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Abstract 11 

In order to evaluate and protect ecosystem services provided by peat and peaty soils, 12 

accurate estimations for the depth of the surface organic layer are required.  This study 13 

uses linear mixed models (LMMs) to test how topographic (elevation, slope, aspect) 14 

and superficial geology parameters can contribute to improved depth estimates across 15 

a Scottish upland catchment.  Mean (n=5) depth data from 284 sites (representing full 16 

covariate ranges) were used to calibrate LMMs, which were tested against a validation 17 

dataset.  Models were estimated using maximum likelihood, and the Akaike 18 

Information Criterion was used to test whether the iterative addition of covariates to a 19 

model with constant fixed effects was beneficial.  Elevation, slope, and certain geology 20 

classes were all identified as useful covariates.  Upon addition of the random effects 21 

(i.e. spatial modelling of residuals), the RMSE for the model with constant-only fixed 22 

effects reduced by 24%. Addition of random effects to a model with topographic 23 

covariates (fixed effects = constant, slope, elevation) reduced the RMSE by 13%, 24 

whereas the addition of random effects to a model with topographic and geological 25 

covariates (fixed effects = constant, slope, elevation, certain geology classes) reduced 26 

the RMSE by only 3%. Therefore much of the spatial pattern in depth was explained 27 

by the fixed effects in the latter model.  The study contributes to a growing research 28 

base demonstrating that widely available topographic (and also here geological) datsets, 29 

which have national coverage, can be included in spatial models to improve organic 30 

layer depth estimations.  31 

 32 
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Introduction 36 

Peat and peaty soils provide vital ecosystem services, including carbon storage, 37 

retention and regulation of sub-surface water, and support of biodiversity (Bonn et al., 38 

2009; Minasny et al., 2019).   Baseline information that describes this resource is 39 

required to better evaluate the benefits of these functions, and inform land management 40 

decisions so these soils are protected (e.g. Chapman et al., 2009).  An important 41 

parameter to quantify in this process is the depth of the organic layer, which forms the 42 

peat or peaty soil.   However, in upland landscapes this layer is highly variable and 43 

mapping its three-dimensional geometry over extensive areas is extremely challenging 44 

due to the unknown and irregular nature of the subsoil topography.  45 

 46 

The Soil Survey of Scotland define peat as an organic soil, which contains more than 47 

60% organic matter and exceeds 50 cm in depth (Soil Survey of Scotland, 1984).  Peaty 48 

soils (also known as organo-mineral soils) are distinguished from peat if the organic 49 

horizon is shallower than 50 cm (Soil Survey of scotland, 1984; Smith et al., 2007).  50 

They include soils such as peaty rankers, peaty gleys and peaty podzols.  These 51 

shallower peaty soils extend over large areas, covering 43% of Scotland’s land surface 52 

(Bruneau & Johnson, 2014), which is almost double the 22% covered by peat (Chapman 53 

et al., 2009).  With this extensive cover, peaty soils in Scotland have been estimated to 54 

represent a carbon store of 754 Mt (Bradley et al., 2005), contributing significantly to 55 

national soil carbon stocks. It is therefore important that approaches to understand the 56 

variation in organic layer depth include peaty soil types as well as peat, in order to help 57 

inform land management decisions. 58 

 59 
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Manual methods (e.g. closely-spaced depth probing and ground penetrating radar) are 60 

often used to measure organic layer depth, but are not practical over large areas (Gatis 61 

et al., 2019).   Recent work has therefore focused on utilising information from digital 62 

elevation models (DEMs).  Organic soils form under waterlogged conditions, where 63 

decomposition of organic material is slower than accumulation.  Such conditions are 64 

influenced by spatial variations in drainage and moisture input, which are dependent 65 

upon topography.  This is because slope influences surface and subsurface hydrological 66 

pathways and elevation influences factors such as temperature and rainfall.   67 

Relationships between slope, elevation and organic layer depth have been used 68 

successfully to estimate blanket peat thickness in the Wicklow Mountains, Ireland 69 

(Holden & Connolly, 2011) and across land units with different soil and vegetation 70 

classifications in Dartmoor, south-west England (Parry et al., 2012; Young et al., 2018).   71 

Aspect has also been linked to blanket peat location and peat erosion (Graniero & Price, 72 

1999; Foulds & Warburton, 2007), and has been suggested as a potential factor which 73 

could influence local precipitation received over blanket peat (Parry et al., 2012).  74 

 75 

Airborne gamma radiometrics are another data source that have been used to infer peat 76 

thickness, because peat attenuates naturally occurring radiation emitted from 77 

underlying bedrock (Gatis et al., 2019).   However, such surveys have limited ability to 78 

infer peat thicknesses that are >50 cm (the required depth for classification of peat in 79 

Scotland), and the radiometric signal can vary with bedrock type (Minasny et al., 2019).  80 

Additionally, while national radiometric surveys have been carried out in some 81 

countries (e.g. Airo et al., 2014), more limited data coverage elsewhere currently 82 

prevents wider application of the approach. 83 

 84 
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This study explores the use of linear mixed models (LMMs), with topographic 85 

(elevation, slope, aspect) and superficial geology covariates, derived from datasets with 86 

UK-wide coverage, to estimate organic layer depth across a catchment in upland 87 

western Scotland.   LMMs are often used in model-based geostatistical studies (e.g. 88 

Lark et al., 2006; Rawlins et al., 2009) and divide the variation of calibration data into 89 

fixed and random effects.   The fixed effects are a linear function of environmental 90 

covariates, and the random effects describe spatially correlated fluctuations in the soil 91 

property that cannot be explained by the fixed effects.   Superficial geology (formerly 92 

known as ‘drift’) maps describe the nature of the near-surface geology (usually formed 93 

by unconsolidated sediments).  Superficial geology classes are included in this study as 94 

a potential fixed effect because they are characterised by materials or depositional 95 

processes that may influence peat forming conditions (e.g. susceptibility to 96 

waterlogging).  A further motivation for testing the use of superficial geology data is 97 

that 1:50,000 scale British Geological Survey (BGS) DiGMapGB-50 data (BGS, 2016) 98 

has national coverage and could therefore be used more widely to contribute to organic 99 

layer depth estimates.   100 

 101 

Setting 102 

The study was undertaken in the 9.2 km2 Gleann a’ Chlachain catchment, which forms 103 

part of Scotland's Rural College's (SRUC) Hill and Mountain Research Farm, in the 104 

western central Scottish Highlands, UK (Fig. 1, S1A).  Gleann a’ Chlachain ranges in 105 

elevation from 265 m above sea level (a.s.l.) at the outlet in the south, to 1025 m a.s.l. 106 

at the highest point, on the summit of Beinn Challuim. 107 

 108 
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The geology and geomorphology of the catchment is representative of larger expanses 109 

of the western central Scottish highlands. The bedrock belongs to the Ben Lui and Ben 110 

Lawers Schist formations, which generally consist of pelites and semipelites with minor 111 

amounts of psammite (BGS, 2004).  The surface geomorphology is a mix of exposed 112 

bedrock on ridges and some upper slopes, with glacial, fluvial and slope deposits 113 

mantling the mid and lower slopes and the valley floor (BGS, 2012). The national soil 114 

map of Scotland (Soil Survey of Scotland Staff, 1981) indicates the catchment is 115 

predominantly covered by peaty gleyed podzols and peaty gleys, with the upper slopes 116 

of Ben Challuim and Beinn Chaorach being covered by dystrophic blanket peat and 117 

subalpine podzols. 118 

 119 

Superficial Geology Classes 120 

In this study the superficial geology classes within the catchment are used as categorical 121 

variables in the modelling (Fig. 2A). These classes are adapted from published 122 

superficial geology map data (BGS, 2012), and are defined by surface morphology and 123 

subsurface materials.  The classes are listed below (further descriptions are given in 124 

Table S1 of the Supporting Information, and McMillan et al., 1999). 125 

 126 

 Bedrock:  areas where unconsolidated sediment cover is interpreted to be thin 127 

(<1 m) or absent.  128 

 Till and colluvium: generally comprises poorly-sorted, dense clayey or silty 129 

sand with gravel and rare boulders, mantling mid- and lower-valley slopes. 130 

 Moraines: areas of broad mounds comprising poorly-sorted clayey or silty sand 131 

with gravel and frequent boulders, and intervening basins with finer grained 132 

sediments. 133 
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 Talus slopes and solifluction lobes: an openwork accumulation of gravel, with 134 

a sandy matrix at depth, occupying the upper slopes of Ben Challuim.  135 

 Alluvium: sorted cobbles, gravel, and sand adjacent to the river. 136 

 Peat:  BGS maps include peat as an organic deposit where it is interpreted to be 137 

1 m or more in thickness.  138 

 139 

Methods 140 

Sampling design and field measurements 141 

The NEXTMap Britain (Intermap Technologies) digital elevation data were 142 

subsampled at 10 m resolution and used to derive slope and aspect values. Organic layer 143 

depth sampling was undertaken at 323 locations; measurements from 283 of these sites 144 

were used to calibrate the LMMs and the remaining locations were used for validation 145 

(Fig. 1B).  A stratified sampling approach ensured that covariates were represented 146 

across their full ranges within the calibration and validation datasets (Fig. 2), in line 147 

with recent recommendations (Young et al., 2018).  148 

 149 

Depth was measured by pushing probes into the organic layer until they met resistance 150 

at the surface of the underlying mineral layer or rock.  Exposed sections in the field 151 

revealed that the base of the organic layer was characterised by a sharp boundary, which 152 

was easily detected by the probes (Fig. S1B). At each of the sample locations, five depth 153 

measurements were taken: one at a central point and four at corners 2.5 m from the 154 

centre. This was carried out to account for the local (sampling site scale) variability 155 

caused by undulations at the surface of the bedrock or mineral layer (e.g. Fig. S1B), 156 

and to reduce any potential impact of obstructions causing measurements to under 157 

represent the true depth (Parry et al., 2012; 2014). The average of the five points was 158 
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used in the statistical modelling.  Data were recorded into an attribute table in ARCGIS 159 

in the field using a rugged tablet computer with an inbuilt GPS, which with an accuracy 160 

of approximately 3 m, was considered to be suitable for making predictions with 10 m 161 

resolution (differential GPS would have allowed investigation with a higher resolution 162 

DEM).   163 

 164 

Statistical Analyses 165 

A model-based geostatistical approach consisting of LMMs was used to both model the 166 

relationship between the organic layer depth measurements and the covariate 167 

information, and to map organic layer depth across the catchment. The model-based 168 

approach was required when calibrating relationships with covariates because the data 169 

were not collected according to a simple random design and therefore it was necessary 170 

to account for spatial correlation amongst the data (Brus & de Gruijter, 1997). Many 171 

authors have recently adopted a machine learning approach when utilising covariate 172 

information to map soil properties (Hengl et al, 2018). However, such approaches can 173 

lead to complex models which are not easily interpretable. 174 

 175 

Instead this study represents the variation of organic layer depth by the LMM: 176 

    𝐳(𝐱) = 𝐌𝛃 + 𝛜,     (1) 177 

where 𝐳 is a length 𝒏 vector of observations, 𝐱 is a length 𝒏 vector of locations where 178 

the observations were made, 𝐌 is a 𝒏 × 𝒑 matrix containing the values of 𝒑 spatially 179 

varying covariates (elevation, slope, aspect, superficial geology) at each of the 180 

observation locations, 𝛃 is a length 𝒑 vector of regression coefficients and 𝛜 is a length 181 

𝒏 vector containing the spatially correlated residuals at each sampling location. The 182 

𝐌𝛃 are referred to as fixed effects and the 𝛜 as random effects. The fixed effects are a 183 
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linear function of the covariates. The random effects are assumed to be realized from a 184 

multivariate Normal distribution with zero mean and covariance matrix 𝐂. The elements 185 

of 𝐂 are calculated from a covariance function that relates the covariance between the 186 

residual term for a pair of observations to the distance between the observation 187 

locations. Here, the Matérn function was used (Minasny & McBratney, 2005) because 188 

of the flexibility in how it behaves for small distances.  189 

 190 

Marchant (2018) described how regression coefficients and parameters of the 191 

covariance function can be estimated by maximum likelihood. This approach uses a 192 

numerical optimization procedure to determine parameter values that maximize the 193 

probability that observed data would have arisen from the proposed model. This 194 

probability is referred to as the likelihood. 195 

 196 

Some caution is needed when deciding which covariates to include as fixed effects. If 197 

too many covariates are included there is a danger of the model being over fitted. If an 198 

additional covariate is added to an existing LMM then the resultant maximised 199 

likelihood will be at least as large as that from the existing linear model since this 200 

likelihood could be achieved by setting the new regression coefficient to zero. Thus 201 

increased likelihood is not sufficient evidence to indicate that an additional covariate 202 

should be included.  203 

   204 

The Akaike Information Criterion (AIC; Akaike, 1973) was used to compare models 205 

with different numbers of covariates and to decide which model was the most 206 

parsimonious representation of the data. The AIC is defined as: 207 

    𝐀𝐈𝐂 = 𝟐𝒌 − 𝟐𝑳,     (2) 208 
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where 𝒌 is the number of parameters in the model and 𝑳 is the logarithm of the 209 

maximised likelihood. The preferred model is the one with the smallest AIC value. This 210 

model is thought to be the best compromise between quality of fit (likelihood) and 211 

complexity (number of parameters).  212 

 213 

Initially LMMs with constant fixed effects were estimated by setting 𝐌 as a vector of 214 

ones. Covariates were added iteratively and tested for a decrease in AIC and better fit.  215 

Models were first tested utilising the topographic covariates. Once the individual 216 

covariates that led to the smallest AIC were determined, models with two or more 217 

topographic covariates and products of covariates were tested.  Finally, adjustments to 218 

the fixed effects were made if sampling locations were situated within specified 219 

superficial geology classes, and the models were tested for further improvements.  220 

Continuous variables (e.g. elevation, slope) were added by including those variables as 221 

columns of 𝐌. Since the aspect is a cyclic property, the sine and cosine of the aspect 222 

were each added as new columns of 𝐌. The superficial geology classes were included 223 

as categorical variables with a one indicating that the class is present at a location and 224 

a zero that it is absent. 225 

 226 

Once the optimal model had been identified and calibrated, the empirical best linear 227 

unbiased predictor (often referred to as regression kriging) was used to predict organic 228 

layer depth across the catchment (Lark et al., 2006). These predictions included the 229 

influence of the covariates and the spatial correlation of the organic layer depth 230 

measurements.   231 

 232 
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Each model was fitted using just the calibration data and the expected organic layer 233 

depth was predicted at the validation locations using (i) just the fixed effects and (ii) 234 

the entire LMM.  Since the set of validation data only consists of 40 observations, a 10-235 

fold cross-validation procedure was also conducted.  Here, the entire dataset (including 236 

both calibration and validation observations) were randomly allocated to 10 groups or 237 

folds. Each fold was treated as a validation dataset and the remaining nine folds as 238 

calibration data.   239 

 240 

Results 241 

Peat depth observations 242 

The observed organic layer depths are summarized in Table 1. The mean depth 243 

measured across the catchment was 30.9 cm, with a high standard deviation of 34.7 cm. 244 

The maximum depth (303 cm) was measured in the area classified as peat.  The mean 245 

depth measured in this category was 75.6 cm, which is less than the 1 m that is assumed 246 

in BGS geology maps. The shallowest organic layers were measured over the areas 247 

classified as solifluction lobes and talus slopes. 248 

 249 

Local-scale depth variability was represented by the five measurements taken at each 250 

sample site (Fig. S2).  The average variation in depth resulting from local irregularities 251 

of the mineral-organic interface was 10-15 cm or less for all of the classes except peat, 252 

which was slightly higher. However, when considered as a percentage of the local mean 253 

depth, the local variation is smallest in the peat class and largest in the solifluction and 254 

talus class (Fig. S2B). 255 

 256 

Statistical modelling 257 
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The overall distribution of depth measurements is highly skewed (skewness=3.48) and 258 

inconsistent with the Gaussian assumptions of a LMM (Figure 3A).  Therefore the 259 

logarithm of organic layer depth plus one was used for modelling the spatial variation 260 

in depth (Figure 3B).  The skewness of this variable is -0.74.  Figure 4 shows a spatial 261 

plot of log transformed organic layer depths, and Figure 5 shows these depth values 262 

alongside the topographic variables. The results of the LMMs using different 263 

combinations of predictors are given in Table 2.  Errors upon validation are shown both 264 

for the fixed effects only and where random effects are included in the predictions. 265 

 266 

The LMM with constant fixed effects led to an AIC value of 737.85. When an elevation 267 

term was added, the AIC reduced to 734.02 and the fixed effects suggested that organic 268 

layer depth decreased with elevation (Figs. 5A,6A). Addition of a slope term to the 269 

constant model led to a larger reduction in AIC than for the constant plus elevation 270 

model, and suggested that peat depth decreases with slope (Figs. 5B,6B).  The fixed 271 

effects of the LMM with the constant plus aspect term suggested a small increase in 272 

organic layer depth on north-facing slopes (Fig. 6C); however, this model had a higher 273 

AIC than the constant-only model indicating that aspect was not a beneficial parameter. 274 

Overall, when only the topographic covariates were considered, the lowest AIC 275 

(709.18) was achieved when the fixed effects included a constant, an elevation and a 276 

slope term (Fig. 7A). 277 

 278 

The AIC values reduced further when adjustments for locations within individual 279 

superficial geology classes were combined with the topographic covariates. Separate 280 

LMMs where the fixed effects included an adjustment for the peat, alluvium, and talus 281 

and solifluction classes all produced lower AICs than models based solely on 282 
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topographic covariates.  However, addition of adjustments for the moraine, till and 283 

colluvium, and bedrock classes, each resulted in a higher AIC than the topographic 284 

covariates alone.  A final model was therefore produced with fixed effects including a 285 

constant, an elevation and slope term, and adjustments for locations in the peat, 286 

alluvium, and talus and solifluction classes.   This model achieved the lowest AIC value 287 

(678.61) and the fixed effects suggested that organic layer depths decreased with slope 288 

and elevation, increased in the peat geology class, and decreased in the alluvium and 289 

talus and solifluction classes (Figure 7B). 290 

 291 

All the models had small mean errors upon validation and were approximately 292 

unbiased. The RMSE generally decreased in line with the improvements in AIC. For 293 

the models with solely topographic fixed effects, there was an 11-30% reduction in 294 

RMSE when the random effects were included in predictions. This indicates that a 295 

substantial proportion of the spatial pattern in the data was still not explained by the 296 

covariates. When random effects were included in the model with the lowest AIC (Fig. 297 

9C), which included topography terms and adjustments for certain geology classes, the 298 

improvement in RMSE in the predictions was reduced to 3%. Therefore more of the 299 

spatial pattern was explained by the fixed effects.   The output of this model, with depths 300 

shown in cm, is shown in Figure 8.   301 

 302 

Similar results are seen upon 10-fold cross-validation (Table S2). The errors for the 303 

entire dataset are slightly larger than those for the validation dataset reflecting that 304 

depths in the validation set have relatively low variability. The same pattern of 305 

improvements in errors upon the addition of covariates is observed, with the largest 306 

decrease in errors occurring upon the addition of the slope information. Again, the most 307 
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accurate fixed effects model results from including slope, elevation and three geological 308 

classes, and the addition of random effects only leads to a small further improvement. 309 

 310 

Discussion 311 

Previous studies have demonstrated that slope and elevation can be used as explanatory 312 

variables to inform peat depth estimates (Holden & Connolly, 2011; Parry et al., 2012).   313 

The LMMs in this study also indicate that slope and elevation are beneficial parameters 314 

for explaining spatial variations in organic layer depth.   The LMMs suggest that 315 

organic layer depth decreases with altitude in Glean a’ Chlachain.  This pattern is 316 

consistent with the relationship observed by Holden & Connolly (2011) in the Wicklow 317 

Mountains, but is opposite to the positive depth-elevation relationship observed over 318 

Dartmoor (Parry et al., 2012).   This could be due to two reasons.  First, the Wicklow 319 

Mountains and Glean a’ Chlachain rise to higher elevations than Dartmoor; therefore 320 

the associated lower temperatures at these sites may play a more important role in 321 

limiting growth of peat forming vegetation. At some elevated locations freeze-thaw 322 

processes will also loosen the soil and any underlying sediment, influencing drainage. 323 

Second, the hypsometry (proportion of surface area at different elevations) of sites 324 

could be important.  The flatter summits at higher elevations in Dartmoor contrast with 325 

narrower, steep-sided summits and ridges which dominate the higher elevations in the 326 

Wicklow Mountains and Glean a’ Chlachain, (where glacial erosion has played a 327 

greater role in shaping the landscape).  These contrasts may affect the nature of organic 328 

layer depth and elevation relationships and would need to be considered in up-scaled 329 

estimates.  330 

 331 
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This work only considered basic topographic variables (elevation, slope, aspect).  332 

Additional topographic derivatives may also be beneficial in estimation of organic layer 333 

depth.  Aitkenhead (2017) identified slope curvature as an input variable that has an 334 

effect on the predicted presence of peat in Scotland.  In British Columbia, Scarpone et 335 

al. (2017) found that topographic roughness, valley bottom flatness, and ridge top 336 

flatness were all important variables in predicting exposed bedrock.  These types of 337 

variables could therefore be associated with the presence or absence, and potential 338 

thickness of an organic layer.  339 

 340 

The inclusion of certain superficial geology classes to the topography-only model 341 

reduced the RMSE of the fixed effects and lowered the proportion of spatial variation 342 

that needed to be explained by the random effects.   These models suggested that 343 

organic layer depth decreased over the alluvium and the talus and solifluction classes.   344 

This could be because the sediments in these deposits (cobbles, gravel and sand) are 345 

characterized by intergranular water flow with high permeability indices (Lewis et al., 346 

2006).  Such conditions would reduce waterlogging, promoting less favorable 347 

conditions for peat formation.  The remaining superficial geology classes comprise 348 

materials that are characterised by mixed (intergranular and fracture) flow with low 349 

permeability indices (Lewis et al., 2006).    The LMMs also suggested that depths 350 

increased over the peat category (which is expected since these areas had been 351 

interpreted to contain peat >1 m in depth).  As the superficial geology underneath peat 352 

is not shown on geological maps, this is more difficult to explain in terms of the 353 

geological properties.  In places (e.g. where peat basins are surrounded by moraines) 354 

very low permeability silts and clays may be present below the peat.   355 

 356 
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Given that national coverage of superficial geology maps exist at scales of 1:50,000 or 357 

higher, the identification of superficial geology as a beneficial variable is valuable, as 358 

data could be used to aid depth predictions elsewhere.   Information from soil or land 359 

cover maps has not been used in this work; however, these datasets have been 360 

incorporated in recent models that successfully map the occurrence of peat in Scotland 361 

(Aitkenhead, 2017).  Soil and land cover maps are available at a national scale in 362 

Scotland (Soil Survey of Scotland Staff, 1981; MLURI, 1988), and future investigations 363 

could also test these parameters as covariates for estimating organic layer depth.     364 

 365 

The study provides an example where the depth of the organic surface layer across the 366 

entire catchment has been modelled at high spatial resolution, and includes areas of 367 

both peat and peaty soil.  The complex mix of peat and shallow peaty soil types in the 368 

landscape is considered a challenge for the assessment of carbon stocks (Chapman et 369 

al., 2009).  Presenting continuous depth estimations for the organic layer offer a way to 370 

visualize this mix (Fig. 8), potentially enabling more detailed mapping of carbon stocks, 371 

which could inform how ecosystem services across different parts of a landscape are 372 

valued.  Recent analyses from environmental impact assessments in Scotland have 373 

identified limitations in the existing practices of peat depth reporting (Wawrzyczek et 374 

al., 2018).  The approach adopted here could contribute to improvements, particularly 375 

where decisions are made at a catchment scale.  This information is also relevant for 376 

land management where knowledge of peat depth informs decisions, such as forest 377 

establishment or siting upland infrastructure (Scottish Government, 2013; Forestry 378 

Commission 2017).  Presenting peat depth in this way could also be of benefit for 379 

assessing peat landslide hazards, where depth is an important parameter (Scottish 380 

Government, 2017).    381 



 17 

 382 

Figure 8 shows the modelled organic surface layer depths with contours indicating the 383 

10 cm, 40 cm, and 50 cm intervals.  This information enables identification of areas 384 

that would be classified as peat under different schemes.  For example, in England and 385 

Wales, soils are classified as peat where the organic layer is >40 cm deep (Avery, 1980), 386 

and the World Soil Reference Base for Soil Resources (WRB) and USDA taxonomy 387 

also use >40 cm as a condition for classification of histosols.  Interestingly, using the 388 

40 cm criteria would triple the area classified as peat in Gleann a’ Chlachain (from 389 

0.245 sq km to 0.721 sq km).  The future development of up-scaled maps that can be 390 

readily transferred between different classification schemes may therefore be useful, 391 

for example in developing coherent international estimates relating to peat deposits (e.g. 392 

Tanneberger et al., 2017). 393 

   394 

Conclusion 395 

There is a growing body of work that demonstrates topographic parameters can be used 396 

to help estimate blanket peat depth.  The LMMs in this study provides one of the first 397 

examples demonstrating that these covariates are beneficial for estimating organic layer 398 

depth for peat and peaty soils in upland Scotland – a country with > 60 % cover of these 399 

soil types, and which contains the largest proportion of UK soil carbon stocks (Bradley 400 

et al., 2005; Bruneau & Johnson, 2014).   This work has also shown that widely 401 

available superficial geology map data has potential to be included as covariate data.  402 

The model outputs could help inform land management decisions, particularly where 403 

detailed depth estimates are required over large upland sites or catchment scales.    404 

 405 

Acknowledgements 406 



 18 

John Holland and Davy McCracken are thanked for guidance on access and discussions 407 

at SRUC’s Hill and Mountain Research Centre.  John Lee (BGS) and the journal 408 

reviewers are thanked for comments that improved this manuscript.  409 



 19 

References  410 

Akaike, H., 1973. Information theory and an extension of the maximum likelihood 411 

principle. In: Second International Symposium on Information Theory (eds 412 

B.N. Petrov and F. Csaki), pp 267—281, Akadémiai Kiadó, Budapest. 413 

Airo, M.-L., Hyvönen, E., Lerssi, J., Leväniemi, H., Ruotsalainen, A., 2014. Tips and 414 

tools for the application of GTK's airborne geophysical data. In: Geological 415 

Survey of Finland, Report of Investigation. vol. 215. pp. 33. 416 

Aitkenhead, M. J., 2017.  Mapping peat in Scotland with remote sensing and site 417 

characteristics.  European Journal of Soil Science, 68, 28-38. 418 

Avery, B.W., 1980. Soil classification for England and Wales [higher categories]. Soil 419 

classification for England and Wales. Harpenden, Technical Monograph, 14. 420 

BGS. 2004. Crianlarich. Scotland Sheet 46W. Bedrock. 1:50,000 Geology Series. 421 

British Geological Survey, Keyworth, Nottingham. 422 

BGS. 2012. Sheet NN33. Superficial. 1:25,000 Geology Series. British Geological 423 

Survey, Keyworth, Nottingham. 424 

BGS. 2016. BGS Geology - 50k (DiGMapGB-50) Superficial version 8.  British 425 

Geological Survey. 426 

Bonn, A., Holden, J., Parnell, M., Worrall, F., Chapman, P.J., Evans, C.D. … Tsuchiya, 427 

A. 2009. Ecosystem services of peat – Phase 1. Unpublished report to DEFRA, 428 

London. DEFRA. Project code: SP0572. 429 

Bradley, R.I., Milne, R., Bell, J., Lilly, A., Jordan, C. & Higgins, A. 2005. A soil carbon 430 

and land use database for the United Kingdom. Soil Use and Management, 21, 431 

363– 369. 432 

Bruneau, P.M.C & Johnson, S.M. 2014. Scotland’s peatland - definitions & information 433 

resources. Scottish Natural Heritage Commissioned Report, No 701. 434 

Brus, D.J. & de Gruijter, J., 1997. Random sampling or geostatistical modelling? 435 

Choosing between design-based and model-based sampling strategies for soil 436 

(with discussion). Geoderma 80, 1-44. 437 



 20 

Chapman, S.J., Bell, J., Donnelly, D. & Lilly, A., 2009b. Carbon stocks in Scottish 438 

peatlands. Soil Use and Management, 25, 105-112. 439 

Forestry Commission, 2017. The UK Forestry Standard: the Government's approach to 440 

sustainable forestry (4th Edition). Forestry Commission, Edinburgh. 441 

Foulds, S.A. & Warburton, J., 2007. Significance of wind-driven rain (wind-splash) in 442 

the erosion of blanket peat. Geomorphology, 83, 183-192. 443 

Gatis, N., Luscombe, D.J., Carless, D., Parry, L.E., Fyfe, R.M., Harrod, T.R., Brazier, 444 

R.E. & Anderson, K., 2019. Mapping upland peat depth using airborne 445 

radiometric and lidar survey data. Geoderma, 335, 78-87. 446 

Graniero, P.A. & Price, J.S., 1999. The importance of topographic factors on the 447 

distribution of bog and heath in a Newfoundland blanket bog complex. Catena, 448 

36, 233-254. 449 

Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G. & Gräler, B., 2018. Random 450 

forest as a generic framework for predictive modeling of spatial and spatio-451 

temporal variables. PeerJ 6:e5518. 452 

Holden, N.M. & Connolly, J., 2011. Estimating the carbon stock of a blanket peat 453 

region using a peat depth inference model. Catena, 86, 75-85. 454 

Lark, R.M., Cullis, B.R. & Welham, S.J., 2006. On spatial prediction of soil properties 455 

in the presence of a spatial trend: the empirical best linear unbiased predictor 456 

(E-BLUP) with REML. European Journal of Soil Science 57, 787–799. 457 

Lewis, M.A., Cheney, C.S. & O Dochartaigh, B.E., 2006. Guide to permeability 458 

indices.  British Geological Survey Open Report, CR/06/160. 459 

Marchant, B.P. 2018. Model-based geostatistics. In: McBratney, A.B., Minasny, B., 460 

Stockmann, U. (eds), Pedometrics: A system of quantitative soil information. 461 

Springer. 462 

McMillan, A. & Powell, J., 1999. BGS rock classification scheme. Volume 4, 463 

classification of artificial (man-made) ground and natural superficial deposits: 464 

applications to geological maps and datasets in the UK.  British Geological 465 

Survey Research Report, Keyworth, Nottingham. 466 



 21 

Minasny, B., Berglund, Ö., Connolly, J., Hedley, C., de Vries, F., Gimona, A. … 467 

Widyatmanti, W. 2019. Digital mapping of peatlands–A critical review. Earth-468 

Science Reviews, 196, 102870. 469 

Minasny, B. & McBratney, A.B., 2005. The Matérn function as a general model for soil 470 

variograms. Geoderma, 128, 192–207. 471 

MLURI. 1998.  The Land Cover of Scotland.  Macaulay Land Use research Institute, 472 

Aberdeen. 473 

Parry, L.E., Charman, D.J. & Noades, J.P.W., 2012. A method for modelling peat depth 474 

in blanket peatlands. Soil Use and Management, 28, 614-624. 475 

Parry, L.E., West, L.J., Holden, J. & Chapman, P.J., 2014. Evaluating approaches for 476 

estimating peat depth. Journal of Geophysical Research: Biogeosciences, 119, 477 

567-576. 478 

Rawlins, B.G., Lark, R.M. and Webster, R., 2007. Understanding airborne radiometric 479 

survey signals across part of eastern England. Earth Surface Processes and 480 

Landforms, 32, 1503-1515. 481 

Scarpone, C., Schmidt, M.G., Bulmer, C.E. and Knudby, A., 2017. Semi-automated 482 

classification of exposed bedrock cover in British Columbia's Southern 483 

Mountains using a Random Forest approach. Geomorphology, 285, 214-224. 484 

Scottish Government. 2013. Wind Farm Developments on Peat Land: Planning Advice. 485 

Obtainable from: https://www.gov.scot/publications/wind-farm-developments-486 

on-peat-land-planning-advice/  487 

Scottish Government. 2017. Proposed electricity generation developments: peat 488 

landslide hazard best practice guide.  Obtainable from:  489 

https://www.gov.scot/publications/peat-landslide-hazard-risk-assessments-490 

best-practice-guide-proposed-electricity/  491 

Smith, P., Smith, J., Flynn, H., Killham, K., Rangel‐Castro, I., Foereid, B. … Falloon, 492 

P. 2007. ECOSSE – Estimating Carbon in Organic Soils Sequestration and 493 

Emissions. Scottish Executive Environment and Rural Affairs Department, 494 

https://www.gov.scot/publications/wind-farm-developments-on-peat-land-planning-advice/
https://www.gov.scot/publications/wind-farm-developments-on-peat-land-planning-advice/
https://www.gov.scot/publications/peat-landslide-hazard-risk-assessments-best-practice-guide-proposed-electricity/
https://www.gov.scot/publications/peat-landslide-hazard-risk-assessments-best-practice-guide-proposed-electricity/


 22 

Edinburgh. Obtainable from: 495 

http://www.scotland.gov.uk/Publications/2007/03/16170508/0  496 

Soil Survey of Scotland Staff. 1981. Soil Maps of Scotland at a scale of 1:250 000. 497 

Macaulay Institute for Soil Research, Aberdeen. 498 

Soil Survey of Scotland Staff. 1984.  Organisation and Methods of the 1:250 000 Soil 499 

Survey of Scotland.  Macaulay Institute for Soil Research, Aberdeen.  500 

Tannenberger, F., Tegetmeyer, C., Busse, S., Barthelmes, A., Shumka, S., Moles 501 

Mariné, A., … Joosten, H.  2017.  The peatland map of Europe.  Mires and Peat, 502 

19, 1-17. 503 

Wawrzyczek, J., Lindsay, R., Metzger, M.J. & Quétier, F., 2018. The ecosystem 504 

approach in ecological impact assessment: Lessons learned from windfarm 505 

developments on peatlands in Scotland. Environmental Impact Assessment 506 

Reviews 72, 157-165. 507 

Young, D.M., Parry, L.E., Lee, D. & Ray, S., 2018. Spatial models with covariates 508 

improve estimates of peat depth in blanket peatlands. PloS one, 13, p.e0202691. 509 

 510 

511 

http://www.scotland.gov.uk/Publications/2007/03/16170508/0


 23 

TABLES  512 

Table 1. Summary statistics for organic layer depth from calibration sites across Gleann 513 

a’ Chlachain. 514 

Class n 
Mean  
(cm) 

Median 
(cm) 

Standard 
deviation (cm) 

Minimum 
(cm)  

Maximum 
(cm) 

All  283 30.9 22.1 34.7 0 303 

Peat 30 75.6 52.3 67.5 15.2 303 

Alluvium 30 23.3 22.4 17.9 0 72.6 

Talus slopes and 
solifluction 
lobes 30 4.7 1.2 6.6 0 22.4 

Moraines 38 40.5 21.2 36.3 7 151 

Till and 
colluvium 66 32 27.6 19.5 2.7 86 

Bedrock 89 22.4 16 19.1 0 94.4 

 515 

  516 
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Table 2. Log-likelihood (L), AIC, mean error upon validation of the fixed effects (FE 517 

ME), root mean squared error upon validation of the fixed effects (FE RMSE), mean 518 

error upon validation of the linear mixed model (LMM ME), root mean squared error 519 

upon validation of the linear mixed model (LMM RMSE), and reduction in RMSE upon 520 

inclusion of the random effect for each estimated linear mixed model. All units of errors 521 

are loge (cm) unless otherwise stated. Predictors are: co constant, el elevation, as aspect, 522 

pe peat geology class, al alluvium geology class, ta talus and solifluction geology class, 523 

mo moraine geology class, ti till and colluvium geology class, br bedrock geology class. 524 

Predictors L AIC FE ME 
FE 

RMSE 
LMM 
ME 

LMM 
RMSE 

LMM RMSE 
reduction 

(%) 

LMM 
RMSE 
(cm) 

co -367.92 737.85 -0.35 0.96 0.01 0.73 23.96 22.12 

co+el -365.01 734.02 0 0.81 0.01 0.72 11.11 22.04 

co+sl -353.73 711.47 -0.45 0.88 -0.03 0.62 29.55 18.39 

co+as -367.86 741.72 -0.35 0.95 0.01 0.73 23.16 22.3 

co+el+sl -351.59 709.18 -0.11 0.72 -0.03 0.61 15.28 18.6 

co+el+sl+el×sl -350.68 709.36 -0.13 0.71 -0.02 0.6 15.49 18.85 

co+el+s+as -350.66 711.32 -0.11 0.69 -0.02 0.6 13.04 17.73 

co+el+sl+pe -346.64 701.27 -0.12 0.66 -0.01 0.59 10.61 16.91 

co+el+sl+al -343.73 695.45 -0.2 0.69 -0.04 0.6 13.04 19.21 

co+el+sl+ta -345.62 699.25 -0.11 0.68 0 0.62 8.82 18.64 

co+el+sl+mo -351.1 710.2 -0.11 0.73 -0.03 0.61 16.44 19.1 

co+el+sl+ti -350.33 708.65 -0.1 0.72 -0.02 0.63 12.50 19.6 

co+el+sl+br -351.15 710.29 -0.1 0.73 -0.02 0.61 16.44 18.96 

co+el+sl+pe+al+ta -333.3 678.61 -0.17 0.6 0 0.58 3.33 16.8 

 525 

 526 

 527 

 528 

 529 

 530 
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FIGURE CAPTIONS  531 

Figure 1.  (A) Location of Gleann a Chlachainn catchment in western Scotland. (B) 532 

Catchment map together with sampling sites. Yellow circles are the sites used for model 533 

calibration and red circles are the sites used for validation. Position ‘X’ marks the 534 

location from where the photograph in Figure S1A (Supporting Information) was taken. 535 

The elevation plot in (A) and the hillshade base map in (B) were built from Intermap 536 

Technologies NEXTMap Britain elevation data.   537 

Figure 2.  Plots of (A) superficial geology classes, (B) elevation, (C) slope angle, and 538 

(D) aspect in the Gleann a’ Chlachain catchment. Representative organic soil depth 539 

sampling was carried out across each superficial geology class and across the 540 

topographic variables.  The topographic variables were derived from Intermap 541 

Technologies NEXTMap Britain elevation data. 542 

Figure 3.  Histograms showing (A) observed organic layer depth measurements and 543 

(B) observed loge (organic layer depth+1).  544 

Figure 4. Spatial pattern of observed loge (organic layer depth+1). Coordinates are 545 

relative to (235787, 730277). 546 

Figure 5.   The relationship between organic layer depth and (A) elevation, (B) slope, 547 

(C) the sine of aspect, and (D) the cosine of aspect. 548 

Figure 6.  Predicted loge (organic layer depth+1) according to fixed effects consisting 549 

of: (A) a constant and elevation, (B) a constant and slope, and (C) constant and aspect. 550 

Units are loge (cm).   Coordinates are relative to (235787, 730277). 551 

Figure 7.   Predicted loge (organic layer depth+1) according to fixed effects consisting 552 

of: (A) a constant, slope and elevation; and (B) a constant, slope, elevation, and of peat, 553 



 26 

alluvium and talus and solifluction geology classes. (C) Predicted loge (organic layer 554 

depth+1) according to a linear mixed model where fixed effects are a constant, slope, 555 

elevation, and presence of peat, alluvial deposits and talus and solifluction superficial 556 

geology classes. Units are loge (cm). 557 

Figure 8.  Predicted organic layer depth (in cm) across the catchment.  Thick contour 558 

lines are shown at 50 cm (white), 40 cm (black), and 10 cm (light grey). 559 
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Figure 2.  Plots of (A) superficial geology classes, (B) elevation, (C) slope angle, and (D) 

aspect in the Gleann a’ Chlachain catchment. Representative organic soil depth sampling was 

carried out across each superficial geology class and across the topographic variables.  The 

topographic variables were derived from Intermap Technologies NEXTMap Britain elevation 

data. 



 

 

 

Figure 3.  Histograms showing (A) observed organic layer depth measurements and (B) 

observed loge (organic layer depth+1).  

 

 

 

 

 

Figure 4. Spatial pattern of observed loge (organic layer depth+1). Coordinates are relative to 

(235787, 730277). 



 

 

Figure 5.   The relationship between organic layer depth and (A) elevation, (B) slope, (C) the 

sine of aspect, and (D) the cosine of aspect. 

 

 

 



 

Figure 6.  Predicted loge (organic layer depth+1) according to fixed effects consisting of: (A) 

a constant and elevation, (B) a constant and slope, and (C) constant and aspect. Units are loge 

(cm).   Coordinates are relative to (235787, 730277). 

 

 

 

Figure 7.   Predicted loge (organic layer depth+1) according to fixed effects consisting of: (A) 

a constant, slope and elevation; and (B) a constant, slope, elevation, and of peat, alluvium and 

talus and solifluction geology classes. (C) Predicted loge (organic layer depth+1) according to 

a linear mixed model where fixed effects are a constant, slope, elevation, and presence of peat, 

alluvial deposits and talus and solifluction superficial geology classes. Units are loge (cm). 

 



 

 

Figure 8.  Predicted organic layer depth (in cm) across the catchment.  Thick contour lines are 

shown at 50 cm (white), 40 cm (black), and 10 cm (light grey). 

 


