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 5 

The O’Brien and Burn Method (OBM) 6 

O’Brien and Burn (2014) use a regional pooling based on geographic location of the 7 

catchments, trends and seasonality of the flood data. In the non-stationary index-flood 8 

procedure used by O’Brien and Burn (2014, denoted by OBM), the following steps are 9 

employed: 10 

(i) The at-site algebraic mean  is used as the index-flood to normalize records  at site i, 11 

where i = 1, 2, …, N, t = 1, 2, …, ni. The normalized flood records are given by  = / . 12 

(ii) Non-stationary GEV distribution is then fitted to the normalized records. ,  and 13 

 represent the location, scale and shape parameters respectively for site i in the normalized 14 

space. 15 

(iii) Regional parameters are obtained in the normalized space by weighted-averaging given by  16 

 
 (1)  

where  is the regional average of the kth parameter and  is the value of the kth parameter 17 

for the i-th site. 18 

(iv) The non-stationary regional growth curve q(f,t) is obtained by inverting the GEV 19 

distribution with the regional parameters. From the regional growth curve, time-varying 20 

quantiles corresponding to a given return period are obtained.  21 

(v) These regional quantiles are further multiplied by the site-specific index-flood to get the 22 

time-varying at-site quantiles  as follows: 23 

  (2) 

Thus, the non-stationary flood quantiles is obtained at each site i.  24 

 25 

The Hanel Method (HM and HM*) 26 

Hanel et al. (2009, denoted by HM) first use a regional pooling to identify homogeneous 27 

regions, based on the dispersion parameter that is the ratio of the scale and location parameters. 28 

In HM, the regional growth curve is represented directly in terms of the dispersion parameter 29 
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and the shape parameter estimated from the pooled normalized data. The time-varying location 30

parameter at each site is chosen as the index-flood. HM consists of the following steps:31

(i) Stationary location parameter at each site ( ), regional trend in location parameter ( ), 32

regional dispersion ( ) and regional shape ( ) are estimated by pooling records from all sites 33

in the homogeneous region.34

(ii) Time varying location parameter is then obtained for each site i as follows:35

= + ( (3)

(iii) The growth curve is constructed directly in terms of the dispersion and the shape 36

parameters as follows:37

(4)

Therefore, in HM, the growth curve is stationary, while the index-flood is non-stationary. 38

(iv) The nonstationary quantiles in the original space are then obtained by multiplying the 39

growth curve with the index-flood.40

(5)

41

Applying a similar ideology of normalization, it is possible to implement a modified non-42

stationary index-flood approach for regional flood frequency analysis (RFFA). This modified 43

approach is denoted by HM*, and consists of the following steps. 44

(i) At-site location, scale and shape parameters for the i-th site denoted by μi(t), σi(t) and ξi(t) 45

respectively are obtained from the fitted non-stationary GEV distribution. Records at each site 46

are normalized by the at-site location parameter μi(t). The normalized records are denoted 47

by = /μi(t). 48

Steps (ii), (iii) and (iv) are the same as OBM.49

(v) Finally, the regional quantiles are multiplied by the site-specific index-flood to get the time-50

varying at-site quantiles as follows:51

52

53

The Nam Method (NM)54

In OBM and HM*, in the transformed space, the distribution is still non-stationary, thereby 55

representing the independent but not identically distributed (i/nid) case, violating the iid56

assumptions of index-flood method. Nam et al. (2015) propose an extension of HM* which 57

(6)
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can circumvent this violation, where they fit stationary distribution to the transformed flood 58 

records (denoted by NM).  59 

After following step (i) of HM*, step (ii) of NM involves estimation of stationary parameters 60 

of the at-site GEV distributions denoted by ,  and .  61 

(iii) Regional parameters are thereafter obtained by the weighted averaging given by Eq. (1) 62 

above.  63 

(iv) The regional growth curve q(f) is then obtained by inverting the stationary GEV 64 

distribution with regional parameters. 65 

(v) Finally, the regional quantiles are transformed back to their original space by multiplying 66 

with the index-flood as follows: 67 

  (7) 

 68 

The Sung Method (SM) 69 

More recently, Sung et al. (2018) proposed a method where stationary index flood method is 70 

employed to the detrended non-stationary data. The index flood procedure proposed by them 71 

(denoted as SM) consist of following steps. 72 

(i) Following estimation of the trend parameter ( ) at each site in the region, a detrended 73 

flood series is obtained by subtracting estimated trend from the observed flood records at that 74 

site, given by ).  75 

(ii) The detrended at-site algebraic mean  is used as the index-flood to normalize detrended 76 

records  at site i. The normalized flood records are given by .  77 

(iii) Stationary GEV distribution is then fitted to the normalized records to obtain , and  78 

for site i.  79 

(iv) Regional parameters are obtained using by the weighted averaging given by Eq. (1).  80 

(v) The regional growth curve in the detrended space (f) is obtained by inverting the stationary 81 

GEV cumulative distribution function (cdf) with regional parameters.  82 

(vi) Nonstationary quantiles in the original space are finally obtained by multiplying the 83 

regional quantile with the index-flood and adding the trend component as follows: 84 

  (8) 

 85 

The Modified Basu and Srinivas Method (BSM*) 86 

Basu and Srinivas (2013) propose a mathematical transformation-based approach for stationary 87 

RFFA as an alternative to the population index-flood method. Here, a non-stationary index-88 
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flood approach is proposed extending the concept of Basu and Srinivas (2013) that is 89 

hereinafter denoted by BSM*. The following steps are carried out in BSM*. 90 

(i) Non-stationary GEV distribution is fitted to the at-site records where the location, scale and 91 

shape parameters of the GEV distribution at the i-th site are denoted by ,  and   92 

respectively. 93 

(ii) At-site flood records  are transformed into dimensionless standardized residuals using 94 

the following transformation considering the at-site parameters.  95 

 
 (9) 

This transformation converts the random variable to another dimension where the location, 96 

scale and shape parameters are less biased compared to the regional parameters. The 97 

transformed records are independent and identically distributed, thereby satisfying the primary 98 

iid assumption of the index-flood method. 99 

(iii) The stationary parameters obtained from the transformed realizations are thereafter used 100 

to compute the regional average dimensionless parameters in the transformed space by 101 

weighting the parameters with the number of records available for each site, similar to the other 102 

methods, given by Eq. (1). 103 

(iv) Regional average parameters are used to obtain the stationary regional growth curve q(f) 104 

by inverting the GEV cdf. 105 

(v) Finally, the at-site non-stationary quantiles in the original space are obtained by the back 106 

transformation given by 107 

 
 (10) 

 108 

Bootstrap vector resampling approach for uncertainty estimation 109 

To estimate the uncertainty associated with the time-varying flood quantiles, modified version 110 

of the bootstrap vector resampling approach (Burn, 2003; O’Brien and Burn, 2014) is used in 111 

this study. This approach is adopted to avoid the bias in parameter estimation due to small 112 

sample size. The bootstrap resampling approach can result in asymmetric confidence intervals 113 

thereby representing more realistic conditions (Obeysekera and Salas 2014). To preserve the 114 

spatial structure, the method considers a vector of flood values at all the sites in a region as a 115 

‘record’, and such records are drawn repeatedly. The following are the steps to obtain the 116 

confidence intervals for time-varying flood quantiles corresponding to a given probability of 117 

exceedance.  118 
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(i) Standardized at-site residuals  obtained from Eq. 9 are considered for the period of 119 

record (say, n years) at all the sites in a region with N sites.  120 

(ii) This n x N residual data matrix is replicated 999 times, and concatenated one after the other, 121 

leading to a large data matrix of dimensions (999n) x N. This large data matrix is reshuffled 122 

randomly to create a permuted large data matrix of dimensions (999n) x N. The permuted large 123 

data matrix is thereafter broken down into 999 bootstrap samples each of dimensions n x N.  124 

(iii) For each of these 999 bootstrap samples of standardized residuals, at-site stationary GEV 125 

parameters are estimated. These at-site parameters are averaged to obtain the regional 126 

parameter estimates which are further used to get the regional growth curve.  127 

(iv) The regional quantiles are converted back to the original dimension by the back 128 

transformation proposed in Eq. (10). Thus, the time-varying flood quantiles for each of the 999 129 

bootstrap samples are obtained.  130 

(v) At each time step, the empirical quantiles of the 999 bootstrap samples for a given 131 

confidence level gives the upper and lower uncertainty bounds of the estimated flood quantiles 132 

at that time step. 133 

 134 

Supplementary Table 135 

Table S1: Test results (p-values) for significance of non-stationarity in the seven sites of the 136 

synthetically generated region. Low p-values imply rejection of the null hypothesis of no-trend.  137 

p-value Site#1 Site#2 Site#3 Site#4 Site#5 Site#6 Site#7 

Mann-

Kendall 

Trend Test 

0.019 0.011 0.039 0.003 0.009 0.016 0.0002 

Likelihood 

Ratio Test 
0.0017 0.0002 0.0051 2.48  0.0002 0.0068 0.0038 

 138 
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