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Abstract The flux of > 2MeV electrons at geosynchronous orbit is used by space weather forecasters as a
key indicator of enhanced risk of damage to spacecraft in low, medium, or geosynchronous Earth orbits.
We present a methodology that uses the amount of time a single input data set (solar wind data or
geomagnetic indices) exceeds a given threshold to produce deterministic and probabilistic forecasts of the
>2MeV flux at GEO exceeding 1,000 or 10,000 cm−2 s−1 sr−1 within up to 10 days. By comparing our
forecasts with measured fluxes from GOES 15 between 2014 and 2016, we determine the optimum
forecast thresholds for deterministic and probabilistic forecasts by maximizing the receiver‐operating
characteristic (ROC) and Brier skill scores, respectively. The training data set gives peak ROC scores of
0.71 to 0.87 and peak Brier skill scores of −0.03 to 0.32. Forecasts from AL give the highest skill scores for
forecasts of up to 6 days. AL, solar wind pressure, or SYM‐H give the highest skill scores over 7–10 days.
Hit rates range over 56–89% with false alarm rates of 11–53%. Applied to 2012, 2013, and 2017, our best
forecasts have hit rates of 56–83% and false alarm rates of 10–20%. Further tuning of the forecasts may
improve these. Our hit rates are comparable to those from operational fluence forecasts, that incorporate
fluence measurements, but our false alarm rates are higher. This proof‐of‐concept shows that the
geosynchronous electron flux can be forecast with a degree of success without incorporating a persistence
element into the forecasts.

Plain Language Summary Spacecraft that orbit the Earth 36,000 kmabove the equator take 24 hr
to orbit the Earth, meaning they stay above the same point on the Earth's all the time. These
“geosynchronous” orbits are incredibly useful, enabling satellites to have constant contact with the ground.
As of 31 March 2019, over 500 spacecraft are in geosynchronous orbit (https://www.ucsusa.org).
Geosynchronous orbit is also on the edge of one of themost hazardous regions of space around theEarth—the
Van Allen Radiation Belts. These belts contain highly energetic particles capable of damaging spacecraft
in geosynchronous orbit and are highly variable. As such, predicting when the radiation belts at
geosynchronous orbit are dangerous is a key concern in space weather. In this study, we create forecasts of
the radiation belts based on simple measurements of upstream and local conditions of Earth's space
environment. These simple forecasts provide the probabilities of high‐risk events at geosynchronous orbit
over periods of up to 10 days, providing an interesting new mechanism for forecasting the conditions in
near‐Earth space as well as helping us to understand the factors that control the dynamics of the radiation
belts.

1. Introduction

The risk to satellite operations from highly energetic charged particles in near‐Earth space is a key design
and operations driver for spacecraft in low, medium, or geosynchronous Earth orbits. The exact flux and
energy levels at which a spacecraft becomes vulnerable to energetic charged particles is dependent on its
design and the components used, but high fluxes of near‐relativistic electrons have been shown to present
an increased risk of anomalies or failures in electronic hardware (Baker et al., 1987; Iucci et al., 2005;
Romanova et al., 2005; Wrenn & Sims, 1996; Wrenn & Smith, 1996; Wrenn et al., 2002). Typically, there is
an increased occurrence of anomalies and phantom commands when the >2MeV 1‐ or 2‐day fluence
exceeds 108 cm−2 sr−1, equivalent to an average electron flux of ∼500–1,000 cm−2 sr−1 s−1. Space weather
monitoring and forecasting organizations, such as NOAA and the Met Office, now issue alerts when the
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measured electronflux in geosynchronous orbit exceeds 1,000 cm−2 sr−1 s−1 or thefluence forecast bymodels
such as the Relativistic Electron Flux Model (REFM; based on Baker et al., 1990) exceeds 108 cm−2 sr−1.

Modeling the variations in the radiation belts based on physical processes is non‐trivial. The complex inter-
play of particle injections from processes further out in the magnetosphere and the energization, diffusion
and scattering of particles from their interactions with electromagnetic waves poses a significant challenge.
A full physics‐based description of the radiation belts requires knowledge of the ion and electron distribution
functions across all pitch angles and at all energies, the wave populations that they generate and the
subsequent coupling back of those wave populations into variations in those distribution functions. In
practice, electron fluxes at an outer boundary and global maps of average wave power under different solar
wind or geomagnetic conditions (e.g., Meredith et al., 2012; Usanova et al., 2012) are used as the inputs to
physics‐based models (e.g., Horne et al., 2013; Subbotin & Shprits, 2009). However, there is significant over-
lap in the distributions of wave power categorized by geomagnetic activity which may lead to uncertainties
in the outputs of models based upon them (Murphy et al., 2016; Watt et al., 2017). Nevertheless, these models
show some success in reconstructing particle fluxes in the radiation belts, with correlation coefficients of
0.72 to 0.99 and skill scores of 0.6 to 0.8 (e.g., Glauert et al., 2018). Such models can be operationally useful
if the inputs controlling the wave fields can be forecast. For example, the SPACECAST model (Horne et al.,
2013) uses Kp‐derived average wave power models, with Kp forecasts of up to 3 days now available
from NOAA.

An alternative approach to operationally modeling the radiation belts is to produce empirical models of the
electron fluence at geosynchronous orbit based on measured parameters, typically using solar wind data as
input (e.g., Baker et al., 1990; Balikhin et al., 2016). These models use solar wind data from several days pre-
vious to provide forecasts of the radiation belt fluence over the next 1–3 days. However, atypical changes in
the electron flux at geosynchronous orbit, such as rapid drop‐outs or increases, are not well predicted from
the upstream inputs alone. To correct for this, these models compare themselves to the observed fluence and
make adjustments to account for significant offsets between forecasts and observations. As such, these mod-
els require both the upstream parameters and in situ measurements to provide accurate forecasts.

In the following, we show a proof‐of‐concept for forecasts that predict whether the >2MeV flux at
geosynchronous orbit is likely to be above the levels at which alerts are issued by space weather monitoring
agencies, rather than predicting the actual flux. These forecasts are based on individual solar wind
parameters and geomagnetic indices. Data from 2014–2016 inclusive are used as a training data set for the
forecasts, and the forecast performance is checked using data from 2012, 2013, and 2017. We examine
whether geomagnetic or solar wind activity observed over 1–10 days can provide a skillful forecast of the
flux in the radiation belts exceeding 1,000 or 10,000 cm−2 sr−1 s−1 within the next 1–10 days using standard
forecast verification techniques and discuss possible implications for space weather operators and our
understanding of radiation belt dynamics.

2. Data and Methodology
2.1. Data

In this study, we examine the extent to which the >2MeV flux observed by the GOES 15 spacecraft can be
forecast using simple “threshold breaking” forecasts based on different upstream and geomagnetic para-
meters. The electron flux in geosynchronous orbit is measured by the Energetic Proton Electron and
Alpha Detector Electron, part of the Space Environment Monitor, on the GOES 15 spacecraft. In this study
we use the 1‐min data from the E2 channel of the A sensor (westward facing) which captures the >2MeV
electron flux. We use data from 1 January 2014 and 31 December 2016 to construct our forecasts, encompass-
ing the maximum of solar cycle 24 and its declining phase.

Within the training data from GOES 15 >2MeV flux data, ∼28% of the data points are marked as bad or
missing data. For the majority of these data points, the adjacent good data fluxes are low, with a median
value of 35 cm−2 s−1 sr−1. As such, we assume that missing data is the result of low fluxes and treat any miss-
ing data as a nonevent.

We construct forecasts of the >2MeV flux using the AL and SYM‐H geomagnetic indices, which provide
indication of geomagnetic activity through enhancements predominantly in the auroral current systems
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(AL) and the ring current (SYM‐H). We also create forecasts using the solar wind velocity and ram pressure
and the IMF BZ. The data used in this study were all obtained through the NASA CDAWeb data service.

2.2. Terminology

To aid the reader, we define a series of terms that will be used throughout to discuss our methodology, ana-
lysis, and results.

1. “Events” are when the GOES 15 >2MeV electron flux exceeds 1,000 cm−2 s−1 sr−1 (corresponding to
approximately the median flux level) or 10,000 cm−2 s−1 sr−1 (corresponding to approximately the
90th percentile of flux) for at least one data point (1 min) within the forecast window. Events for the flux
exceeding these two different thresholds are examined separately;

2. “Forecast Window” is a period of between 1 and 10 days in length within which we are forecasting that
an event may occur. We note that a 10‐day forecast does not indicate that an event will occur in 10 days'
time, but instead that an event will occur within the next 10 days. As such, longer forecasts naturally
encompasses the shorter forecast windows as well. Forecast Windows directly follow an Input Window;

3. “InputWindow” is a period of between 1 and 10 days over which the Input Variable is assessed to provide
a forecast. Input Windows directly precede Forecast Windows;

4. “Input Variable” is the variable used to create the forecast, which in this study is one of either AL, SYM‐H,
IMF Bz, solar wind pressure, or solar wind velocity;

5. “Forecast Threshold” is the value the Input Variable must exceed in order to count toward a forecast. AL,
SYM‐H, IMF BZmust be below the Forecast Threshold and solar wind pressure or velocity must be above
the threshold;

6. “Break Duration” is the amount of time that the Input Variable exceeds the Forecast Threshold within
the Input Window.

2.3. Creating Forecasts

Forecasts were created between 1 January 2014 and 31 December 2016 inclusive. For each day, we deter-
mined the break duration over the previous 1–10 days (the input windows) for input thresholds set to each
percentile of the input variable (calculated over 1 January 2014 to 31 December 2016). Sets of deterministic
forecasts were then derived from this by setting a positive forecast to be returned when the break threshold
exceeded each decile of the forecast window length, while sets of probabilistic forecasts were derived by set-
ting the break duration as a proportion of the input window to be the event probability (see below for
details). For each day, we also determined whether the 1‐min flux exceeded either 1,000 or 10,000
cm−2 s−1 sr−2 within the next 1–10 days (the forecast window).

The start times of each of our forecasts are separated by 1 day. However, because most of the Input Windows
and Forecast Windows are greater than 1 day in length, the calculated forecasts are not independent of one
another; that is, some of the input data or forecast windows overlap with each other. In order to analyze
independent forecasts, we extracted and analyzed subseries of forecasts that are separated by either the
Input Window or Forecast Window duration, whichever is greater. For example, for forecasts with a 3‐day
Input Window and 5‐day Forecast Window, we extracted a subseries of forecasts separated by 5 days. In
order to use all the available data, this extraction was repeated by varying the start day and then taking
the mean of the calculated verification metrics.

3. Deterministic Forecasts

Deterministic forecasts provide a binary prediction that an event will or will not occur. Analysis of these fore-
casts is typically based on contingency or truth tables. These show the number of times an event was: (A)
predicted and occurred (hit); (B) predicted and did not occur (false alarm); (C) not predicted and occurred
(miss); and (D) not predicted and did not occur (correct rejection). A number of measures of the validity
or skill of the forecast can be calculated from these tables (for a discussion, see Hogan & Mason, 2012).
Commonly used measures include the hit rate (H=A/(A+C)), false alarm rate (F=B/(B+D)), and the differ-
ence between them, known as the Peirce score (also known as Hanssen and Kuipers discriminant or True
Skill score, Peirce, 1884).
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The ability of a variable to distinguish between two different events or states, or the separation of the distri-
butions of said variable for two different events or states, can be assessed using Receiver Operating
Characteristics (ROC, e.g., Swets, 1988). In this study, we examine how well the distributions of the break
durations are separated for periods of high or low energetic electron flux. This is done by generating a series
of contingency tables by varying the value of the break duration for a given forecast threshold above which a
positive forecast is made. In this study, this value is set to the deciles of the input window length. The hit
rates and false alarm rates from these tables are then calculated and plotted against one another and the area
under the curve is calculated, in our case using a trapezoidal sum with the end points fixed at [0,0] and [1,1].
This area is known as the ROC score and is a nonparametric two‐sample statistic (e.g., Zweig & Campbell,
1993) that indicates the degree of separation of the distributions of break durations for events and nonevents.
If the distributions of break duration are entirely separated, that is, there is a value of the break duration
below which only nonevents occur and above which only events occur, then the ROC score is 1. If the dis-
tributions of the break duration entirely overlap, that is, break duration shows no skill in separating events
and nonevents, then the ROC score is 0.5. We compare the ROC scores for different forecast thresholds to
determine the optimum forecast threshold for which break duration can separate events and nonevents.

For a given input variable, the maximumROC score for an input window/forecast window pair indicates the
best input threshold for discriminating between high or low electron flux events. By comparing these max-
imum ROC scores across variables, we can then determine which variable provides the most skillful deter-
ministic forecasts from our methodology. Given that there is likely to be some overlap in the distributions of
break durations preceding events and nonevents, the best break duration can only be determined by a
cost‐benefit analysis by the forecast user. One simple form of this analysis is to find the break duration that
returns the highest Peirce score, although different users may sacrifice higher hit rates for lower false alarm
rates or vice versa. We note that the Peirce score from a ROC curve of forecasts with no skill will be 0 while
the ROC score is 0.5. As such, the ranges of skilful ROC scores and Peirce scores differ by a factor of 2.

Figures 1 and 2 show matrices of the maximum average ROC scores calculated for each input window
(X axis) and forecast window (Y axis) pair for forecasts of the >2MeV flux exceeding 1,000 cm−2 sr−1 s−1

and 10,000 cm−2 sr−1 s−1, respectively. In each panel, reds indicate maximum average ROC scores greater
than 0.75 and blues indicate scores below this. For each forecast window length, the input window length
that gives the highest maximum average ROC score is highlighted. Table 1 shows the variable that gives
the highest maximum average ROC score for each forecast window length and the corresponding input win-
dow length and forecast threshold. ROC scores cannot indicate which break duration is best, so we report the
hit rate, false alarm rate and break duration that give the highest Peirce score for the specified forecast
threshold and input window length. For the interested reader, we have similar tables for each input variable
in the supporting information.

The variation of the maximum average ROC score with input window and forecast window differs for each
input variable. For AL and SYM‐H forecasts of both the flux exceeding 1,000 or 10,000 cm−2 sr−1 s−1, the
maximum average ROC score decreases with forecast window length, such that the highest ROC scores
for any input window length are for forecasts windows of 1 day. Similarly, for a given forecast window,
the ROC scores increase with input window length up to some maximum for an input window length of
∼5 days for AL and ∼3–4 days for SYM‐H. The maximum average ROC scores from AL are greater than
those for the other input variables for most input window and forecast window pairs. The exception to this
is solar wind pressure, from which the maximum average ROC scores increase with input window length
and forecast window length. The maximum average ROC scores from the solar wind pressure forecasts
are greater than those from the AL forecasts when the sum of the forecast and input window lengths is
greater than 16 for forecasts of flux exceeding 1,000 cm−2 sr−1 s−1 or 14 for forecasts of flux exceeding
10,000 cm−2 sr−1 s−1.

The pattern for the solar wind input variables is distinctly different from that of the geomangetic variables
and indeed from each other. As described above, the maximum average ROC scores from solar wind pres-
sure forecasts increase with forecast and input window length. The maximum average ROC scores from
IMF BZ forecasts are low for all input windows and forecast window pairs, not exceeding a ROC score of
0.69. The maximum average ROC scores from forecasts by solar wind velocity have a distinct chevron pat-
tern for forecasts of flux exceeding 1,000 cm−2 sr−1 s−1. The peak maximum average ROC score occurs for
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increasing input window lengths for forecast window lengths up to 5 days, then for decreasing input window
lengths for forecast windows between 6 and 10 days. The maximum average ROC scores are relatively high
for all input window and forecast window pairs, just below those for AL. This pattern is not repeated for the
solar wind velocity forecasts of flux exceeding 10,000 cm−2 sr−1 s−1, instead being qualitatively similar to the
maximum average ROC scores from SYM‐H forecasts. This is in line with the link between solar wind
velocity and Dst (and by extension, SYM‐H) during storms (e.g., Burton et al., 1975; Klimas et al., 1998).
However, solar wind velocity and solar wind pressure show distinctly different patterns of maximum
average ROC scores, with the ROC scores from solar wind velocity forecasts generally being higher than
those from pressure forecasts. This implies that it is the solar wind coupling rather than the compression
of the magnetosphere that is important for the enhancement of flux at geosynchronous orbit, likely due to
the radiation belts being compressed to within geosynchronous orbit, and thus the flux at GEO dropping
rather than increasing under high solar wind pressures.

For AL, SYM‐H, and solar wind pressure, the input window lengths that give the highest maximum average
ROC scores remain similar with increasing forecast window length. For AL, the highest maximum ROC
scores come from input windows of 5 or 6 days for the lower flux forecasts and 3–6 days for the higher flux
forecasts; for SYM‐H, they come from input windows of 3–5 days for the lower flux forecasts and 2–4 days
for the higher flux forecasts; for solar wind pressure, they predominantly come from input windows of 10
days for forecasts of both flux levels. For forecasts from the solar wind velocity and IMF BZ, the input
windows that give the highest maximum ROC scores are more variable, although the input windows are
generally shorter for the higher flux forecasts by solar wind velocity. As such, for forecasts of the electron flux
exceeding 10,000 cm−2 sr−1 s−1, less input data are required.

Figure 1. Matrices of the maximum average ROC scores for forecasts of electron flux exceeding 1,000 cm−2 s−1 sr−1 for different input and forecast window
lengths. Results are shown for forecasts by AL, solar wind velocity, SYM‐H, solar wind pressure, and IMF BZ. For each forecast window length, the maximum
ROC score is highlighted by a yellow outline.

Figure 2. Matrices of the highest average ROC scores for forecasts of electron flux exceeding 10,000 cm−2 sr−1 s−1 for different input and forecast window lengths
by AL, solar wind velocity, SYM‐H, solar wind pressure and IMF BZ. Darker reds indicate higher ROC scores. For each forecast window length, the
maximum ROC score is highlighted by a yellow outline.
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The highest ROC scores for most input window/forecast window pairs come fromAL, showing that the elec-
tron fluxes at GEO are strongly influenced by geomagnetic activity such as substorms, which are thought to
provide seed and source particle injections (e.g. Horne, 2007; Jaynes et al., 2015). The higher ROC scores for
SYM‐H predicting electron fluxes above 10,000 cm−2 sr−1 s−1, and the similarity to the ROC scores from
forecasts from the solar wind velocity indicates that these fluxes are most likely during storm‐like times
when the ring current is enhanced. Given that AL and SYM‐H are both enhanced during storms, it is difficult
to decouple the effects of storms and substorms; however, these results hint that enhancements in the geo-
synchronous electron flux can occur within ∼3 days following enhancements in SYM‐H but within a longer
period of ∼5 days following substorm activity.

Table 1 shows that for both the lower and higher flux levels, the forecasts with the highest ROC scores and
highest Peirce scores have hit rates between 56% and 89% and false alarm rates between 11% and 53%. The
average hit rates for the forecasts with the highest ROC scores is 74% for both the higher and lower flux
levels. The highest ROC scores and Peirce scores are achieved for forecast windows of 1 day. For both the
lower and higher flux thresholds, the break threshold is a similar percentage of the input window for all
forecast windows. Similarly, the input windows and input thresholds are similar for AL and solar wind
pressure when they provide the highest ROC scores. The ROC scores and Peirce scores decrease with
increasing forecast window. The forecast thresholds for electron flux being above 1,000 cm−2 sr−1 s−1 appear
to be a relatively low activity level (AL >∼−100 nT), but these correspond to the 28th–39th percentiles of AL.
That is to say that if AL is in the lower tercile of activity for at least 30% of the previous 5–6 days, the flux at
geosynchronous orbit is likely to be above 1,000 cm−2 sr−1 s−1. The forecast thresholds for the electron flux
being above 10,000 cm−2 sr−1 s−1 are lower, around the 17th percentile. Given that the input window lengths
are similar for the corresponding forecast windows, the break durations for the higher flux forecasts are two
thirds of those for forecasts of the lower flux level, indicating that a higher level of activity but for a shorter
period of time is needed to predict the electron flux exceeding 10,000 cm−2 sr−1 s−1. For both flux levels, solar
wind pressure outperforms AL for forecast windows of 8–10 days with hit rates comparable to AL for short
forecast windows; however, the false alarm rates are higher at ∼50%.

An alternative to using geomagnetic or solar wind conditions is to base forecasts on persistence: predicting
that an event will occur within a set forecast window if it also occurred within a set input window. By varying

Table 1
Parameters That Provide the Highest Maximum Average ROC Scores for Each Forecast Window Length for Forecasts of Flux Exceeding 1,000 cm−2 s−1 sr−1

(upper rows) and 10,000 cm−2 s−1 sr−1 (lower rows)

Forecast
window
(days)

Input
window
(days)

Input
variable

ROC
score

Variable
percentile

(%)
Variable
value

Max
Peirce
score

Break
threshold

(%)
Hit
rate

False
alarm
rate

Mean
hits

Mean
misses

Mean
false
alarms

Mean true
negatives

1 6 AL 0.855 32 −103.0 0.578 30 0.84 0.26 71 14 21 60
2 6 AL 0.844 32 −103.0 0.553 30 0.79 0.23 75 20 16 54
3 5 AL 0.828 39 −74.0 0.503 40 0.68 0.18 85 39 13 61
4 5 AL 0.816 35 −90.0 0.511 30 0.79 0.27 104 28 18 48
5 5 AL 0.807 28 −124.0 0.469 30 0.58 0.11 81 58 6 53
6 5 AL 0.796 35 −90.0 0.486 30 0.75 0.26 90 31 11 33
7 6 AL 0.791 36 −86.0 0.469 30 0.76 0.29 81 26 10 24
8 10 Press 0.789 36 1.7 0.463 30 0.76 0.29 58 18 6 15
9 10 Press 0.792 36 1.7 0.471 30 0.75 0.28 59 20 5 14
10 9 Press 0.803 34 1.8 0.494 30 0.70 0.20 56 24 3 14

1 6 AL 0.870 13 −249.0 0.599 20 0.73 0.13 20 7 18 120
2 5 AL 0.837 17 −205.0 0.540 20 0.80 0.26 34 8 41 116
3 5 AL 0.805 17 −205.0 0.484 20 0.74 0.26 36 12 39 111
4 5 AL 0.777 17 −205.0 0.421 20 0.68 0.26 38 17 37 106
5 5 AL 0.751 16 −215.0 0.372 20 0.59 0.22 37 25 30 107
6 3 AL 0.729 21 −171.0 0.324 20 0.68 0.35 38 18 38 70
7 5 AL 0.709 17 −205.0 0.294 20 0.56 0.27 30 23 24 65
8 10 Press 0.714 25 2.1 0.375 20 0.87 0.50 35 5 29 29
9 10 Press 0.713 26 2.0 0.374 20 0.89 0.51 38 4 29 27
10 8 Press 0.711 27 2.0 0.342 20 0.87 0.53 40 6 28 25

Note. The corresponding maximum mean Peirce score and mean contingency table parameters are also given.
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the input window length for each forecast window, we determine different hit rates and false alarm rates
based on this principle and thus create a persistence ROC curve for each forecast window. Unlike the
above, rather than generating a series of ROC curves for each forecast window/input window pair, we
now can only create a single ROC curve for each forecast window. In order to give more complete curves,
the input window range was extended to be up to 54 days. As above, independent forecasts are extracted
from a complete set of forecasts and the average metrics are calculated.

Figure 3 shows the ROC curves for persistence forecasts with forecast windows of 1–10 days for (Figure 3a)
the >2MeV flux exceeding 1,000 cm−2 sr−1 s−1 and (Figure 3b) the >2MeV flux exceeding 10,000
cm−2 sr−1 s−1. Table 2 shows the maximum average ROC score for each forecast window along with the
input window length that gives the highest Peirce score and the corresponding hit rates and false alarm rates.

The ROC scores from the persistence forecasts vary between 0.835 and 0.886 (Figure 3a) and 0.704 and 0.882
(Figure 3b), with the highest scores for forecast windows of 1 day or 22 days. The Peirce scores are also high,
ranging from 49% to 74%, with hit rates of up to 91% and false alarm rates from 5% to 40%. The ROC scores
from the persistence forecasts of flux exceeding 1,000 cm−2 sr−1 s−1 are higher than the corresponding deter-
ministic forecasts by approximately 3 percentage points. In contrast, the ROC scores for persistence forecasts
of the flux exceeding 10,000 cm−2 sr−1 s−1 tend to be lower than the corresponding deterministic forecast for
forecast windows of up to 5 days. However, the Peirce scores of all the persistence forecasts are higher than
the corresponding deterministic forecasts. The high ROC scores and hit rates from the majority of persis-
tence forecasts is unsurprising when one considers variability of the radiation belts and the levels of flux
being considered. The e‐folding time for the radiation belt is of the order of 3–4 days (Borovsky &
Steinberg, 2006) and the flux thresholds tested are close to the median and 90th percentiles. If the flux
exceeds these thresholds by ∼>30%, it will generally remain above that threshold for at least 1 day.

In summary, simple forecasts of whether the >2MeV electron flux at geosynchronous orbit can be con-
structed by determining the amount of time various solar wind or geomagnetic activity parameters exceed
a specified threshold. While persistence‐based forecasts of the electron flux exceeding 1,000 cm−2 sr−1 s−1

have ROC scores that are consistently higher than those from our corresponding forecasts, for forecast win-
dows of 2–5 days our forecasts of the flux exceeding 10,000 cm−2 sr−1 s−1 have higher ROC scores than the
corresponding persistence‐based forecasts, indicating that our deterministic forecasts can be more skilful
than persistence. We note, however, that the persistence forecasts tend to have higher maximum Peirce
scores. Overall, our deterministic forecasts with the highest ROC and Peirce scores have average hit rates
of ∼74% and false alarm rates of ∼27%.

3.1. Probabilistic Forecasts

Probabilistic forecasts provide an indication of the likelihood that a binary event will or will not happen and
naturally account for some of the uncertainty in forecasting. For a perfect probabilistic forecast, an event

Figure 3. ROC curves (hit rate against false alarm rate) for persistence forecasts of the GOES >2MeV electron flux
exceeding (a) 1,000 cm−2 sr−1 s−1 and (b) 10,000 cm−2 sr−1 s−1. Different color curves indicate the results for
forecast windows of different lengths (1–10 days), as indicated by the plot key. Also given in the key are the
corresponding ROC scores.
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would occur 10% of the time that a probability of 10% was forecast. In a similar manner to the deterministic
forecasts, we created probabilistic forecasts by examining the proportion of an input window that the input
variable exceeds a forecast threshold. We arbitrarily set the probability of an event occurring to the break
duration as a proportion of the input window. This assumes that a linear relationship between the
amount of time a forecast variable is beyond some limit and the likelihood of an event occurring and does
not account for the actual magnitude of the input variable or any more complex relationships.

The nature of probabilistic forecasts means that an individual forecast is neither right nor wrong. For exam-
ple, if a forecast gives a 90% probability that the fluxes will be high on the next day, but the fluxes are low,
then the forecast was not necessarily wrong since 10% of the time a forecast of 90% is given, the fluxes should
be low. As such, one cannot determine the components of a contingency table for a probabilistic forecast and
a ROC score cannot be generated. Instead, probabilistic forecasts can be examined using Brier scores (Brier,
1950) or Brier skill scores. Brier scores are the mean squared error of the forecasts, calculated as

B¼ 1
N
∑
N

i¼1
ð f i − eiÞ2 (1)

where N is the total number of forecasts, f is the forecast probability (in the range 0 to 1). e is set to 1 if the
event occurred or 0 if it did not. A perfect forecast will have a Brier score of 0. The Brier skill score com-
pares the calculated Brier score with that from a reference forecast, typically a climatological forecast. The
Brier skill score is then calculated as

BSS¼1 −
B
Bref

(2)

where Bref is the Brier score of the reference forecast. The Brier skill score varies between ‐∞ and 1, with a
perfect forecast returning a Brier skill score of 1 and a forecast which shows no improvement over the
reference forecast returning a score of 0. In this study, we used the climatology (average event occurrence
rate for each forecast window length) to create reference forecasts and associated Brier skill scores.

Figure 4 showsmatrices of themaximum average Brier skill scores calculated for each input window (X axis)
and forecast window (Y axis) pair for forecasts of the >2MeV flux exceeding 1,000 cm−2 sr−1 s−1, with darker

Table 2
The ROC Scores, Maximum Peirce Score, and Corresponding Parameters for Persistence Forecasts of the >2MeV Flux Exceeding 1,000 (top) or 10,000
cm−2 sr−1 s−1 (bottom)

Forecast
window days

ROC
score

Input
window days Peircescore

Mean hit
rate

Mean false
alarm rate

Mean
hits

Mean
misses

Mean false
alarms

Mean correct
rejections

1 0.886 1 0.744 0.883 0.138 526 70 69 430
2 0.869 1 0.668 0.911 0.243 271 26 60 188
3 0.859 22 0.608 0.694 0.086 31 13 0 3
4 0.849 22 0.613 0.732 0.120 32 12 0 3
5 0.843 22 0.612 0.765 0.153 34 10 0 3
6 0.841 22 0.605 0.792 0.186 35 9 0 3
7 0.839 22 0.594 0.814 0.220 36 8 0 2
8 0.835 22 0.579 0.832 0.253 37 7 1 2
9 0.837 22 0.558 0.849 0.291 38 6 1 2
10 0.838 22 0.534 0.863 0.329 38 6 1 2

1 0.882 1 0.742 0.795 0.053 182 47 46 820
2 0.831 1 0.723 0.823 0.099 94 20 43 389
3 0.793 1 0.680 0.825 0.144 63 13 41 247
4 0.767 1 0.647 0.834 0.187 47 9 40 175
5 0.749 1 0.621 0.847 0.226 38 7 39 134
6 0.734 1 0.591 0.854 0.263 32 5 38 106
7 0.721 1 0.553 0.854 0.301 27 4 37 86
8 0.715 1 0.532 0.866 0.334 24 3 36 72
9 0.709 1 0.505 0.871 0.366 21 3 35 61
10 0.704 1 0.485 0.881 0.395 19 2 34 52
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colors indicating higher scores. Figure 5 shows similar results for forecasts of the >2MeV flux exceeding
10,000 cm−2 sr−1 s−1.

The overall trends in the Brier skill scores show some similarities to those in the ROC scores from the
deterministic forecasts: forecasts from IMF BZ have low Brier skill scores for all forecast window and
input window pairs; the Brier skill scores from forecasts using AL and SYM‐H decrease with increasing
forecast window; the maximum Brier skill score occurs at similar input windows for each forecast window
for forecasts of theflux exceeding 10,000 cm−2 sr−1 s−1 byAL and SYM‐H; the Brier skill scores from forecasts
of the flux exceeding 10,000 cm−2 sr−1 s−1 using solar wind pressure increase with increasing length of
forecast window and input window. For the higher flux forecasts, the Brier skill score drops off more
rapidly with input window length compared to the lower flux forecasts, but the Brier skill scores from
the lower flux forecasts drop off more rapidly with forecast window length than the higher flux forecasts.
Unlike the ROC scores of the deterministic forecasts, the Brier skill scores from solar wind velocity
forecasts are qualitatively similar to those of SYM‐H for forecasts of the flux exceeding both 1,000 and
10,000 cm−2 sr−1 s−1. Furthermore, the highest Brier skill scores for solar wind pressure forecasts of the flux
exceeding 1,000 cm−2 sr−1 s−1 are achieved for long input windows but short (<5 day) forecast windows.

For forecasts by AL and solar wind pressure, and for forecasts of the flux exceeding 10,000 cm−2 sr−1 s−1 by
SYM‐H and solar wind velocity, the input windows that give the highest maximum average Brier skill scores
are similar. For AL, these are typically 3–4 days; for SYM‐H they are 4–5 days; for solar wind velocity they are
∼6 days, although the highest Brier skill scores are for input windows of 3–4 days; and for solar wind pres-
sure they are 9–10 days. This is in contrast to the deterministic forecasts, in which SYM‐H gives the highest
ROC scores in the shortest input windows and indicates that auroral zone geomagnetic activity over a rela-
tively short interval provides a good indicator of the likelihood of high fluxes at GEO.

Figure 4. Matrices of the highest Brier skill scores for forecasts of electron flux exceeding 1,000 cm−2 sr−1 s−1 for different input and forecast window lengths by
AL, solar wind velocity, SYM‐H, solar wind pressure, and IMF BZ. Darker purples indicate higher Brier skill scores. For each forecast window length, the
maximum Brier skill score is highlighted by a yellow outline.

Figure 5. Matrices of the highest Brier skill scores for forecasts of electron flux exceeding 10,000 cm−2 sr−1 s−1 for different input and forecast window lengths by
AL, solar wind velocity, SYM‐H, solar wind pressure, and IMF BZ. Darker purples indicate higher Brier skill scores. For each forecast window length, the
maximum Brier skill score is highlighted by a yellow outline.
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Table 3 shows the variables and inputs that provide the best Brier skill scores for forecasting the probability
of the >2MeV flux exceeding 1,000 cm−2 sr−1 s−1 (top rows) or 10,000 cm−2 sr−1 s−1 (bottom rows) and for
each forecast window. A set of tables which shows similar results for each input variable is provided in the
supporting information. For both sets of forecasts, the Brier skill score decreases with increasing forecast
window, indicating that our forecasts are tending toward forecasts based on the climatology. This is a natural
consequence of our analysis. For our forecasts of the electron flux exceeding 1,000 cm−2 sr−1 s−1, the Brier

Table 3
Parameters That Provide the Highest Maximum Average Brier Skill Scores for Each Forecast Window Length for Forecasts
of Flux Exceeding 1,000 cm−2 sr−1 s−1 (Upper Rows) and 10,000 cm−2 sr−1 s−1 (Lower Rows)

Forecast
window (days)

Input
window (days)

Brier
skill score Variable

Variable
percentile

Variable
value (nT)

Brier
score

1 4 0.32 AL 47 −50.0 0.17
2 4 0.27 AL 51 −42.0 0.18
3 4 0.23 AL 53 −39.0 0.18
4 4 0.17 AL 55 −36.0 0.18
5 4 0.11 AL 57 −34.0 0.19
6 4 0.04 AL 58 −32.0 0.19
7 7 0.01 SYM‐H 76 0.0 0.18
8 6 0.00 SYM‐H 78 1.0 0.17
9 6 −0.02 SYM‐H 78 1.0 0.16
10 6 −0.03 SYM‐H 81 2.0 0.16

1 4 0.28 AL 16 −215.0 0.10
2 3 0.27 AL 20 −178.0 0.12
3 3 0.24 AL 22 −163.0 0.14
4 3 0.20 AL 25 −142.0 0.16
5 3 0.18 AL 27 −130.0 0.18
6 3 0.15 AL 30 −113.0 0.19
7 3 0.12 AL 34 −94.0 0.21
8 4 0.10 AL 36 −86.0 0.22
9 10 0.10 Press 41 1.5 0.22
10 9 0.10 Press 43 1.5 0.22

Figure 6. Reliability curves of the 1‐day forecasts (occurrence against forecast probability) for 2014–2016, and for
2012–2013 and 2017. The forecast parameters are those given in Table 3. The vertical and horizontal dashed lines
show the climatology of events for that period. The diagonal dashed line shows half the sum of the climatology and the
probability. The histograms show the mean number of events in each category. The top and bottom rows show the
reliability curves for forecasts of the flux exceeding 1,000 and 10,000 cm−2 sr−1 s−1, respectively.
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score remains relatively constant with increasing forecast window length, indicating that the performance of
our best forecasts does not degrade with increasing window length, but rather that the occurrence of
flux exceeding this near‐median level tends toward the climatology. While SYM‐H provides the highest
Brier skill scores for forecasts of the flux exceeding 1,000 cm−2 sr−1 s−1 within 7 or more days, these forecasts
only perform as well as the climatology. In contrast, the Brier scores for forecasts of the flux exceeding
10,000 cm−2 sr−1 s−1 steadily increase with forecast window length, indicating that our best forecasts per-
form less well with increasing forecast window, but still perform better than the climatology for all forecast
windows.

Table 3 also shows that the forecast threshold increases with increasing forecast window length. Considering
the forecast threshold as a percentile of the input variable, this varies between 47% and 81% for the lower flux
forecasts and between 16% and 43% for the higher flux forecasts. However, the input window length does not
show a similar increasing trend, instead staying relatively constant for a given input variable. The implica-
tion of this is that greater activity is required to forecast over shorter periods than longer periods (noting that
smaller AL and SYM‐H values indicate higher activity levels).

In summary, simple probabilistic forecasts of the >2MeV flux at geosynchronous orbit exceeding 1,000 or
10,000 cm−2 sr−1 s−1 based on the duration that an input variable exceeds a set threshold can provide skillful
forecasts that perform better than the climatology. The mean square error of these forecasts is between 0.1
and 0.22. AL provides the best input variable, with extended periods of moderate activity forecasting the
>2MeV flux exceeding 1,000 cm−2 sr−1 s−1 and shorter periods of greater activity forecasting the >2MeV
flux exceeding 10,000 cm−2 sr−1 s−1.

4. Forecast Verification

In the above, we have used data from 2014 to 2016 inclusive to produce simple forecasts of the >2MeV flux
at geosynchronous orbit exceeding either 1,000 or 10,000 cm−2 sr−1 s−1. We now examine the performance
of these forecasts by applying them to data from 2012, 2013, and 2017 which was not used in the forecast
training data sets.

4.1. Verifying Probabilistic Forecasts

Reliability plots or attributes diagrams (Hsu & Murphy, 1986) show the occurrence rate of events against
the grouped forecast probabilities. The accompanying histograms show the number of forecasts within
each probability bin. The shaded region, delimited by the climatology (ō, horizontal and vertical lines)
and a diagonal line given by Y¼ðX þ ōÞ=2 indicates those results that contribute positively to the Brier
skill score, weighted by their relative occurrence. The results from a perfect forecast will lie along the
one‐to‐one line. To generate the reliability curves in Figure 6, we created forecasts of the flux exceeding
1,000 or 10,000 cm−2 sr−1 s−1 between 2012 and 2017 inclusive using the forecast parameters with the
highest Brier skill scores in Table 3. The forecasts between 2014 and 2016 are our training set. As above,
we extracted subseries of independent forecasts and calculated the mean occurrence from these subseries
in each of the probability bins. Similarly, the histograms show the mean number of events in each bin. In
each panel, the climatology used to define the shaded area is the average occurrence of events within the
time period of the plot. The forecast Brier scores are given in the panels, along with the Brier skill scores
calculated using the climatology within that period as a reference (BSS) or using the climatology of the
training data as a reference (BSS2014–2016).

The reliability curves from our training data set largely fall within the gray‐shaded region, consistent with
their low Brier score and positive Brier skill scores. For both flux levels, the forecasts tend to over‐predict
occurrence below the climatology and underpredict occurrence above the climatology, but the trend runs
close to the one‐to‐one line. For the higher flux level forecasts (Figure 6, lower panels), there are fewer events
in the probability bins in which the occurrence rate differs from the forecast probability the most. For exam-
ple, in 2017 the occurrence rate in the 0.5–0.6 and 0.6–0.7 forecast probability bins was 1.0, deviating from
the forecast probability by 30–50%. However, on average there were fewer than five events in the 0.5–0.6
and 0.6–0.7 probability bins compared to 23 in the 0.1‐0.2 probability bin, for which the occurrence rate
deviated from the probability by only 10%. Given that the Brier score is the mean of the difference of the fore-
cast probability and occurrence (Equation 1), the Brier score is naturally weighted towards the most
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common probabilities. As such, the deviation of the occurrence rates from the higher probabilities does not
strongly influence the Brier score.

The reliability curves from the application of our forecasts to 2012–2013 and 2017 show that the forecasts
perform less well in these years, tending to under‐predict the occurrence of high flux events. The Brier skill
scores calculated using the concurrent climatologies are much lower than the Brier skill scores for the train-
ing data set. In contrast, the Brier skill scores calculated using the climatology of the training data set remain
positive, indicating that the forecasts outperform forecasts based on the climatology of the training data. This
implies that the underlying year‐to‐year variability in the climatologies of the fluxes exceeding 1,000 or
10,000 cm−2 sr−1 s−1 is not well captured by a single set of forecast parameters. However, the fact that all
the reliability curves increase with increasing probability and that the training data provides good Brier skill
scores would suggest that this forecast methodology can be tuned to give skilful forecasts of high‐flux
intervals.

4.2. Verifying Deterministic Forecasts

Figure 7 shows the daily maximum fluxes measured by GOES‐15 color‐coded by the 1 day deterministic fore-
cast of the flux exceeding 1,000 or 10,000 cm−2 sr−1 s−1 using the parameters set out in Table 1. Blues indi-
cate a correct forecast, oranges indicate a miss, greens indicate a false alarm and whites indicate a correct
nonevent forecast. The top panels show the results for 2012, the middle panel shows the results for 2013,
and the bottom panels show the results for 2017. The mean hits, false alarms, misses, and correct rejections
for the forecasts are shown by each panel. As for the training data set, we calculate the forecast metrics for
each year by extracting multiple subseries of independent forecasts and report the means of metrics of these
subseries. Given that the optimum forecasts use a 6‐day input window, each subseries contains 60 forecasts.
Overall, the forecasts perform relatively well, with a majority of blue or white coloured days. For forecasts of
the flux exceeding 1,000 cm−2 sr−1 s−1, there are a greater number of misses than false alarms and these
show a slight tendency to occur following the correct forecast of high fluxes. Given that our forecasts do
not predict how high the fluxes get and do not include any decay times, these misses may arise due to the
persistence of fluxes above the median level. The hit rates for the forecasts of the flux exceeding 1,000
cm−2 sr−1 s−1 in 2012, 2013, and 2017 were 0.72, 0.63, and 0.72, respectively, somewhat lower than the train-
ing data (see Table 1). Similarly, the false alarm rates were 0.26, 0.14, and 0.25, respectively, comparable to
the training data. The forecasts of the flux exceeding 10,000 cm−2 sr−1 s−1 had hit rates of 0.64, 0.57, and 0.65
in 2012, 2013, and 2017, respectively, again somewhat lower than from the training data set, and false alarm
rates of 0.11, 0.08, and 0.09, slightly lower than the training data. The mean level of flux during the false
alarms for forecasts of the flux exceeding 10,000 cm−2 sr−1 s−1 was 3,693, 3,759 and 4,419 cm−2 sr−1 s−1 in
2012, 2013, and 2017, respectively, thus these false alarms tend to occur when the flux is elevated, but does
not reach the 10,000 cm−2 sr−1 s−1 level.

The differences in the performances of both the deterministic and probabilistic forecasts between the train-
ing data and 2012, 2013, and 2017 indicate that the parameters that provide the highest ROC, Peirce, and
Brier skill scores are somewhat variable. Figure 6 shows that the climatology of the occurrence of
high‐flux events varies, with the flux having been more frequently above 1,000 cm−2 sr−1 s−1 in 2017.
Given that our methodology does not use measured values of the flux at GEO as an input to the forecasts,
they do not account for this underlying variation in the climatology. This may be corrected for by using,
for example, the previous year as training data for the current year and regenerating the forecast parameters
more frequently.

5. Discussion

We have demonstrated that the amount of time a single variable exceeds a set forecast threshold can be used
to generate either deterministic or probabilistic forecasts of the >2MeV electron flux at GEO being above
1,000 or 10,000 cm−2 sr−1 s−1. The optimum forecast thresholds are determined by maximizing standard
forecasting metrics for deterministic and probabilistic forecasts. By comparing these metrics for different
input variables, we find that AL, SYM‐H, and solar wind pressure provide the most skilful forecasts of
high‐flux events.
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Tables 1 and 3 show that some of the parameters and skill scores of our forecasts with the highest ROC or
Brier skill scores show little variation. For example, the AL‐based deterministic forecasts of the electron flux
exceeding 10,000 cm−2 sr−1 s−1 have ROC scores of 0.71–0.87 from variable percentiles of 13–21% and Peirce
scores of 0.29–0.6 from break thresholds of 20%. This is a natural consequence of our methodology. Our
methodology gives the highest skill scores for forecasts of the flux being high within 1 day into the future.
Longer forecasts must also include this first day, thus the success of longer forecasts is dominated by

Figure 7. Plots of the daily maximum GOES‐15 >2MeV flux in 2012 (top), 2013 (middle), and 2017 (bottom) color coded
by deterministic forecasts of the flux exceeding either 1,000 (a, c, and e) or 10,000 cm−2 sr−1 s−1 (b, d, and f). Blues
indicates a correct forecast, oranges indicate a miss, greens indicate a false alarm and whites indicate a correct rejection.
The dashed lines in each panel indicate the level we are forecasting the flux to exceed. The mean number of hit, misses,
false alarms, and correct rejections from the subseries of independent forecasts are given beside each panel.
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success in the near‐term. However, within our training data, we do find successful longer term forecasts that
are not successful due to high fluxes in the short term. For example, there are 48 successful 6‐day forecasts of
the flux exceeding 1,000 cm−2 sr−1 s−1 when the flux was not high in the first 3‐days of the forecast window.

5.1. Comparison With Other Forecasts

Earth's radiation belt is heavily populated by a range of spacecraft, all of which have some risk exposure due
to the abundance of high‐energy particles in this region. Empirically, spacecraft are at an enhanced risk of
anomalies due to internal charging effects when the 2‐day >2MeV electron fluence exceeds 108 cm−2 sr−1,
corresponding to a mean flux of ∼500 cm−2 sr−1 s−1 (Baker et al., 1987; Iucci et al., 2005; Romanova et al.,
2005; Wrenn & Smith, 1996; Wrenn & Sims, 1996; Wrenn et al., 2002). Both NOAA and the Met Office issue
“Electron Event Alerts” to satellite operators when the observed >2MeV flux exceeds 1,000 cm−2 sr−1 s−1 or
when the 72‐hr fluence predicted by the Relativistic Electron Flux Model exceeds 109 cm−2 sr−1. However,
this only allows for nowcasts of the flux level or relies on upstream solar wind data and in‐situ flux measure-
ments. In this study, we have shown that it is possible to forecast the likelihood of the fluxes reaching these
levels and thus an alert being issued within up to a 10‐day interval based on simple measurements of either
AL, SYM‐H, or solar wind pressure and with hit rates of up to 84%.

A variety of radiation belt models have been developed to predict the current or near‐future state of the
radiation belts. These typically fall into two categories: physics‐based semiempirical models that typically
impose a measured particle distribution at an outer boundary and use empirical models of various wave
populations to provide the magnetospheric conditions to solve a series of transport equations and thus fore-
cast the fluxes across the whole of the radiation belts (e.g., Glauert et al., 2014a, 2014b; Fok et al., 2008; Li
et al., 2001; Subbotin & Shprits, 2009; Turner & Li, 2008); or empirical and machine learning models which
use a combination of geomagnetic and upstream solar wind conditions and recently measured radiation belt
fluxes to predict flux levels for a few days into the future (e.g., Baker et al., 1990; Boynton et al., 2013, 2015,
2016; Chen et al., 2019; Coleman et al., 2018; Shin et al., 2016; Wei et al., 2018). In these models, a key com-
ponent is the flux at the outer boundary or the measured flux at geosynchronous orbit. Our forecasts have
three key differences to these models: our forecasts only predict whether the flux will exceed some value
rather than predicting the actual flux that will be observed; our forecasts do not use in situ measurements
of the flux in any form; our forecasts predict over a much longer time range. However, given the way that
our forecast windows have been constructed, we do not predict when within a forecast window a flux thresh-
old will be exceeded. As such, our forecasts may be a useful supplement to other operational models since
they can operate in the absence of any upstream or in‐situ measurements and provide some indication as
to the possible upcoming hazardous levels of energetic electron flux.

Balikhin et al. (2016) presented contingency tables for the REFM and SNB3GEO models forecasting the
1‐day >2MeV electron fluence exceeding 108 or 109 cm−2 sr−1 between 2 March 2012 and 31 December
2013.While these forecasts are not directly comparable to our own, comparing their performance is informa-
tive. From these tables, the hit rates for these forecasts were 66% (86/129), and 57% (4/7), respectively for the
REFM and 82% (106/129) and 57% (4/7), respectively, for SNB3GEO, with the bracketed numbers indicating
the number of hits and the sum of the hits and misses. From our training data set, the hit rates of our 1‐day
forecasts of flux exceeding 1,000 or 10,000 cm−2 sr−1 s−1 were 83% and 71% respectively. Restricting our fore-
casts to the same period as Balikhin et al. (2016), we get hit rates of 67% (239/357) and 52% (63/121) for fore-
casts of the flux exceeding 1,000 and 10,000 cm−2 sr−1 s−1, respectively. As such, our forecasts, which predict
the >2MeV flux exceeding 1,000 or 10,000 cm−2 sr−1 s−1 have similar hit rates to forecasts of the 1‐day flu-
ence exceeding 108 or 109 cm−2 sr−1, although notably there are a greater number of events for our forecasts
to predict. Similarly, we calculate that the false alarm rates were 5% (22/532) and 1% (7/654), respectively, for
the REFM and 6% (33/532) and 0.3% (2/654), respectively, for SNB3GEO. In comparison, the false alarm
rates for our forecasts were higher at 21% (66/313) and 10% (56/549).

Since both the REFM and SNB3GEO models incorporate corrections based on in‐situ measurements of the
>2MeV fluxes, it is informative to compare their hit rates and false alarm rates with those of a persistence
forecast. Over the same period as the Balikhin et al. (2016) study, a 1‐day persistence forecast of the fluence
exceeding 108 cm−2 sr−1 had a hit rate of 72% (93/129) and a false alarm rate of 7% (36/530). Similarly, a
1‐day forecast of the fluence exceeding 109 cm−2 sr−1 had a hit rate of 57% (4/7) and a false alarm rate of
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0.5% (3/652). The hit rates for the lower fluence level are higher than the REFM, but 10% lower than
SNB3GEO, but the false alarm rates were within a few percentage points. For the higher fluence level, the
hit rates and false alarm rates were similar for the REFM, SNB3GEO, and persistence forecasts. This would
suggest that the persistence aspect of the REFM and SNB3GEO tends to dominate forecasts of high fluence.
By definition, our forecasts have no persistence aspect.

Comparing the hit rates of our forecasts between the training data set, 2012–2013 and 2017 we see that, while
our forecast methodology has some merits, the forecast parameters have a level of instability. The Reliability
Curves in Figure 6 show that the climatology of the flux exceeding 1,000 or 10,000 cm−2 sr−1 s−1 varied
across the three different time periods, becoming notably higher in 2017. Given that our forecasts do not
use the measured flux in anyway, they cannot account for this other than by recalculating the forecast para-
meters. We note that the parameters for the SNB3GEO model were determined from data between 11 July
2004 and 11 October 2005 (Boynton et al., 2015) and this forecast performs relatively well during 2012–2013,
especially at the low fluence level. As such, there may be some underlying variability in the radiation belts
which is not adequately captured by geomagnetic activity or solar wind driving over a few days, but can be
accounted for by including some level of persistence.

To our knowledge, our methodology is the first to provide a probabilistic forecast of the geosynchronous >2
MeV electron flux. As per our deterministic forecasts, AL proved to provide the highest Brier skill scores
using inputs over the previous 3–5 days. The Brier skill scores, which are a measure of the improvement over
the climatology, were above 0.2 for forecast windows of up to 3 days, a level comparable to some terrestrial
weather forecasts (e.g., Barnston et al., 2010; Stefanova & N. Krishnamurti, 2002). In order to calculate the
forecast probabilities, we made the arbitrary assumption that the duration that the forecast threshold was
broken within the input window was equivalent to the probability of an event occurring. The mean squared
errors in the forecasts were between 10‐20%, driven by the forecasts overestimating occurrence rates below
the climatology and underestimating occurrence rates above the climatology, which would indicate a
slightly non‐linear relationship between break duration and the probability of an event. In principle, the
reliability diagrams in Figure 6 can be used as a calibration curve for the forecasts to correct for this, but
more complex relations could be examined. For example, Mourenas et al. (2019) showed that enhancements
in the radiation belt occur after the integrated Ap index was above 800nT hr. Further forecasts could be
based upon this integrated measure or equivalently the average of a geomagnetic index within a given input
window.

The methodology used to verify the forecasts is based on that commonly used in terrestrial weather forecast-
ing. These methods have been used in other aspects of space weather forecasting (e.g., Murray et al., 2017;
Sharpe & Murray, 2017) and are widely applicable within this field.

5.2. Radiation Belt Drivers

The >2MeV electron flux at geosynchronous orbit can vary by several orders of magnitude (e.g., Paulikas &
Blake, 1979). These variations are driven by the interactions between the solar wind and Earth's magneto-
sphere but can be complex as different parts of the system respond in different ways at different times and
these responses can be coupled to each other. As a result, geomagnetic activity can arise through
near‐direct driving by large‐scale structures in the solar wind resulting in geomagnetic storms (e.g.,
Borovsky & Denton, 2006), or as an integrate‐and‐fire response to solar wind coupling, resulting in geomag-
netic substorms Freeman andMorley (2004). While the global response of the radiation belts to geomagnetic
storms is repeatable (Murphy et al., 2018), the variations at different locations in the radiation belts are more
complex (Reeves et al., 2003). This response is complicated by the fact that the spatial location of closed elec-
tron drift paths are strongly dependent on the magnetic field configuration: during geomagnetic storms, a
compression of the magnetosphere means that geosynchronous orbit is closer to the outer edge of the mag-
netosphere and that the radiation belts are located closer to the Earth. The radiation belts can also be
enhanced by lower‐level geomagnetic activity such as substorms (Horne & Thorne, 1998; Horne, Thorne,
Glauert, et al., 2005; Horne, Thorne, Shprits, et al., 2005; Jaynes et al., 2015; Li et al., 2007; Summers et al.,
1998), with 50% of substorm intervals followed by an increase in the number of electrons in the radiation
belts within 24–48 hr (Forsyth et al., 2016). Overall, the response of the fluxes of electrons at different ener-
gies and different L* shells shows stronger correlations with measures of geomagnetic activity than with the
solar wind driver (Zhao et al., 2017). The integrated geomagnetic activity can be a good indicator of likely
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radiation belt enhancements (Mourenas et al., 2019). As such, both internal and external drivers influence
the state of the radiation belts and fluxes at set locations in the magnetosphere.

Our results show that, in general, geomagnetic indices provide better forecasts of the >2MeV flux exceeding
either 1,000 or 10,000 cm−2 sr−1 s−1 than solar wind parameters, but that the forecast verification parameters
(ROC scores, Brier skill scores) can be similar. This is in keeping with recent studies of the variability of
radiation belt fluxes. Zhao et al. (2017) showed correlation coefficients of ∼−0.5 between AL or solar wind
velocity and the flux of 1,000MeV/G particles at an L* of 6 but that across other L* shells, the correlation
with AL was generally higher. Other studies have shown there is greater mutual information between the
radiation belt seed populations and geomagnetic parameters than with solar wind parameters (Tang et al.,
2017). However, that is not to say that the solar wind has no influence. Studies such as Balikhin et al.
(2011), Boynton et al. (2013), and Wing et al. (2016) have shown that the coupling between the radiation
belts and the solarwind driver are nonlinear andmay have different time lags but there ismutual information
between them. The complex response of the magnetosphere to both external driving and internal conditions
complicates forecasting the radiation belts based on upstream conditions alone. For example, the occurrence
of substorms, which are thought to provide the necessary particle injections to energize the radiation belts
(Forsyth et al., 2016; Horne, 2007; Jaynes et al., 2015), appears to be somewhat random, possibly occurring
as an integrate‐and‐fire process (Freeman &Morley, 2004). For such events, the processing of the solar wind
driver by themagnetosphere,which is reflected ingeomagnetic activity, is a critical component indetermining
changes to the radiation belts.

In this study, we have opted to use AL as an input variable to our forecasts, as opposed to the AE index,
which is commonly used as a parameterization for radiation belt model inputs (e.g., Meredith et al.,
2012). AE is the difference between the AL index, which is designed to capture the strength of the westward
electrojet and is always negative, and AU, which is designed to capture the eastward electrojet and is always
positive. Given that substorm injections occur on the nightside in conjunction with the formation of the sub-
storm current wedge and associated enhancement in the westward electrojet, we consider that AL is a more
appropriate input to a forecast of the fluxes at the outer edge of the radiation belts.

In order to predict fluxes above 1,000 or 10,000 cm−2 sr−1 s−1, our deterministic forecasts require that AL
drops below −74 or −171 nT, respectively. These are not particularly extreme values of AL, corresponding
to the 36th and 17th percentiles. Superposed epoch analysis of substorms shows that, on average, AL just
reaches −200 nT at the end of the expansion phase, but activity during the growth phase brings AL below
−100 nT (Juusola et al., 2011). We also note that the thresholds for SYM‐H to predict geosynchronous flux
enhancements are above −10 nT (see supporting information), 45 percentage points above the ‐50 nT level
that is taken to indicate storm activity (Gonzalez et al., 1994). Our results thus show that enhancements in
flux at geosynchronous orbit follow periods of ongoing substorm activity, but activity at a level that would
not necessarily be classed as a geomagnetic storm.

6. Conclusions

We have examined whether various geomagnetic indices and solar wind parameters can be used to forecast
whether the >2MeV flux from GOES 15 will exceed either 1,000 or 10,000 cm−2 sr−1 s−1 within a forecast
window of up to 10 days. These forecasts are based on the amount of time forecasting variables exceed a
set threshold during a window of time prior to the forecasting time and rely entirely on conditions and obser-
vations external to the radiation belts. We used 2014–2016 inclusive as a training set for our forecasts. Our
results show that the AL index provides the best forecasts and that

1. the deterministic forecasts of the flux exceeding 1,000 cm−2 sr−1 s−1 that gives the highest Peirce score
requires AL <−103 nT for 43 hr in the preceding 6 days;

2. the deterministic forecasts of the flux exceeding 10,000 cm−2 sr−1 s−1 that gives the highest Peirce score
requires AL <−249 nT for 29 hr in the preceding 6 days;

3. the best probabilistic forecasts of the flux > 1,000 cm−2 sr−1 s−1 are based on the proportion of the pre-
ceding 4 days that AL < −50 nT;

4. the best probabilistic forecasts of the flux > 10,000 cm−2 sr−1 s−1 are based on the proportion of the pre-
ceding 4 days that AL <− 215 nT.
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Our simple deterministic forecasts have hit rates of up to 89% with high ROC scores (>0.8) and high Peirce
scores (up to 0.57); however, our false alarm rates are also high (10–53%). Our deterministic forecasts do not
perform as well as persistence forecasts of high‐flux events. Compared to the results of Balikhin et al. (2016),
our forecasts give slightly lower hit rates and higher false alarm rates than forecasts of high fluence; how-
ever, this may be improved with an optimised forecast tuning methodology. However, our forecasts are
entirely independent of measurements of the electron flux at GEO. Overall, this demonstrates that forecast-
ing the high energetic electron fluxes at geosynchronous orbit over periods of greater than a few days is pos-
sible with relatively high success rates based on observations solely from geomagnetic activity or upstream
measurements.

Data Availability Statement

GOES flux and OMNI data used in this study were obtained from NASA's CDAWeb (https://cdaweb.gsfc.
nasa.gov) using the SPDFCDAWEBCHOOSER IDL interface. GOES fluence was downloaded from this site
(ftp://ftp.swpc.noaa.gov/pub/indices/old_indices/). The forecast data were created using the methods that
are fully described in the text of this article and reproducible.
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