

Mine water characterisation and monitoring borehole GGA07, UK Geoenergy Observatory, Glasgow

UK Geoenergy Observatories Programme Open Report OR/20/027

BRITISH GEOLOGICAL SURVEY

UK GEOENERGY OBSERVATORIES PROGRAMME OPEN REPORT OR/20/027

Mine water characterisation and monitoring borehole GGA07, UK Geoenergy Observatory, Glasgow

V Starcher, K Walker-Verkuil, K M Shorter, A A Monaghan, H F Barron

Contributors

J Elsome, J Burkin, C Inauen, O Kuras, P Meldrum, B O Dochartaigh, E Callaghan

Editor

M Spence

The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2020. Ordnance Survey Licence No. 100021290 EUL.

Keywords

Borehole drilling, UKGEOS, mine water heat, mine working, geothermal, bedrock, superficial deposits

National Grid Reference SW corner 262252, 662760 NE corner 262252, 662760

Front cover

Installation of uPVC casing, ERT and fibre-optic cable into borehole GGA07, December 2019

Bibliographical reference

STARCHER V, WALKER-VERKUIL K, SHORTER K M, MONAGHAN A A, BARRON H F 2020. Mine water characterisation and monitoring borehole GGA07, UK Geoenergy Observatory, Glasgow. *British Geological Survey Open Report*, OR/20/027. 29pp.

Copyright in materials derived from the British Geological Survey's work is owned by UK Research and Innovation (UKRI). You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail ipr@bgs.ac.uk. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract.

Maps and diagrams in this report use topography based on Ordnance Survey mapping.

© UKRI 2020. All rights reserved

BRITISH GEOLOGICAL SURVEY

The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com

The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.

We publish an annual catalogue of our maps and other publications; this catalogue is available online or from any of the BGS shops.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as basic research projects. It also undertakes programmes of technical aid in geology in developing countries.

The British Geological Survey is a component body of UK Research and Innovation.

British Geological Survey offices

Environmental Science Centre, Keyworth, Nottingham NG12 5GG

Tel 0115 936 3100

BGS Central Enquiries Desk

Tel 0115 936 3143 email enquiries@bgs.ac.uk

BGS Sales

Tel 0115 936 3241 email sales@bgs.ac.uk

The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP

Tel 0131 667 1000 email scotsales@bgs.ac.uk

Natural History Museum, Cromwell Road, London SW7 5BD

Tel 020 7589 4090 Tel 020 7942 5344/45 email bgslondon@bgs.ac.uk

Cardiff University, Main Building, Park Place, Cardiff CF10 3AT

Tel 029 2167 4280

Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB Tel 01491 838800

Geological Survey of Northern Ireland, Department of Enterprise, Trade & Investment, Dundonald House, Upper

Newtownards Road, Ballymiscaw, Belfast, BT4 3SB Tel 01232 666595

www.bgs.ac.uk/gsni/

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU

Tel 01793 411500 Fax 01793 411501 www.nerc.ac.uk

UK Research and Innovation, Polaris House, Swindon SN2 1FL

Tel 01793 444000 www.ukri.org

Website www.bgs.ac.uk Shop online at www.geologyshop.com

Acknowledgements

This report is the culmination of a huge amount of work delivered by many staff from BGS, the UK Geoenergy Observatories contractors BAM Nuttall/ BAM Ritchies, Ramboll, Drilcorp and others. Special thanks go to the UK Geoenergy Observatories Science Advisory Group (GSAG) for on- call support to maximise science opportunities during the construction phase, and to project partners including landowners, local residents and regulatory bodies (in particular Clyde Gateway, SEPA and The Coal Authority). Within BGS the communications and engagement team of C Chapman, C Buchanan and T Galley have had a significant role in enabling the borehole construction, and many BGS data management and informatics experts have had a large part to play in making datasets openly available. G Baxter, R Dearden, J Midgley, S Burke, C Abesser, S Hannis, T Kearsey and S Henderson are also thanked for their input to planning the borehole and the checking of datasets.

Contents

Ac	know	ledgements	i
Co	ntent	S	i
Su	mmaı	ry	3
1	Intr	oduction	3
	1.1	Citation guidance	3
	1.2	As-built borehole location	6
	1.3	Drilling and as-built lengths and heights	7
2	As-k	built borehole design	9
	2.1	Basis of design	10
3	Dril	ling, casing, annulus grouting and testing methodology	11
	3.1	Sensors installed	12
4	Bor	ehole logs	14
	4.1	Drillers' log	14
	4.2	BGS rock chip log	15
5	Wir	eline (geophysical) downhole data	15
	5.1	Acquisition	15
	5.2	Summary and outputs	16
6	Arc	hived rock chip samples	17
7	Initi	ial hydrogeological indications	18
	7.1	Borehole cleaning	18
	7.2	Test pumping	18
8	Initi	ial geological interpretation	20
	8.1	Mine workings	20

9	References	.22
Ap	pendix A: Summary of the borehole GGA07 files in this information release	.23
Ap	pendix B: ERT and DTS cable detailed installation method	.24
Ар	pendix C Pre-drill borehole prognosis	.24

FIGURES

Figure 1 GGA07 summary log based on rock chip returns
Figure 2 Location map of borehole GGA07, UK Geoenergy Observatory in Glasgow. The other mine water and environmental baseline boreholes are shown for reference. Contains Ordnance Survey data © Crown copyright and database rights. All rights reserved [2020] Ordnance Survey [100021290 EUL]
Figure 3 Images summarising the datums and depths/lengths/heights during drilling (left) and as- built (right)
Figure 4 As-built borehole schematic for GGA079
Figure 5 Optical camera image of the Glasgow Upper mine working in borehole GGA07 (left) and caliper log of the mine working interval (right, at different scale). Note that the depths on the camera and caliper data are around 0.4 m offset from the Drillers' record21
Figure 6 Pre-drill borehole prognosis for site GGERFS03, boreholes GGA07, GGA08, GGA09r based on semi-regional geological models and nearby legacy boreholes

TABLES

Table 1 GGA07 as-built summary data
Table 2 Summary of start heights and datums used for GGA07
Table 3 Summary of heights for as-built borehole features for GGA0710
Table 4 Summary of drilling, casing, grouting and testing. All depths are in metres below drilling platform level (mbgl). 11
Table 5 Position of the ERT sensors relative to drilling platform and as-built datums
Table 6 Cased hole and open hole wireline logs run for GGA07. All downhole depths in the released datasets were measured from the drill platform level 11.63 m. Open hole logs and camera depths are approximate. 16
Table 7 Overview of GGA07 borehole cleaning parameters 18
Table 8 Overview of GGA07 test pumping parameters 19
Table 9 Summary of files in the borehole GGA07 information release

Summary

This report and accompanying data release describe the 'as-built' borehole GGA07 at the UK Geoenergy Observatory in Glasgow. They also describe initial hydrogeological testing completed after borehole construction and provide an initial geological interpretation.

Mine water borehole GGA07 at the UK Geoenergy Observatory in Glasgow is screened across the Glasgow Upper mine working and its overlying siltstone/ claystone roof. The mine working is interpreted to be a coal stoop (pillar) and room. Initial hydrogeological indications from the borehole test pumping suggest that borehole GGA07 is very high yielding. Borehole GGA07 has ERT and DTS cables installed between the borehole casing and the surrounding rock, and a hydrogeological data logger installed within the borehole.

1 Introduction

Drilling of the mine water characterisation and monitoring borehole GGA07 at Cuningar Loop in Rutherglen, Glasgow City Region, took place between 24th June and 16th December 2019 (start of drilling to casing installation date). The borehole targets the Glasgow Upper mine working, with the slotted screen at -39.57 to -42.27 m relative to Ordnance Datum.

The borehole was drilled as part of a set of six mine water^{*}, five environmental baseline and a seismic monitoring borehole as part of the UK Geoenergy Observatory in Glasgow. Further details of the purpose and planned infrastructure at the Observatory are described in Monaghan et al. (2019) and a geological characterisation of the area is provided in Monaghan et al. (2017).

This document and accompanying data files provides the definitive information on the 'as-built' borehole infrastructure.

- Table 1 and Figure 1 provide a summary of the borehole. Figure 1 is also included in the information release [*Summary_BGS_Log_GGA07.pdf*].
- Appendix A lists the files making up the information release.

1.1 CITATION GUIDANCE

Any use of the data should be cited to:

DOI: https://dx.doi.org/10.5285/d8d27fb5-3be4-4a54-aef7-8429ec234667

V Starcher, K Walker Verkuil, KM Shorter, A A Monaghan, H F Barron. 2020. UK Geoenergy Observatories Glasgow Borehole GGA07 Data Release

and this report cited as:

STARCHER V, WALKER-VERKUIL K, SHORTER K M, MONAGHAN A A, BARRON H F 2020. Mine water characterisation and monitoring borehole GGA07, UK Geoenergy Observatory, Glasgow. British Geological Survey Open Report, OR/20/027.

^{*} Five boreholes were completed as mine water boreholes and one was completed as a sensor testing borehole

Table 1 GGA07 as-built summary data

Borehole number	GGA07		
Site	GGERFS03		
Easting (British National Grid)	262252.230		
Northing (British National Grid)	662759.869		
Drilling platform level (metres above Ordnance Datum AOD)	11.63		
Drilling started	24/06/2019		
Final casing installed	16/12/2019		
As-built borehole start height or datum (top Boode casing flange, metres AOD)	11.34		
Installation details			
Borehole detail	Depths (drill length from drill platform level, metres)	Diameter size	
Made ground casing	0.0 - 11.7	24" (610 mm OD x 575 mm ID)	
Rockhead casing	0.0 – 36.6	18" (457 mm OD x 425 mm ID)	
Boode Well (BW) casing	0.0 - 51.2	280 mm OD x 248 mm ID	
BW Slotted pipe with pre-glued gravel pack	51.2 - 53.9	311 mm OD x 248 mm ID	
BW Casing Sump	53.9 - 56.9	280 mm OD x 248 mm ID	
Geological details	Depths (drill length from drill platform level, metres)	Depths, relative to Ordnance Datum (m)	
Base of made ground	8.5	+3.13	
Base of superficial deposits	35.0	-23.37	
Base of superficial deposits			
Top Glasgow Upper mineworking	52.2	-40.57	
· · · · ·	52.2 53.9	-40.57 -42.27	
Top Glasgow Upper mineworking			

epth bgl) 0%	Rock Chip Log	0% Summary Notes	Borehole Design	e Interpreted Stratigraphy		Summary Lithology
1		Made Ground (not sampled) slightly gravely ashy fine to co sand, sandstone, brickwork, cement work, roots, wood, clin slate, glass, metal and plastic. (Summary from Drillers' Log	ker,	Not sampled	Made Ground	
9		Fine sand and silt, trace gravel. Fine to medium sand, gravel: large to medium-sized pebbles, and silt.	11.7 m— -			
13 – 14 –	7 E	Medium sand and gravel: medium-sized pebbles.				
15 — 16 —		Medium sand, trace gravel: very large-sized pebbles.				
17 – 18 –		Coarse sand, trace gravel: very large-sized pebbles, trace fragments.	wood			
19 20 21 21 22 23 23 24 25 2		Coarse sand, trace gravel: very large-sized pebbles.		Direct flush duplex drilling method altered physical characteristics of returned sediments No Interpretation made	Quaternary Sediments	
26 27 28 29 30 31		Medium sand, trace coal fragments.			Quat	
32 33 34		Medium sand and gravel: medium-sized pebbles.		Base of Quaternary		6 · · · · · · · · · · · · · · · · · · ·
36 — 37 — 38 —		Sandstone, fine grained, well sorted, subrounded grains, st cemented, micaceous and carbonaceous laminations.	rongly 36.6 m—			
39		Mudstone: silt and clay grades, frequent high organic conte plant fragments, trace sandstone, fine sand, moderately so subrounded grains, calcareous, moderately cemented, carbonaceous and micaceous laminations, orange staining	rted,		es Formation	
44		Sandstone: fine to medium grained, poor to well sorted, subrounded grains, occasionally weakly calcareous, strong cemented, trace plant fragments, micaceous, trace high organic content, trace plant fragments, occasionally orange stained.			Aiddle Coal Measures	
19		Mudstone: silt and clay grades, locally grading to fine sandstone in parts, high organic content, plant fragments, occasional orange staining, trace calcite veining.	49.7 m— 51.2 m—		Scottish Middle	
53 — 54 —		Glasgow Upper mine working, vitreous, cleated, banded, putrace sulphur and orange staining.	0	Glasgow Upper Coal: pillar and void on optical camera		−52.2 m V V −53.9 m
55		Mudstone: silt and clay grades, low organic content, plant fragments. Sandstone, fine grained, poorly sorted, subangular grains, occasional clay content, calcareous, strongly cemented, lov organic content, plant fragment, trace siderite nodules.	53.9 m v 56.9 m			
59 —		See detailed log for full descriptions.	t, sand and gravel	Sandstone		Made ground casir

Figure 1 GGA07 summary log based on rock chip returns

1.2 AS-BUILT BOREHOLE LOCATION

Borehole GGA07 is part of the UK Geoenergy Observatory: Glasgow Geothermal Energy Research Field Site (GGERFS) located on the southern side of the River Clyde in Rutherglen, South Lanarkshire, four kilometres south-east of Glasgow city centre (Figure 2).

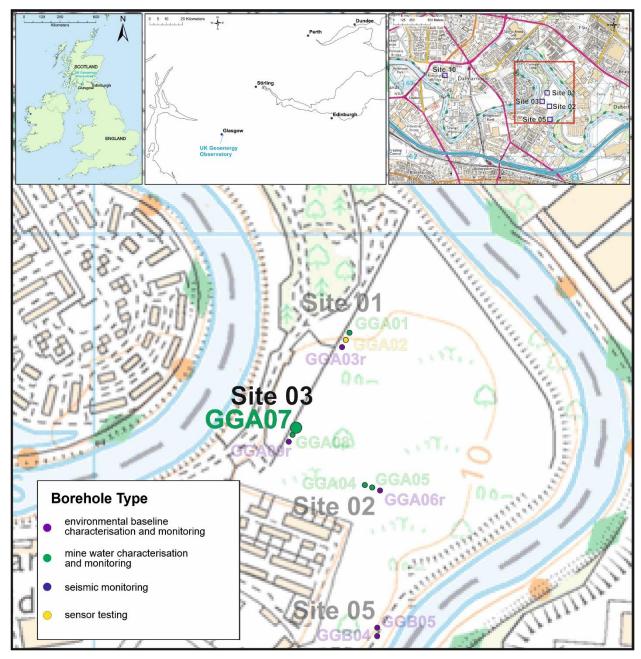


Figure 2 Location map of borehole GGA07, UK Geoenergy Observatory in Glasgow. The other mine water and environmental baseline boreholes are shown for reference. Contains Ordnance Survey data © Crown copyright and database rights. All rights reserved [2020] Ordnance Survey [100021290 EUL].

1.3 DRILLING AND AS-BUILT LENGTHS AND HEIGHTS

Borehole drilling took place from a built-up gravel platform, with the reference datum for drilled depth (measured in metres below ground level; mbgl) being the drilling platform ground level (measured in metres above Ordnance Datum; m AOD; Figure 3). All drillers' logs, sample depths, BGS rock chip logs and wireline logs, together with the stated installation depths of ERT sensors and fibre-optic cables are referenced to the drilling platform level. After drilling had been completed the borehole casings were cut down and a manhole chamber was installed (Tables 2,3).

After the hydrogeological test pumping had been completed, the borehole head works were installed in the manhole chamber. The as-built borehole therefore has a different start height or reference datum level, which is the top of the blue Boode casing flange (Figure 3). Depths down the borehole can be expressed as lengths from the top Boode casing, or relative to Ordnance Datum (Tables 2,3).

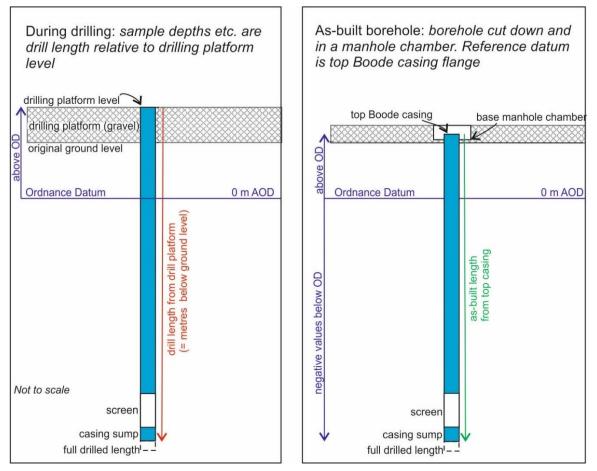


Figure 3 Images summarising the datums and depths/lengths/heights during drilling (left) and asbuilt (right)

Stage	Borehole start height/ reference datum used (m AOD)	Used in
Drilling platform level – built up gravel platform	11.63	Drillers and BGS logs, sample depths, wireline and optical dataset. ERT and DTS cable installation.
As-built borehole start height (top Boode casing flange)	11.34 (recorded as 11.343)	Reference datum for future Observatory users
Conversion Rock chip sample depths, logs, wireline and optical depths – to convert from drill length to beneath asbuilt borehole start height		As-built depth below start height = drill length – (11.63 – 11.34) m <i>i.e</i>
		As-built depth below start height = drill length – (0.29) m

 Table 2 Summary of start heights and datums used for GGA07

2 As-built borehole design

The Glasgow Geoenergy Observatory boreholes have been designed for a range of scientific research purposes over a 15-year lifetime, with 2 sets of sensor cables installed on the outside of the bedrock casing (mine water boreholes). As such, their construction is not typical of mine water or environmental monitoring boreholes that would be installed for commercial schemes.

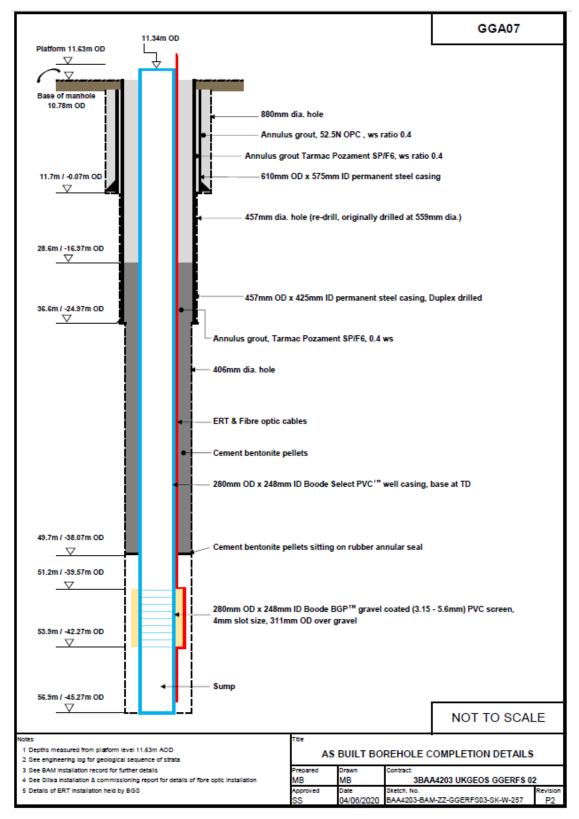


Figure 4 As-built borehole schematic for GGA07

2.1 BASIS OF DESIGN

The basis of the GGA07 borehole design was as follows;

- i. Separate borehole casings were installed through the made ground, superficial deposits and bedrock sections of all the UK Geoenergy Observatory boreholes at Cuningar Loop, with the annulus of the different casing sections grouted before the next section was drilled. This was done to prevent the mixing of groundwaters of different quality, which could occur if vertical flow paths were created during drilling (important to avoid from both an environmental quality and scientific research perspective).
- ii. The borehole is screened only across the target interval (the Glasgow Upper mine working) and is fully sealed above the screen, so that all hydrogeological observations from this borehole relate only to this interval.
- The large internal diameter of the bedrock casing and slotted screen section of borehole GGA07 (248 mm ID) was chosen accommodate a large borehole pump capable of delivering a high flow rate.
- A screen slot size of 4 mm was used in the Glasgow Upper mine working with a 3.15 to 5.6 mm sized bonded gravel pack attached. The gravel pack is intended to stop ingress of larger pieces of coal or mine waste that could clog the slotted screen.
- v. A sump section was included in the borehole design to accommodate the termination unit of the fibre optic sensor cables (see below) and to catch any fines that enter through the slotted screen.
- vi. A finned annular rubber seal was placed at 49.7 mbgl, above the Glasgow Upper mine working to support the emplacement of a permanent grout seal. A layer of bentonite pellets was first emplaced to seal and reduce pressure on the finned seal. Once the bentonite had set sufficiently (24 hours) the annulus was grouted in stages with SP/F6 mix and bentonite cement pellets (Figure 4).

Feature	Depths (drill length from drill platform level, metres)	Height (m) relative to Ordnance Datum	As-built length (m) down hole from top casing datum (top Boode flange)
Top slotted screen	51.2	-39.57	50.91
Base slotted screen	53.9	-42.27	53.61
Base installed casing sump	56.9	-45.27	56.61
ERT sensor positions	See Table 5 below		See Table 5 below
Position of DTS termination unit	Base Termination unit depth: 56.4	Base Termination unit depth: -44.77	Base Termination unit depth: 56.11

Table 3 Summary of heights for as-built borehole features for GGA07

3 Drilling, casing, annulus grouting and testing methodology

Borehole GGA07 was drilled and cased in separate sections for made ground, superficial deposits and bedrock. In between the sections the drill rig moved off to complete sections of other boreholes on site, thus the overall timescale for the borehole appears much longer than would be expected (Table 4).

Table 4 summarises the steps involved in the drilling of GGA07, further details are given in the borehole information summary at the end of the Drillers' log file (see section 4.1). Other points of note include

- Water flush was used throughout the drilling of the superficial deposits and bedrock sections
- The drilling technique in the made ground section was piling rig with auger. In the superficial deposits, duplex drilling (drilling while casing) with direct flush was used. The bedrock sections were drilled using rotary open hole with reverse circulation.
- Fluid and rock chip samples were taken from the superficial deposits and bedrock sections for academic researchers and rock chip samples were taken for archiving in the BGS National Geological Repository.

Table 4 Summary of drilling, casing, grouting and testing. All depths are in metres below drilling platform level (mbgl).

Drilling and inst	allation summary:
24/06/2019	Drilled using the BAM piling rig to 11.6 mbgl, with a 34 $\frac{3}{4}$ " (880 mm) auger – base made ground level encountered at 8.5 mbgl
25/06/2019	Made ground and superficial deposits casing grouted – casing installed to 11.7m
04/11/2019 – 08/11/2019	Drilled superficial deposits to rockhead with Conrad rig from 11.6 to 35.0 mbgl, with direct flush duplex drilling method (casing while drilling) to mitigate issues with mobile sand and gravel, as had been encountered in GGA08
	Rockhead encountered at approximately 35 mbgl – switched to reverse circulation at rockhead to allow casing to be reamed into bedrock – borehole backfilled with sands and gravels to approximately 34 mbgl
11/11/2019 -	Reamed casing into bedrock to 36.6 mbgl
14/11/2019	14/11/2019 – Casing annulus grouted
	Problems Encountered:
	Due to difficulty reaming in bedrock, only c. 1.6 m of the proposed 3 m was achieved
09/12/2019 – 12/12/2019	Drilled out grout and continued to Glasgow Upper mine working with a 16" tri-cone drill bit – total depth reached at 56.92 mbgl
	The Glasgow Upper encountered as a coal seam (some staining and alteration) at 52.2 – 53.9 mbgl, with a total thickness of 1.7 m
	Airlifted immediately after TD for 45 minutes, to clear borehole water for optical camera. Approximately 38 m ³ was airlifted.
	Problems Encountered:
	Drilling the sump beneath Glasgow Upper proved difficult due to clay and coal choking the bit.

Drilling and inst	Drilling and installation summary:				
16/12/2019	Robertson Geo Services ran optical camera and wireline to determine casing/seal points – Silixa installed fibre optics and BGS installed ERT cables on to casing during installation				
	The optical camera and open hole caliper data indicated that the Glasgow Upper coal appeared to be a pillar with a water-filled void also present				
Casing design:					
	 Annular seal: 49.7 4 mm slotted Boode casing with 3.15 to 5.6 mm bonded gravel pack from 51.2 – 53.9 mbgl Sump: 53.9 – 56.9 mbgl 				
17/12/2019 – 19/12/2019	Grouted annulus to completion – bentonite cement pellets were used to 28.6 mbgl and grout above that				
08/01/2019	Borehole cleaning for 2 hrs				
09/01/2020	Cased hole logs run by Robertsons Geo Services				
06/02/2020	Hydrogeological testing: step test conducted at 5, 10, 15, 20, and 25 l/s				
07/02/2020	Hydrogeological testing: constant rate pump test at 20 l/s				

3.1 SENSORS INSTALLED

3.1.1 Electrical resistivity tomography (ERT) downhole sensors

Electrical resistivity tomography (ERT) is a geophysical technique that uses electrode arrays to profile the electrical resistivity of the subsurface. At UKGEOS Glasgow electrode cables were deployed in the six mine water characterisation boreholes to facilitate cross-borehole imaging of geoelectrical properties and the automated remote 4D monitoring of natural and induced changes in subsurface conditions.

ERT INSTALLATION

An ERT cable was fastened to the outside of the Boode well casing, including across the screened section, and the casing and cables were then lowered into the borehole (Figure 4, Table 5). When the casing and cable had been installed, the annulus between the casing and rock wall was grouted above the screened section to seal in the casing and provide a good electrical connection between the ERT electrodes and the surrounding formation. Appendix B provides a more detailed description of the installation method for the ERT and fibre-optic cables.

OUTPUT DATA

The data will be measured by a BGS-designed system known as PRIME, which connects multiple ERT electrodes to a common control unit so that the resistivity between various electrode pairs can be continuously scanned. The PRIME system is operated remotely and designed for minimum on-site intervention. All acquisition strategy design, measurement scheduling and data download will be undertaken remotely via a secure 3G/4G Wireless internet link.

Drill platform datum leve	11.63	
As-built datum level at to	11.34	
Electrode number	Electrode number Depth below drill platform datum [m]	
24	37.86	37.57
23	38.61	38.32
22	39.35	39.06
21	40.10	39.81
20	40.85	40.56
19	41.60	41.31
18	42.34	42.05
17	43.09	42.80
16	43.84	43.55
15	44.59	44.30
14	45.33	45.04
13	46.08	45.79
12	46.83	46.54
11	47.58	47.29
10	48.32	48.03
9	49.07	48.78
8	49.82	49.53
7	50.57	50.28
6	51.31	51.02
5	52.06	51.77
4	52.81	52.52
3	53.56	53.27
2	54.30	54.01
1	55.05	54.76

Table 5 Position of the ERT sensors relative to drilling platform and as-built datums

3.1.2 Fibre-optic cables (FO)

The fibre-optic cables installed within the borehole are optoelectronic devices that can act as series of "distributed temperature sensors" (DTS) to produce a continuous profile of in-situ temperature along the cable. When an interrogator box is connected to the top of the cable, a pulsed laser signal propagates through the fibre-optic cable and measurements of the temperature-dependent backscatter are recorded. In passive mode DTS monitors in-situ temperature variation and can be used, for example, to infer flow pattern from naturally occurring thermal anomalies. The fibre-optic cables also have the ability to measure distributed acoustics should an iDAS interrogator box be connected.

The cables installed into the Glasgow mine water boreholes are all active DTS and so include a copper element, which can be used to generate a heat pulse. The decay of this heat pulse can be monitored using the DTS fibre and used to infer the presence of flow zones, or regions of increased thermal conductivity.

FIBRE-OPTIC CABLE INSTALLATION

The DTS fibre-optic cable was fastened on to the outside of the Boode well casing, including across the screened section and installed into the borehole (Figure 4). Subsequently the annulus of the borehole above the screened section was grouted between the casing and rock wall and around the cable. The termination unit of the FO cable was installed below the first ERT sensor to ensure that the metal of the unit did not interfere with the ERT signal. Appendix B provides a more detailed description of the installation method for the ERT and the fibre optic cables, along with

the contractors report included in the information release [FibreOpticCable Installation Report BGS V1.2 GGA07 26052020.pdf]

Installation depths of cables and the termination unit are shown in Table 3 above.

OUTPUT DATA

The passive DTS cables are used in conjunction with a DTS interrogator box, which generates the light signal and interprets the signal return. For use of the active DTS system a separate heat pulse control unit is also needed.

3.1.3 Hydrogeological data logger

A CT2X data logger was installed in GGA07 on 10/01/2020 to a depth of approximately 30 m below the top of the casing, and was raised on 22/01/2020 to approximately 20 m below the top of the casing. The data logger was removed during the test pumping on GGA07 (Drilcorp installed their own data logger during the tests). The data logger was re-installed upon completion of the constant rate test on borehole GGA07, approximately 20 m below the top of the casing, and remained in place for the duration of the remaining test pumping of the surrounding UKGEOS boreholes. It was removed from the borehole after the completion of the test pumping programme to allow the borehole casing to be cut down. The data logger will be replaced at a future date, when BGS staff are allowed to return to site following the COVID-19 pandemic restrictions, for continuous downhole groundwater monitoring. As with all groundwater observations in this borehole, the data logger is monitoring groundwater conditions only in the screened target interval, the Glasgow Upper mine working.

This data logger measures the following parameters:

- Pressure (mbars) (which is converted to borehole water level by compensating for air pressure, measured separately onsite by a barometer)
- Groundwater temperature (°C)
- Groundwater conductivity (specific electrical conductivity or SEC) (μS/cm) (also expressed as Salinity (PSU) and Total dissolved solids (mg/L))

Data from the logger will be downloaded monthly and become available on the UKGEOS website.

4 Borehole logs

4.1 DRILLERS' LOG

The drilling contractors log is included in the data pack [*Drillers_Log_GGA07.pdf*]. This is arecord of the lithologies encountered, as recorded on-site by the drillers. Apart from the upper part of the made ground section which is based on trial pits, this log was not recorded by a geotechnical engineer. Due to the nature of the driller's log, there are differences between it and BGS rock chip log (Section 4.2).

The borehole information summary sheets at the end of the driller's log records the drilling progress each day, casing sizes, flush type used etc. All eleven drillers' logs for UKGEOS boreholes at Cuningar Loop have been exported by the drilling contractor to the file *UKGEOSCuningar_BAA4203_FinalAGS.AGS* in the Association of Geotechnical Specialists standard text file format.

4.2 BGS ROCK CHIP LOG

BGS geologists were on site during borehole drilling to collect samples, record a field lithological/sedimentological log and to make decisions based on this log, such as the positioning of the borehole screens and seal. A one litre tub of rock chips from the open hole drilling was generally taken every metre, to be representative of the lithologies encountered in that metre. Other notable features such as the top and base depths of key intervals such as coals and mine workings were recorded in discussion with the drillers.

Subsequently the rock chip tubs were transported to BGS Edinburgh. Tubs containing unconsolidated superficial deposit tubs were placed in a cold store. Rock chip tubs were dried and logged by BGS geologists in a laboratory with the aid of a microscope.

The resulting lithological log record [*Detailed_BGS_Rockchiplog_GGA07.pdf and .xlsx*] gives the percentage of lithologies returned as rock chips within the 'metre' tub, with some sedimentological characteristics. The dictionaries controlling the majority of the fields are provided via the tab on the spreadsheet. A sedimentological scheme was used to describe the lithologies to facilitate comparison with core logging of UKGEOS borehole GGC01:

- The Udden-Wentworth grain size scale was used
- With initial logging taking place at drill site, a classification level of mud/mudstone, sand/sandstone was used. Following the hierarchy of the BGS Rock Classification Scheme (Hallsworth and Knox, 1999), subsequent logging in the laboratory subdivided mud/mudstone to clay and silt, and to the sandstone grain sizes (fine, medium etc) and the gravel to granule and pebble grades. Percentages on the graphic logs are given at the mud/mudstone and sand/sandstone classification level. Detail on clay/silt etc is given in the descriptive field in the BGS rock chip log.
- Grain sizes, angularity, sorting and percentages etc were referred from a standard grain size card based on Tucker (2011).
- Logging was <u>not</u> based on ISO 14688-1:2002 (geotechnical engineering standard)

5 Wireline (geophysical) downhole data

Wireline logging or geophysical logging is the process of measuring the properties of geological units using sensors attached to a winch cable (wireline) suspended in the borehole. Measurements are made continuously down the borehole by raising or lowering the sensor tools. The property measurements are then converted to a standard series of geophysical logs.

5.1 ACQUISITION

5.1.1 Cased hole logs

The wireline logs were acquired by Robertson Geo Services. They were acquired as cased hole logs which refers to the fact that the tools were run after the Boode casing had been installed and grouting of the annulus had been completed. Information about the tools and their associated certification is located within the report 'Wireline Logging Report for UKGEOS Glasgow Conducted by Robertson Geo Ltd On behalf of BGS 9/1/20 -----10/1/20' included in the information release [BAM Nuttall Glasgow Report Final.pdf].

5.1.2 Open hole logs

During the drilling, Robertsons Geo Services were contracted to run logs to assist in drilling decisions. For GGA07, caliper and gamma open hole logs were acquired prior to the installation of the Boode casing. The data was output as a PDF file but as these logs were designed to be used purely for assisting in drilling decisions, there is no associated report and the headers are not complete.

5.1.3 Optical camera data

An optical camera was deployed into borehole GGA07 prior to casing installation. The aim of the camera was to assist in the placement of the screened section and to identify any potential problem areas with regard to grouting of the annulus. The data has not been processed and does not have complete headers as it was acquired purely to assist in the drilling and not as a final output. However, given the good quality of the image it was decided to release the data with these caveats.

5.2 SUMMARY AND OUTPUTS

The following wireline logs were run within Borehole GGA07 (Table 6)

Table 6 Cased hole and open hole wireline logs run for GGA07. All downhole depths in the released datasets were measured from the drill platform level 11.63 m. Open hole logs and camera depths are approximate.

Wireline Log	Depth below drill platform level (11.63 m AOD)	Depth below final datum (top casing) (11.34 m AOD)
Gamma cased hole	2.61 - 56.38	2.32 – 56.09
Caliper cased hole	2.61 - 56.38	2.32 – 56.09
Inclination cased hole	2.61 - 56.38	2.32 – 56.09
Azimuth cased hole	2.61 - 56.38	2.32 – 56.09
Gamma open hole	1.5 – 56 (approx.)	1.2 – 55.7 (approx.)
Caliper cased hole	1.5 – 56 (approx.)	1.2 – 55.7 (approx.)
Optical camera	33 – 56.2 (approx.)	32.7 - 55.9 (approx.)

Wireline logs were output in the following formats:

1. PDF

PDF files for the cased and open hole logs are included [*Cased_hole_GGA07_BoreholeGeometry.pdf* and *Open_hole_GGA07_Borehole_Geometry.pdf*]. For the cased hole logs, the header data provides information about the borehole location, the drilling datum and the casing and drill depths of each section. Note that all depths on the logs are based on the drill platform datum.

2. LAS

Conventional geophysical logs are provided in LAS format [*Cased_hole_GGA07_BoreholeGeometry.las*]. This is a column separated ASCII format. Almost all specialist logging software is capable of loading and interpreting geophysical log data in LAS format. In addition to this LAS files can also be viewed in any software capable of manipulating an ASCII text file, including Notepad (Windows), VI (Unix) or spreadsheets (e.g. Microsoft Excel). Only the cased hole logs are available in the LAS format.

3. HTML/BMP

The optical camera data is output as a HTML file with associated .bmp file showing the section between 33 - 52 m drilled depth. There is no associated header information but the depths are shown in the files. '*GGA07 Optical Televiewer Export Report.html*' will open in Google Chrome or equivalent, though may take a few minutes depending on computing power.

5.2.1 Problems and caveats with the wireline logs

No editing has been done on the cased hole logs. BGS reviewed the data and made minor comments primarily relating to the header information and the scale used in the .pdf files.

The borehole is roughly vertical (inclination less than 2 degrees) and undeviated. The borehole azimuth log shows a lot of variation between 0 and 360 degrees because of very slight changes in direction from the vertical.

The open hole logs [*Open_hole_GGA07_Borehole_Geometry.pdf*] and the optical camera were acquired for the purposes of providing real time data during the drilling. They have not been edited or processed and there is no accompanying .las file. There is missing header information and any review of these logs must be done with the understanding of their original purpose.

6 Archived rock chip samples

Section 4.2 describes how representative one litre tubs of rock chips were taken every metre during open hole drilling. These samples have been archived in the National Geological Repository at BGS Keyworth for future research. The data pack includes a spreadsheet summarising the rock chip tubs available [*GGA07_archived_rock_chips.xlsx*]. For the composition of the samples refer to the BGS rock chip log [*Detailed_BGS_Rockchiplog_GGA07.pdf and .xlsx*].

During-drilling fluid and rock chip samples were also supplied to a number of University groups for their ongoing research. Data from that research will be returned to NERC/BGS data centre and made publically available on a 2 year timescale.

7 Initial hydrogeological indications

A brief summary is provided here of various hydrogeological measurements recorded during borehole construction, cleaning and test pumping. Further detail will be provided in future hydrogeological information releases.

7.1 BOREHOLE CLEANING

Borehole cleaning was undertaken after the installation of casing and slotted screen with the aim of removing any drilling-related material and fluid from inside the casing.

Borehole cleaning was done using an airlift pump and carried out for two hours, by which time the field parameters being monitored (Table 7) had stabilised. A summary of the borehole cleaning carried out is in Table 7.

Technique used	Airlift
Date	08/01/2019
Length of time borehole cleaning continued (minutes)	90
Approximate volume of water removed (m ³)	12.6
Borehole water level drawdown (m)	Not recorded
Borehole volume (m ³)	2.75
Number of borehole volumes removed	Approx. 4.5
Field parameters measured for borehole cleaning monitoring	Dissolved oxygen/ SEC (conductivity)/ Temperature/ Oxidation-reduction potential/ pH/ turbidity
Average temperature of removed water (°C)	9.9
Summary of outcome	At the end of cleaning the water quality field parameters were stable and the turbidity readings were consistently zero

Table 7 Overview of GGA07 borehole cleaning parameters

7.2 TEST PUMPING

Test pumping was carried out to establish the hydraulic characteristics of the mine workings, shallow bedrock and superficial deposits, and the extent to which these units are connected at individual sites and across different sites. The first consistent set of groundwater samples for chemistry analysis was also collected during test pumping.

Two tests were carried out. A step test was carried out first to establish yield-drawdown relationships in the borehole, allow selection of an appropriate pumping rate for a constant rate test, and allow estimations of borehole efficiency. After groundwater level recovery, a constant rate test at a suitable rate to allow estimation of aquifer transmissivity and other hydraulic parameters was completed.

Each test was carried out using a submersible pump of suitable capacity to provide the desired pumping rate(s). During each test, groundwater levels in the tested borehole were monitored using a downhole pressure transducer, and also by manual dips. Groundwater levels in all other boreholes on site were monitored throughout the test using a downhole pressure transducer, and by occasional manual dips.

Initial hydrogeological indications from the test pumping suggest that borehole GGA07 is very high yielding. Detailed test pumping data and interpretations will be given in a future hydrogeological data release.

Step test		
Date of step test	06/02/2020	
Number of steps	5	
Length of steps (hours)	1	
Length of pumping during step test (hours)	5	
Length of manually monitored recovery during step test (hours)	1	
Pumping rates for each step (I/s)	5/10/15/20/25	
Maximum drawdown at end of final step (m)	5.11	
Constant rate test		
Date of constant rate test	07/02/2020	
Length of pumping during step test (hours)	5	
Length of manually monitored recovery during constant rate (hours)	1	
Pumping rate for constant rate test (I/s)	20	
Maximum drawdown at end of constant rate test (m)	4.24	
Average groundwater temperature during constant rate test (°C)	11.9	
Groundwater geochemical samples collected during constant rate test	Two samples: one after 2 hours and one after 4 hours	

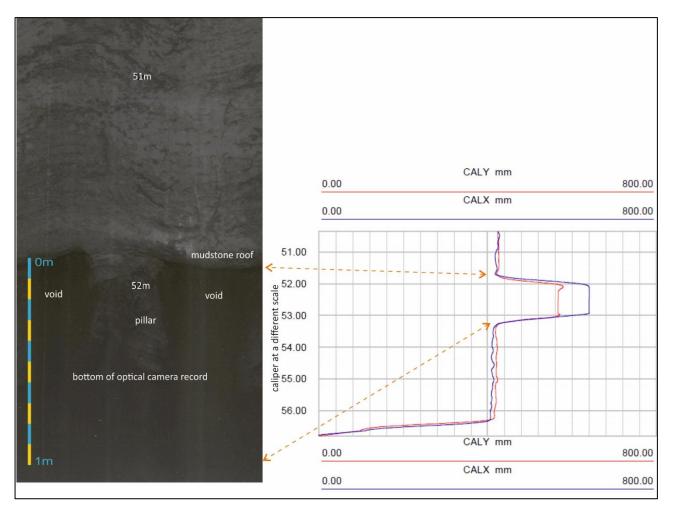
Table 8 Overview of GGA07 test pumping parameters

8 Initial geological interpretation

Integration of drillers' information, rock chip logs, preliminary hydrogeological indications from borehole cleaning and test pumping, downhole optical camera and wireline log data together with correlation to legacy borehole and mine plan data has allowed an initial geological interpretation of borehole GGA07 (Figure 1).

The made ground composition including brickwork, cementwork, wood and glass is as expected from legacy data nearby and the prior land use history as a site where housing demolition rubble was disposed of. The thickness of the made ground at 8.5 m drilled depth was greater than predrill borehole prognosis (Appendix C), though compatible with a complex and variable anthropogenic deposit.

The superficial deposits are interpreted as a Quaternary age succession of glacial and post-glacial deposits, following existing legacy interpretations and geological models (e.g. Arkley, 2019). No detailed interpretation has been made as the drilling returns were significantly altered due to the duplex drilling with direct flush method used (Figure 1). Rockhead was recognised at approximately 35 m drilled depth, very similar to the pre-drill prognosis (Appendix C).


The bedrock succession appears typical of the Scottish Middle Coal Measures Formation. The c.17 m section of sandstone, siltstone and claystone above the Glasgow Upper coal contains a greater proportion of fine-grained lithologies relative to nearby legacy and UKGEOS boreholes (e.g. GGC01 cored borehole, Kearsey et al. 2019; GGA01, GGA02 etc).

8.1 MINE WORKINGS

Mine abandonment plans* show stoop and room (pillar and stall) workings of the Glasgow Upper coal in the vicinity of GGA07 on the 1884 plan, removed to total extraction by the time of the 1933 plan. A fault (3.5 ft throw down to the east) is shown around 25 m to the south-west of GGA07 and a 'want' or washout of the coal is present around 28 m to the east.

On drilling GGA07, the Glasgow Upper coal was encountered at 52.2 - 53.9 m drilled depth, with the drilling response indicating an intact seam with some alteration and staining of the returned coal fragments. The depth of the mine working was as expected from mine plan spot heights, legacy boreholes nearby and borehole GGA08 drilled first, and within the error limits of the predrill prognosis (Appendix C). The open hole optical camera and caliper data revealed a coal pillar with a surrounding void space (Figure 5) for the screened target zone, along with a mudstone roof. The initial hydrogeological indications are for very high yields (Section 7).

^{*} Mine abandonment plan scans available from The Coal Authority

Figure 5 Optical camera image of the Glasgow Upper mine working in borehole GGA07 (left) and caliper log of the mine working interval (right, at different scale). Note that the depths on the camera and caliper data are around 0.4 m offset from the Drillers' record.

The 1.7 m thickness of the Glasgow Upper coal recorded in borehole GGA07 is greater than many legacy boreholes nearby, and the 1.2 m recorded in borehole GGA08. The floor of the Glasgow Upper mine working was comprised of claystone and siltstone with rootlets noted and represents a seatearth (rootleted paleosol).

9 References

British Geological Survey holds most of the references listed below, and copies may be obtained via the library service subject to copyright legislation (contact libuser@bgs.ac.uk for details). The library catalogue is available at: <u>https://envirolib.apps.nerc.ac.uk/olibcgi</u>.

Datasets are available at https://www.ukgeos.ac.uk/data-downloads

ARKLEY, S. 2018. Model metadata report for the Glasgow Geothermal Energy Research Field Site superficial deposits model. *British Geological Survey Open Report*, Nottingham, UK, OR/18/064, 50pp. http://nora.nerc.ac.uk/id/eprint/524556/

BURKIN, J, and KEARSEY, T. 2019. Model metadata report for Glasgow Geothermal Energy Research Field Site bedrock model. *British Geological Survey Open Report* Nottingham, UK, OR/18/053, 18pp. http://nora.nerc.ac.uk/id/eprint/522737/

HALLSWORTH, C R, and KNOX, R W O'B. 1999. BGS Rock Classification Scheme Volume 3. Classification of sediments and sedimentary rocks. *British Geological Survey Research Report*, RR 99-03.

KEARSEY, T, GILLESPIE, M, ENTWISLE, D, DAMASCHKE, M, WYLDE, S, FELLGETT, M, KINGDON, A, BURKIN, J, STARCHER, V, SHORTER, K, BARRON, H, ELSOME, J, BARNETT, M, and MONAGHAN, A. 2019. UK Geoenergy Observatories Glasgow: GGC01 cored, seismic monitoring borehole – intermediate data release. *British Geological Survey Open Report*, OR/19/049, Nottingham, UK, 36pp. <u>http://nora.nerc.ac.uk/id/eprint/525009/</u>

MONAGHAN, A A, Ó DOCHARTAIGH, B E, FORDYCE, F M, LOVELESS, S, ENTWISLE, D, QUINN, M, SMITH, K, ELLEN, R, ARKLEY, S, KEARSEY, T, CAMPBELL, S D G, FELLGETT, M, and MOSCA, I. 2017. UKGEOS: Glasgow Geothermal Energy Research Field Site (GGERFS): initial summary of the geological platform. Nottingham, UK, *British Geological Survey Open Report*, OR/17/006. <u>http://nora.nerc.ac.uk/id/eprint/518636/</u>

MONAGHAN, A A, STARCHER, V, Ó DOCHARTAIGH, B E, SHORTER, K M, and BURKIN, J. 2019. UK Geoenergy Observatories: Glasgow Geothermal Energy Research Field Site: Science Infrastructure Version 2. Nottingham, UK, *British Geological Survey Open Report*, OR/19/032 <u>http://nora.nerc.ac.uk/id/eprint/522814/</u>

TUCKER, M E. 2011. Sedimentary Rocks in the Field: A Practical Guide (Geological Field Guide) 4th edition, Wiley-Blackwell 288pp ISBN: 978-0-470-68916-5

Appendix A: Summary of the borehole GGA07 files in this information release

Description	File name	File type
BAM Drillers log – an engineering format log with lithological information as recorded on drill site by the drilling contractor (not a geotechnical engineer). NOTE: depths are given relative to drill platform level	Drillers_Log_GGA07.pdf UKGEOSCuningar_BAA4203_FinalAGS.AGS (this covers all 11 UKGEOS boreholes at Cuningar Loop)	PDF AGS format
BGS log- detailed. A log recording the percentage of different lithologies returned as rock chips during the open hole drilling on a metre by metre basis. Included as a spreadsheet and a visualisation plot. <i>NOTE: depths are</i> <i>given relative to drill platform level</i>	Detailed_BGS_Rockchiplog_GGA07.pdf Detailed_BGS_Rockchiplog_GGA07.xlsx	XLS, PDF
BGS summary log – a 1 or 2 page visualisation of the BGS log and summary interpretation. <i>NOTE: depths</i> <i>are given relative to drill platform level</i>	Summary_BGS_Log_GGA07.pdf	PDF
Wireline (geophysical) downhole data for cased hole logs and accompanying report NOTE: depths are given relative to drill platform level	Cased_hole_GGA07_BoreholeGeometry.pdf and .las BAM Nuttall Glasgow Report Final.pdf 'Wireline Logging Report for UKGEOS Glasgow Conducted by Robertson Geo Ltd On behalf of BGS 9/1/20 – 10/1/20.pdf'	LAS, PDF
Wireline (geophysical) downhole data for open hole logs; working data NOTE: depths are given relative to drill platform level	Open_hole_GGA07_Borehole_Geometry.pdf	PDF
Fibre optic cable installation report NOTE: depths are given relative to drill platform level	FibreOpticCable Installation Report BGS V1.2 GGA07 26052020.pdf	PDF
Optical camera data NOTE: depths are given relative to drill platform level	In 'Optical_camera' folder, use 'GGA07 Optical Televiewer Export Report.html' to open	HTML, BMP
Spreadsheet of archived rock chip samples NOTE: depths are given relative to drill platform level	GGA07_archived_rock_chips.xlsx	XLSX

Table 9 Summary of files in the borehole GGA07 information release

Appendix B: ERT and DTS cable detailed installation method

The ERT cable was loaded onto a cable reel and passed over a sheave wheel mounted at an elevation of approximately 3 m. The fibre optic cable was loaded onto a separate cable reel and also passed over the sheave wheel. It was ensured that neither cable dragged on the floor or caught on any other equipment. The Boode well casing was measured from bottom to top edge of the exposed outer surface without the inclusion of the threaded joining sections. The casing length was in the order of 0.9 m per section. Based on borehole installation information including length of screen, desired annulus seal location and length of sump, the nominal positions of the ERT electrodes and fibre-optic cable centralisers was marked onto the casing.

The casing section to be installed was winched into a vertical position at a working height above the borehole. The fibre-optic bottom hole assembly (BHA) was placed onto the casing and fastened into position. This was wrapped in duct tape to protect the equipment as it moved down the borehole. The dead end seal of the first ERT cable was attached above the BHA of the fibre-optics and the first sensor was fastened onto the casing in the marked location. The ERT electrode and fibre-optic cable was secured in place with cable ties and duct tape. The casing was lowered into the borehole and the cables were guided through the centralisers. The next casing string was hoisted into the vertical position and the attachment of sensors resumed.

The screened section had sensors attached directly to it and the cables had to pass through the fins of the rubber seal. The two cables were fastened to the seal with cable ties and jubilee clips and then taped tightly to ensure that there were no loose ends.

Once all of the sensors were in place, the remaining cable was spooled off and the cables within the borehole were tested. Both the ERT cable ends and the fibre-optic cable end were protected from moisture, water ingress and dirt by placing them into a sealed bag and placing into a dry and secure box.

Subsequently the annulus of the borehole was grouted between the casing and rock wall and around the cables.

The cabinets with the data recording equipment (PRIME for the ERT and DTS interrogation box for the fibre optics) were installed at a later date.

Appendix C Pre-drill borehole prognosis

The pre-drill prognosis (Figure 6) was produced from semi-regional superficial deposits, bedrock and mine 3D geological models (Arkley, 2019, Burkin and Kearsey, 2019) and legacy boreholes nearby. The prognoses were used in planning the depth, spacing and design of the boreholes and were indicative of the likely unit depths to be encountered. As the prognoses were not based on detailed site specific interpretations, the uncertainty and error values were understood to be quite large.

The pre-drill prognosis as shown in Figure 6 were updated on paper at site during the drilling phase, for example the confirmed depth of the Glasgow Upper mine working in GGA01, 02, 04, 05 and 08 informed the expected depth and thickness of GGA07 Glasgow Upper mine working. Being the pre-drill information, Figure 6 does not represent the learnings or local, site specific considerations used during the drilling phase.

GGERFS Prognosed Stratigraphy

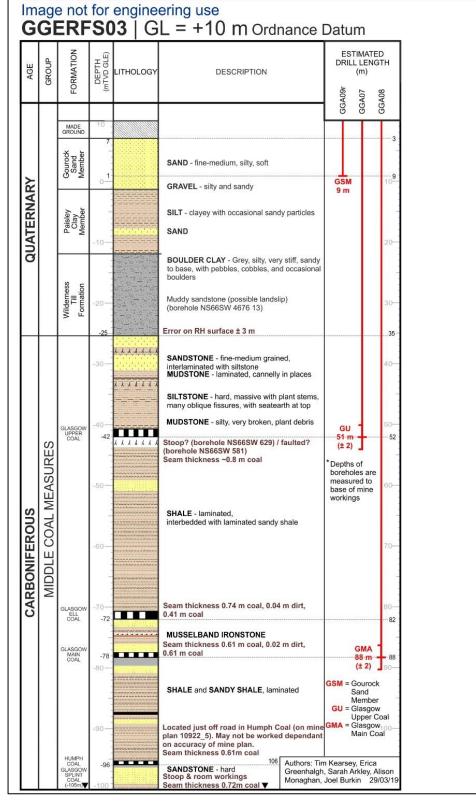


Figure 6 Pre-drill borehole prognosis for site GGERFS03, boreholes GGA07, GGA08, GGA09r based on semi-regional geological models and nearby legacy boreholes.