523 block. Therefore, it is likely that heterogeneities (observed even at NREV > 10) are contributing to the 

524 discrepancies between the XCT calculations and physical measurements. This source of error is less 

525 evident where the physical porosity has been measured on identical sub-volumes, demonstrated in a few 

526 well controlled studies such as Pini and Madonna (2016) and Jackson et al. (2020).

527 The small confining pressure of 0.8 Mpa used to conduct the physical measurement is a further reason 

528 for the discrepancy between the XCT and physical measurements of permeability. Despite being 

529 relatively small, the applied stress may cause closure of microcracks. This alteration of the pore 

530 geometry and grain configuration, may be enough to reduce the permeability (e.g., Falcon-Suarez et al., 

531 2017). For our relatively high permeability rocks, this minor low stress-induced microcrack closure is 

532 commonly neglected. But here, the results from the physical lab tests are being compared to the high 

533 precision XCT method, and therefore any source of permeability fluctuation has to be considered. In 

534 this regard, Farrell et al (2014) report data of measurable stress-induced permeability changes in high 

535 permeability (cracked) sandstones even for minimal changes in the state of stress. In addition, simple 

536 single-phase Stokes-flow simulations omit rock-fluid interactions, such as the effect of clay swelling, 

537 further highlighted in previous studies directly comparing XCT and physical laboratory measurement 

538 results (Callow et al., 2018). Transform functions could be performed to attempt to fit the XCT image 

539 calculations to the laboratory measurements (e.g. Saxena et al., 2019a), though this approach is beyond 

540 the scope of this study. 
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541

542 5. Conclusions

543 This study has addressed the uncertainties associated with 3D X-ray micro-CT (XCT) image processing 

544 of heterogeneous sandstones to define an optimal XCT methodology for the quantification of porosity 

545 and absolute permeability at the pore scale (Figure 15). Overall, the XCT image-based calculations show 

546 good agreement with the physical measurements following careful consideration of the uncertainties 

547 associated with the parameters of the XCT image-processing methodology. The main findings of this 

548 study are:

549  A 3D weka segmentation can accurately distinguish between the solid- and pore- phases. 3D weka 

550 classifiers are highly sensitive to changes in image spatial resolution, therefore should only be 

551 used on samples acquired using the same scanning acquisition and reconstruction parameters. 

552  Clay minerals and cement matrix must be assigned to the pore-phase for porosity calculation, and 

553 to the solid-phase for permeability calculation, due to the presence of poorly-connected 

554 intragranular porosity. Incorrect assignment of the clay minerals and cement matrix can cause 

555 porosity underestimations up to 18.3 % and permeability overestimations up to two orders of 

556 magnitude. Future work to constrain precise values of clay and cement matrix intragranular 

557 microporosity are required to more accurately quantify total porosity using XCT.

558  For heterogeneous sandstone rocks considered in this study, representative elementary volume 

559 (REV) size for permeability (NREV > 7) is larger than for porosity (NREV > 5), showing that porosity 

560 should not be used as a reference REV for permeability calculations.

561  Scannning at a lower image resolution (5 µm compared to 1 µm), can result in underestimation of 

562 porosity by up to 3.5 %, due to the inability to resolve and classify pores that are sub-voxel size 

563 resolution.

564  The use of Stokes-flow simulation results derived from voxelised grids (Avizo) and tetrahedral 

565 meshes (Comsol) are in reasonably agreement, though use of meshes that are not fine enough to 

566 accurately resolve the flow paths may induce permeability errors of up to 20%. Careful 
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567 experimental design is required for the flow simulations, to ensure a quasi-static pressure state at 

568 the input and output faces of the sample volumes.

569  Results derived from optimal XCT calculations and standard physical laboratory measurements 

570 show good agreement, producing porosity and permeability values within ± 2% and one order of 

571 magnitude, respectively. Differences in porosity-permeability results between the two methods are 

572 predominantly attributed to scaling effects, use of twin samples, as well as the omission of rock-

573 fluid interactions and stress effects in the numerical fluid simulations. 

574
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839 Tables

840 Table 1. Image dimensions, resolution, grain size, pore throat size and porosity values of samples St1-
841 2 and A-C used for XCT image analysis. 

Sample no. Image Resolution Max. dimensions Max. Length Deff Dd t c

 (µm) (Voxels) (mm) (µm) (µm)  (%) (%)

St1 5 1000 5.00 190 34 11.66 11.32

St2 3.5 788 2.76 350 n/a 34.34 34.33

A 0.81 1728 1.40 140 24 15.70 15.31

A2 0.81 1728 1.40 140 24 15.14 14.83

B 0.81 1728 1.40 140 27 13.69 13.43

C 0.81 1728 1.40 140 23 9.58 8.32

842 Cubic volumes were used in this study.  and  are total porosity and connected porosity, respectively. Deff and Dd are 
843 average grain and pore throat diameters, respectively.

844

845 Table 2. Results of permeability calculated from 27 XCT image sub-volumes of samples A-C and 
846 eight sub-volumes of sample St1, used to further understand the REV (representative elementary 
847 volume) size of each sample. 

Sample No. of Sub-Vol. Sub-Vol. min. kh max. kh int. kh min. kv max. kv int. kv

sub-vol. (voxels) (mm3) (mD) (mD) (mD) (mD) (mD) (mD)

A 27 5763 0.473 4 1414 262 25 760 306

B 27 5763 0.473 5 651 184 3 1137 385

C 27 5763 0.473 0 178 25 0 296 31

St1 8 4003 2.53 235 467 423 164 511 416

848 Sub-Vol, sub-volume; min. and max., minimum and maximum; kh and kv, permeability in the horizontal and vertical directions; 
849 int. kh and int. kv, interpolated values of permeability calculated from the porosity-permeability plots displayed in Figure 11.

850

851 Table 3. Results of upscaled permeability calculated from 27 XCT image sub-volumes of samples A, 
852 B, C and eight sub-volumes of sample St1 using Matlab Reservoir Simulation Toolbox (MRST).  
853 Volume averaged calculations of the arithmetic, harmonic and harmonic-arithmetic means are 
854 determined.

Sample No. of Sub-Vol. Sub-Vol. Ar. kh H.-Ar. kh H. kh A. kv H.-Ar. kv H. kv

sub-vol. (voxels) (mm3) (mD) (mD) (mD) (mD) (mD) (mD)

A 27 5763 0.473 248 103 42 294 208 136

B 27 5763 0.473 181 83 31 379 227 39

C 27 5763 0.473 22 6 0 28 7 0

St1 8 4003 2.53 235 467 423 164 511 416

855 Sub-Vol, sub-volume; Ar., Arithmetic mean; H.-Ar., Harmonic-Arithmetic meam; H., Harmonic mean; kh and kv, permeability 
856 in the horizontal and vertical directions.
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857 Table 4. Laboratory experimental results of porosity calculated by He-pycnometry, as well as results 
858 of permeability calculated from a helium flow through-test at 800 kPa confining pressure.

Sample
St1 

(Berea) A B C

Cementation Minor Uncemented Uncemented Silica

t (%) 19.8 29.9 23.8 27.9

std. n/a 0.068 0.163 0.078

kv (mD) 275 83 25 50

std. n/a 3.924 1.549 3.363

859 t  is total porosity, kv is permeability in the vertical direction, and std. are the standard deviation values of the porosity and 
860 permeability measurements. Each permeability experiment was repeated three times. 

861

862 Table 5. Results of porosity and permeability, which have been calculated for the XCT image 
863 volumes following downsampling / numerically coarsening by a factor of 1-8 post-segmentation. 

Sample N.C. Fac. Image Res. Volume Volume t c kh kv Time

 (µm) (voxels) (mm3) (%) (%) (mD) (mD) (minutes)

A 1 0.81 17283 1.43 15.70 15.31 n/a n/a n/a

2 1.62 8643 1.43 14.68 14.22 n/a n/a n/a

3 2.43 5763 1.43 15.56 14.95 290 355 60

4 3.24 4323 1.43 14.70 13.88 279 335 20

6 4.86 2883 1.43 14.35 13.29 286 348 5

8 6.48 2163 1.43 13.87 12.43 279 350 3

B 1 0.81 17283 1.43 13.69 13.43 n/a n/a n/a

2 1.62 8643 1.43 12.69 12.39 n/a n/a n/a

3 2.43 5763 1.43 13.56 13.16 355 479 60

4 3.24 4323 1.43 12.76 12.10 341 461 20

6 4.86 2883 1.43 12.48 11.50 351 503 5

8 6.48 2163 1.43 12.01 10.73 318 530 3

C 1 0.81 17283 1.43 9.58 8.32 n/a n/a n/a

2 1.62 8643 1.43 8.46 6.95 n/a n/a n/a

3 2.43 5763 1.43 9.33 7.17 78 57 60

4 3.24 4323 1.43 8.35 5.50 67 46 20

6 4.86 2883 1.43 7.84 4.52 67 38 5

8 6.48 2163 1.43 7.16 3.45 61 25 3

864 N.C. fac. is the numerical coarsening / downsampling factor applied to the XCT images post-segmentation. Post-segmentation 
865 refers to XCT images which have already been segmented at 1 µm (0.81 µm) image resolution. t  and c are total porosity 
866 and connected porosity respectively, kh and kv are permeability in the horizontal and vertical directions. Image Res. is image 
867 resolution. Values described as n/a were not computable as they exceed computational memory limits.
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868 Table 6. Results of porosity and permeability for the XCT images if the clay mineral fraction and 
869 cement matrix are re-assigned to the pore phase, compared with the experimentally derived results.

Sample A B C

Cementation Uncemented Uncemented Silica

t  - Pore phase + clay fraction & cement matrix (%) 28.97 23.10 27.11

kv - Pore phase+ clay fraction & cement matrix (mD) 2352 2415 1345

t - Core experiment (%) 29.88 23.75 27.90

kv - Core experiment (mD) 83 25 50

870 t  and kv are total porosity and vertical permeability respectively. The top two rows show the output values of porosity and 
871 permeability when the XCT images are re-segmented to include the clay mineral fraction and cement matrix. The bottom two 
872 rows show the experimentally derived values, previously shown in Table 3.

873

874 Table 7. Results summary of calculated porosity and permeability, showing the comparison of the 
875 XCT image-based calculations and laboratory measurements, [2] vs [3] and [5-8] vs [9]. For samples 
876 A-C, XCT permeability and porosity calculations can be acheived within one order of magnitude and 
877 porosity values <1 % of laboratory physical measurements. Image based methods [5-8a] show strong 
878 agreement.

Sample A B C St1

Cementation Uncemented Uncemented Silica Minor

[1] t  - Pore Phase (%) 15.7 13.69 9.58 11.66

[2]  t  - Pore phase + clay fraction & cement matrix (%) 28.97 23.10 27.11 15.82

[3]  t  - Core experiment (%) 29.88 23.75 27.90 19.82

[4] kv - One sub-volume (mD) 275 [25-760] 185 [3-1137] 1 [0-296] 448 [164-511]

[5] kv - Maximum sample volume with NC Factor of 3 (mD) 355 479 57 n/a

[6] kv - Maximum sample volume with PNM (mD) 291 500 23 235

[7] kv – Interpolated from multiple sub-volumes (mD) 306 385 31 416

[8a] kv – MRST Upscaling – Arithmetic mean  (mD) 294 379 28 393

[8b] kv – MRST Upscaling – Harmonic-arithmetic mean (mD) 208 227 7 379

[8c] kv – MRST Upscaling – Harmonic mean  (mD) 136 39 < 1 350

[9] kv - Core experiment (mD) 83 25 50 275

879 t  and kv are total porosity and vertical permeability respectively. Described for clarity: [1] is the total porosity of the air phase 
880 calculated from the maximum XCT image volumes shown in Table 1. [2] is the total porosity of the pore phase calculated from 
881 re-segmentation of the XCT images to include the clay mineral fraction and cement matrix. [3] is the total porosity of the pore 
882 phase calculated from the laboratory experiments. [4] is the vertical permeability calculated from one subvolume of each XCT 
883 image. The permeability range is shown in square brackets, calculated from 27 sub-volumes, as shown in Table 2. [5] is the 
884 vertical permeability calculated from the maximum XCT image volumes using numerical coarsening. To compute permeability 
885 of the maximum XCT image volume size, the XCT image was downsampled post-segmentation by a numerical coarsening 
886 (NC) factor of 3, as shown in Table 4. [6] Is the vertical permeability calculated from the maximum XCT image volume using 
887 pore network modelling (PNM). [7] is the interpolated vertical permeability value calculated from multiple subvolumes, as 
888 shown in Table 2. [8] is the upscaled vertical permeability calculated and modelled using the MATLAB reservoir simulation 
889 toolbox (MRST), derived from a cartesian grid of the multiple subvolumes. The arithmetic [8a], harmonic-arithmetic [8b] and 
890 harmonic means [8c] are calculated. [9] is the vertical permeability calculated using physical laboratory measurements, as 
891 shown in Table 3.
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892 Figures 

893

894 Figure 1. Images of the samples (A,B,C) used in laboratory physical measurements at different scales 

895 from left to right: (a) 2D greyscale images in the horizontal plane of the sample sub-volumes, (b) Thin 

896 section images indicating predominantly quartz grains (pastel yellow), pore space (light blue), as well 

897 as clay minerals and cement matrix (brown-black), (c) The 10 mm diameter samples used for X-ray 

898 micro-CT (XCT) image analysis and (d) The 50 mm diameter core plugs used for the laboratory 

899 physical measurements, cored from the same block as the XCT samples.

900
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901

902 Figure 2. Photographs of the experimental setup at Diamond Synchrotron beamline I13-2. (a) The 

903 experimental hall showing the parallel beam source. (b) Sandstone sample mounted to the stage using 

904 a SEM stub, placed between the source and a pco.edge 5.5 scintillator-coupled detector with 4x 

905 objective lens, providing a 1 µm (0.81 µm) pixel size and 2.1 x 1.8 mm field of view. (c-d) Acquired 

906 images reconstructed using Savu with poorly optimised settings (c) and optimal settings (d). 

907

908

909
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910

911 Figure 3. Scanned images and the result of segmentation for samples analysed. 2D orthoslices in the 

912 horizontal plane of the sample sub-volumes displaying greyscale images prior to segmentation (left) 

913 and binarised images post-segmentation (right). The binarised images display pore space in black and 

914 the solid phase in white: (A-C) Heterogeneous sandstone samples which are uncemented (A, A2, B) 

915 and silica cemented (C) respectively. Two standards were also used in the study: (St1) Berea 

916 sandstone and (St2) a sphere pack (Andra et al. 2013a). 

917

918                               

919

920

921

922
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923

924 Figure 4. Grain size distribution comparisons of XCT samples for homogeneous standards St1-2 and 

925 heterogeneous samples A-C. The frequency histograms are binned into 15 µm intervals. Orange lines 

926 show cumulative frequency percentage. The images show the result of the 3D grain size process, 

927 implemented using a watershed separation method.
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930
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935
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937

938 Figure 5. Sample subvolume A, displaying different volume sizes used for the representative volume 

939 (REV) study, ranging from 0.04 – 1.40 mm width (equivalent to sample lengths NREV <1 to 10). Two 

940 different volume configurations are used for the REV analysis. (a-b) A nested volume sequence, 

941 shown by black solid lines with blue squares at the corners and edge centres. (c-d) A cartesian grid of 

942 0.5 mm (NREV = 3.5) subvolumes. 1.40 mm width (NREV = 10) is the maximum sample lengths of A-C.

943

944

945

946

947
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948

949 Figure 6. Demonstration of the impact of down-sampling image segmentation in characterising 

950 intergranular micro-pores. (a,c) 2D orthoslice of sample A showing the 3D weka segmentation result 

951 at the original voxel size of 1 µm (0.81 µm). (b,d) A coarsened / downsampled voxel size of 5 µm 

952 (right). Red and green indicates areas classified as pore phase and solid phase respectively. The arrows 

953 in (d) indicate small intergranular pores which are unresolved by the segmentation method at 5 µm, 

954 and are inaccurately classified to the solid phase.

955

956

957
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958

959 Figure 7. Mesh element study on a 1003 voxel sub-volume of St1 (Berea Sandstone) showing (a) the 

960 change of permeability with increased number of tetrahedral elements. NMESH is a function of mean 

961 mesh edge length / image voxel size (∆x), and is not volume size dependent. NMESH ranges from 2.6 to 

962 1.35, equivalent to a mean mesh edge length of 13 to 7 µm, or an approximate linear range of (b) 

963 50,000  to (c) 350,000 tetrahedral elements. Zoomed in image shows a comparison of a mesh without 

964 (solid line) and with (dotted line) a boundary layer. A NMESH value of 2.6 with no boundary layer was 

965 used for the fluid simulation comparison analysis.

966

967
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968

969

970 Figure 8. Volume rendering of sample A, showing the two finite element modelling (FEM) Stokes-

971 flow simulation methods used in this study. (a, b) Avizo displaying a (a) 3D greyscale volume and (b) 

972 generated fluid velocity profile. Experimental set-ups are added onto sample faces perpendicular to the 

973 main flow direction to achieve a quasi-static pressure state. (c, d) Comsol displaying a (c) 3D 

974 tetrahedral mesh of the pore phase (NMESH value of 2.6 with no boundary layer) and (d) the pressure 

975 gradient profile of the simulation. Colours in (d) represent pressures from 30,000 Pa (dark red) to 0 Pa 

976 (dark blue). See supplementary material for video animations.
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977

978 Figure 9. Direct comparison of absolute permeabilities from Avizo and Comsol, the two finite 

979 element modelling Stokes-flow simulation methods used in this study. The black solid line indicates 

980 the identity line (Y=X) where both methods produce the same permeability. The dashed lines 

981 represent uncertainty intervals of 20% (black), 50% (dark grey), 100% (grey) and 200% (light grey). 

982 99 simulations are compared, comprising of samples: St1 (black circle), St2 (grey circle), A (blue 

983 square), A2 (green square), B (yellow triangle) and C (red diamond). 

984

985

Page 45 of 59 Geophysical Journal International



45

986

987 Figure 10. Plots of connected porosity (Øc) and permeability (k) vs sub-volume size (the cubic length) 

988 for samples A-C (a-b) and St1-2 (c-d). The permeability results are from the Avizo Stokes-flow 

989 simulation method.  NREV is the ratio of sample length to effective grain size, i.e. a NREV value of one 

990 is equal to one grain diameter.

991
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992

993 Figure 11. Log-linear plots of permeability (k) against connected porosity (Øc) for homogeneous 

994 samples St1 and heterogeneous samples A, B, and C. St1 shows 8 sub-volumes from the maximum 

995 sample volume. A, B and C show 27 sub-volumes from the maximum 1.4 cubic mm  sample volume. 

996 For each sample, best fit lines for vertical (kv) and horizontal (kh) permeabilities are obtained using the 

997 known Øc from the maximum sample volumes (NREV = 10). COV is the coefficient of variation 

998 expressed in percentage (standard deviation/mean).

999

1000
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1002

1003 Figure 12. Demonstration of the impact of down-sampling image resolution on porosity-permeability. 

1004 Comparison of (a) total porosity (Øt) and (b) vertical permeability (kv) for original (1 µm) and 

1005 downsampled (5 µm) images for samples: A (blue), A2 (green), B (yellow) and C (red). Sample sub-

1006 volumes of 1.4 mm and 0.5 mm cubic length (NREV = 10 and 3.5) are used for calculations in a) and b), 

1007 respectively. Original images – straight lines; downsampled images segmented using a classifier 

1008 trained with the 5 µm images– dashed lines and 1 µm images – dot-dashed lines, respectively.
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1010
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1013

1014
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1015

1016 Figure 13. Determination of sample representative elementary volume (REV) using Pore network 

1017 modelling and Numerical Coarsening of the image (downsampling post-segmentation). (a) Pore 

1018 network model (PNM) of sample A. Pores – red spheres; pore throats – white sticks. (b) 2D binarised 

1019 orthoslices of sample A coarsened by a factor (NC. Fac.) of 6. Pore phase – black; solid phase - white. 

1020 (c) Plot of horizontal permeability (kh) vs sub-volume size (the cubic length) for samples: A (blue 

1021 square), A2 (green square), B (yellow triangle) and C (red diamond). REV is determined as NREV ≥ 7 

1022 for all samples. NC. Fac. 6 – dashed line; PNM. – dotted line; 0.81µm – solid line. Vertical black 

1023 dashed line represents the maximum sample size (NREV = 3.5) that can be calculated at an image 

1024 resolution of 0.81 µm within current computational constraints, see Figure 10.

1025

1026
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1027

1028 Figure 14. Comparison plots of total porosity (øt) and vertical permeability (kv) comparing 

1029 calculations obtained from X-ray micro-CT (XCT) image-based methods and laboratory physical 

1030 measurements (Lab.). The horizontal (and vertical) error bars for the laboratory data in both plots 

1031 correspond to the standard deviation of the repeated physical measurements. (a) For the XCT data 

1032 points, øt is calculated for voxels classified to voids only (white markers), and voxels classified to the 

1033 combined void, clay mineral fraction and cement matrix (coloured markers). Clays and silica (Opal-

1034 CT) cement are estimated to contain 60 % and 70 % intragranular porosity, respectively. XCT øt 

1035 vertical error bars correspond to a combined segmentation-based error (hence the anomaly for sample 

1036 St1 imaged at 5 µm) and error associated with a 10 % uncertainty in the clay and cement intragranular 
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1037 porosity estimates. (b) XCT kv data points are shown for five different image-based calculations 

1038 described in Table 6: Interpolated from multiple subvolumes – blue square, numerical coarsening – 

1039 blue cross, pore network modelling – red cross and upscaling using Matlab Reservoir Simulation 

1040 Toolbox (MRST) – harmonic-arithmetic mean (green diamond) and harmonic mean (green triangle). 

1041 XCT kv vertical error bars correspond to the permeability values estimated and extrapolated from the 

1042 lines of best fit from Figure 11, within a porosity error range of ±2 %.
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1045
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1046

1047 Figure 15. An optimal image processing workflow devised for porosity-permeability analysis of 

1048 sandstone rock. NREV is the ratio of sample length (L) to effective grain size diameter (Deff), and NI is 

1049 the ratio of dominant pore throat size (Dd) to image voxel size (∆x). See Eqs (1-3) in the main text.

1050
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1055 Appendix A. Additional Image acquisition and reconstruction information 

1056 Data was acquired using a pink beam in the energy range of 20-30 KeV. At this energy, the absorption 

1057 was around 80%. Region of interest (ROI) scans were performed using a 4x optic and PCO Edge 5.5 

1058 scintillator-coupled detector in full frame mode (2560 x 2160 pixels) with a magnification of 0.032, 

1059 resulting in a pixel resolution of 0.81 μm. 4000 equiangular projections were acquired through 360° 

1060 with an exposure time of 0.5 s per projection. Each scan took ~ 30 minutes. In addition, flat-field and 

1061 dark-field correction images were taken before and after the data acquisition.

1062   After a dark- flat-field correction, a dezinger filter was applied with tolerance of 0.4. A paganin filter 

1063 was applied (Delta/Beta = 150), which is a method of propogation-based phase retrival, to improve 

1064 image contrast. No raven filter was applied, as this created ring artefacts. A lens distortion correction 

1065 was also applied to the scans. In addition, padding was used in order to remove the cupping effect at the 

1066 outer edge of the images introduced by ROI scanning. The reconstruction was outputted to 32-bit Tiff 

1067 files, totalling 57 GB per sample.

1068

1069 Appendix B. Additional Flow solver information 

1070   Flow simulations were computed using a Linux-based High Performance Computing (HPC) cluster 

1071 (Iridis, University of Southampton), conducted using single node, 192 GB memory systems, and one 

1072 GTX1080 GPU card with 32 GB memory. The memory size constrained the maximum volume sizes 

1073 possible to use for the flow simulations. The larger Comsol mesh simulations were performed on high 

1074 memory nodes, which required up to 360 GB memory.

1075   The Stokes flow equation used for the Avizo flow simulation Eq. (4) assumes laminar flow conditions 

1076 (low Reynolds number), and a single-phase incompressible Newtonian fluid. For the boundary 

1077 conditions of the simulation, a no-slip surface is defined between the pore-solid interface. In addition, a 

1078 solid plane of one voxel width is introduced parallel to the main flow direction, to ensure that fluid is 

1079 contained within a closed system. Finally, an experimental set up is added onto the faces perpendicular 

1080 to the flow direction to simulate a quasi-static pressure state, and to ensure the fluid flows through the 
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1081 whole cross sectional input/output areas. To ensure a reliable, repeatable value of permeability, the 

1082 Stokes-flow simulations should coverge using a low tolerance error. For the Avizo fluid simulation, a 

1083 convergence coefficient of 10-5 was used.

1084

1085 Appendix C. Supplementary data

1086 Supplementary data associated with this article can be found as additional file attachments.

1087
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Supplementary figure: Grain Separation result for samples St1-2 and A-C. From left to right 
shows (1) Segmented image of pore phase (black) and solid phase (white), (2) Separated 
grains and 3) 3D volume of separated grains (grey).
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Supplementary figure: Pore separation and pore network model result for samples St1-2 
and A-C. From left to right shows (1) 3D volume of separated grains (grey), (2) 3D volume of 
separated, connected pore phase  and (3) 3D pore network model view of the connected 
pore phase (Pores – red; Pore throats – white).
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Supplementary figure: Segmentation Grey-level intensity result for samples A-C (voids – 
black; clay fraction – red; silica cement – blue).
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Supplementary figure: Upscaled permeability calculations of samples A, B, C and St1 using 
Matlab Reservoir Simulation Toolbox (MRST).  Volume averaged calculations of the 
arithmetic, harmonic and harmonic-arithmetic means are determined.
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Supplementary figure:  Image comparison of a 0.81 µm and 0.33 µm image spatial 
resolution, respectively.  
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