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Abstract 20 

Regional flood frequency analysis (RFFA) techniques are used in hydrological applications for 21 

estimation of design quantiles at ungauged sites or catchments with sparse observational records. 22 

The index-flood method, a popular approach for RFFA, is based on the assumption that the flood 23 

records within a homogeneous region are identically distributed, except for a site-specific index-24 

flood. In the light of rapidly changing land-use patterns, human interventions and climate 25 

change, recent studies propose extension of the index-flood method to account for non-26 

stationarity in flood records. The aim of this work is to present a comparison of index-flood 27 

based non-stationary RFFA techniques, on both synthetically generated and real-world 28 

homogeneous regions, with sites marked by significant trends in flood records. From the data 29 

used in the analysis, it is evident that the method proposed by O’Brien & Burn (2014) and a non-30 

stationary extension of Basu & Srinivas (2013) are more suitable compared to other methods, 31 

and can capture time-varying behavior of floods effectively.  32 

 33 
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1 Introduction 42 

Regional flood frequency analysis (RFFA) techniques (Hosking & Wallis, 1997) are often used 43 

to arrive at flood estimates for basins marked with limited or no records. Such techniques involve 44 

identifying homogeneous regions and estimation of quantiles from pooled information within 45 

that homogeneous region (Burn, 1988; Rao & Srinivas, 2006 etc.). Fitting a regression 46 

relationship between the catchment attributes and the design quantiles is one of the pooling 47 

approaches (Leclerc & Ouarda, 2007; Ouali et al., 2016; Ouali et al., 2017; Ouarda et al., 2001; 48 

Pandey & Nguyen, 1999; Wazneh et al., 2013). 49 

The other approach, the popular index-flood method (Dalrymple, 1960; Hosking & Wallis, 1993) 50 

for RFFA, on the other hand, involves normalization of flood records by an at-site scaling factor 51 

called the index-flood. Pooled information from the normalized records are used to construct the 52 

growth curve in the transformed space. Required flood quantiles at the target site are estimated 53 

by multiplying the growth curve with the index-flood. The assumptions of stationarity is inherent 54 

in both pooling methods. The stationarity assumption considers flood records to be independent 55 

and identically distributed, where the statistical distribution and its parameters do not vary with 56 

time. However, such assumption may be questionable (Milly et al., 2015; 2008) due to increasing 57 

global average temperatures intensifying the frequency of pluvial flooding through the Clausius-58 

Clapeyron relationship (IPCC, 2012; Kundzewicz et al., 2017), or temperature-induced changes 59 

on timing and volume of peak flows through snow-melt and cold-season precipitation changes 60 

(Kundzewicz et al., 2010; 2014), or more local, anthropogenic factors such as rapid 61 

modifications in land-use/land-cover including urbanization and deforestation, and human 62 

interventions interfering floods such as structural flood protection measures (Sivapalan & 63 
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Samuel, 2009; Villarini et al., 2009; Kundzewicz et al. 2014). It may be noted, however, that the 64 

relative importance of these climatic and non-climatic drivers of non-stationarity in floods may 65 

be region-specific (Kundzewicz et al. 2017).  66 

Several recent studies in hydrology have focused on explicitly modeling non-stationarity in 67 

extremes (El Adlouni et al., 2007; Katz et al., 2002; Mondal & Mujumdar, 2015; 2016; Salas & 68 

Obeysekera, 2014; Vogel et al., 2011; Westra & Sisson, 2011; Westra et al., 2013). However, 69 

applications considering non-stationarity in RFFA studies are rather few in number. Some of the 70 

approaches to account for non-stationarity in RFFA include the detrending approach to non-71 

stationarity (Cunderlik & Burn, 2003), the trend-based regional flood-duration-frequency model 72 

(Cunderlik & Ouarda, 2006) and a regression based approach that uses time-varying flood 73 

quantiles (Leclerc & Ouarda, 2007).  74 

More recent studies propose and employ non-stationary index-flood methods. For example, 75 

Hanel et al. (2009) (hereinafter referred to as the Hanel Method, HM) and Hanel & Buishand 76 

(2010; 2011; 2012) employ a non-stationary index-flood method to compare regional climate 77 

model simulations with observations of rainfall extremes. They consider both index-flood and 78 

the growth curve to be non-stationary. Renard et al. (2013) use a Bayesian framework for 79 

modeling non-stationarity in regional flood frequency analysis. However, their method includes 80 

assumption of priors. O’Brien and Burn (2014) (hereinafter referred to as the O’Brien and Burn 81 

method, OBM) propose a non-stationary index-flood method and a regional pooling method 82 

based on trends, considering the stationary at-site mean as the index-flood, while the growth 83 

curve is non-stationary. Nam et al. (2015) (hereinafter referred to as the Nam Method, NM) 84 

compare different index-flood approaches under non-stationarity and also propose a third method 85 

with  non-stationary index-flood and stationary growth curve. Sung et al. (2018) (hereinafter 86 
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referred to as the Sung Method, SM) address non-stationarity in RFFA by the distribution free 87 

approach where the trend is removed from the series before applying the standard index-flood 88 

method. Basu & Srinivas (2013) propose a transformation based approach to the index-flood 89 

method for stationary flood peak data in a homogeneous region. Here, an extension of that 90 

approach is proposed, to account for non-stationarity marked by trends and also compare this 91 

new method (hereinafter referred to as the Basu and Srinivas method, BSM*), with the existing 92 

non-stationary index-flood approaches. The mathematical transformation in BSM* transposes 93 

non-stationary flood records to another dimension where the location, scale and shape 94 

parameters are less biased compared to the regional parameters (result not shown). This ensures 95 

that the frequency distribution of the flood records both before and after transformation belong to 96 

the same family. Further, the transformed records are independent and identically distributed, 97 

thereby satisfying the primary assumptions of the index-flood method. This is a particular 98 

methodological advantage of BSM*. 99 

The purpose of this paper is to draw a comparison of existing non-stationary index-flood 100 

approaches – namely, the OBM, HM, NM, SM. Two new non-stationary index-flood approaches 101 

are additionally considered for this comparison – a modified version of HM which is based on 102 

the normalization by location parameter (hereinafter referred to as the modified Hanel method, 103 

HM*) and the mathematical transformation-based BSM* described above. This study presents 104 

the first such comprehensive synthesis of different approaches to non-stationary RFFA with a 105 

view to provide a comparative summary of their strengths and weaknesses using synthetic and 106 

real-world data.  107 
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2 Methodology 108 

Let  be a random variable that denotes the annual maximum streamflows at the i-th site 109 

among N sites in a homogeneous region, and at the t-th time step. The total number of records at 110 

that site is ni. The quantile function of frequency distribution at the i-th site is Qi (f) for the 111 

stationary case, which is defined as (Dalrymple, 1960) 112 

  (1) 

 113 

where  is the index-flood at the i-th site and  is the dimensionless regional growth curve. 114 

Under non-stationarity, since the distribution changes with time, flood quantiles are also time-115 

varying and are given by the function Qi (f, t). These flood quantiles are actually ‘effective return 116 

levels’ (Katz et al., 2002) corresponding to a constant probability of exceedance (f). Recent 117 

studies discuss more precise estimates of non-stationary flood return levels based on different 118 

interpretations (Cooley, 2013; Salas & Obeysekera, 2014; Mondal & Daniel, 2019). Some 119 

studies (Serinaldi, 2015, Strathie et al., 2017) argue that the concept of the return period can be 120 

misinterpreted and propose alternate risk measures based on the risk of failure (for example, 121 

Rootzén & Katz, 2013). However, effective return levels are used here, since they are easy to 122 

interpret and have been used in earlier studies on non-stationary regional flood frequency 123 

analysis (for example Leclerc & Ouarda, 2007; O’Brien & Burn, 2014). 124 

Detailed steps of OBM, HM, NM, SM and BSM* are illustrated in Figure 1, and are also 125 

described in Supplementary Information (SI). Additionally, a modified version of HM is used, 126 

which is based on the normalization by the location parameter - hereinafter referred to as the 127 

modified Hanel method (HM*). HM* is considered to draw comparability with the other existing 128 
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non-stationary index-flood method, since HM, in the original study, constructs the regional 129 

growth curve directly in terms of the dispersion and the shape parameter from pooled data 130 

instead of estimation of at-site parameters (See SI). From Figure 1, it is evident that all the 131 

methods consider non-stationarity either in the normalization or in the construction of the growth 132 

curve.  133 

<Figure 1> 134 

3 Results 135 

A synthetic simulation experiment is first executed to compare the performance of the non-136 

stationary index-flood methods. This is followed by a real-world application. All computations 137 

are carried out in the statistical R platform, using the package ‘extRemes’ (Gilleland & Katz, 138 

2011). The synthetic simulation experiment considers a realization of a homogeneous region 139 

consisting of N sites, each having n records, based on a non-stationary Generalized Extreme 140 

Value (GEV) distribution having an increasing trend in the location parameter. Since the goal of 141 

this paper is a comparison of existing non-stationary index-flood approaches, GEV distribution is 142 

chosen for analysis as it used by OBM, HM, NM, SM and BSM. However, it may be noted that 143 

the principles elucidated in Figure 1 may be applicable for other distributions as well. This is 144 

similar to the synthetic simulation experiments of Sung et al. (2018) and Nam et al. (2015). 145 

Following other studies (Katz et al., 2002; Mondal & Mujumdar, 2016; O’Brien & Burn, 2014), 146 

the scale and the shape parameters are kept constant. Further, a high-positive value in ξ is chosen 147 

to exhibit heavy-tailed behavior found to exist in hydrological extremes (Cavanaugh et al., 2015; 148 

Papalexiou & Koutsoyiannis, 2013). The location ( ), trend in location ( ), scale( ) and 149 
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shape( ) parameters of the GEV distribution are assumed to be constant over the homogeneous 150 

region. The chosen values of the variables are 151 

 and .  (2) 152 

Figure 2 shows the simulated flood records. All the seven sites show significant non-stationarity, 153 

as established by the likelihood ratio test (Coles, 2001), as well as the non-parametric Mann-154 

Kendall trend test (Table S1 in SI). Figure 2 also shows the 50-year effective return levels, 155 

corresponding to fixed probability of exceedance p = 1/50 = 0.02, for all the methods, along with 156 

the true non-stationary quantiles that were obtained by inversion of the GEV cumulative 157 

distribution function (cdf) at each time step, corresponding to the fixed probability of exceedance 158 

p, using the true parameters that were used to generate the flood records.  Although there are 159 

biases in the estimated quantiles, possibly because of limited sample size, the BSM* and OBM 160 

yield results that are closest to the true quantiles.  161 

<Figure 2> 162 

Further, to evaluate the performance of these methods for prediction in ungauged locations, a 163 

cross-validation analysis is performed, wherein one site at a time is considered ungauged and the 164 

data records for that site are hidden from the regional flood frequency analysis. Since the site-165 

specific index-flood magnitude is unknown in this case, average value of index-flood of the 166 

remaining sites is taken as the index-flood for all the methods (Hosking & Wallis, 1997). To 167 

assess the performance of the non-stationary index-flood methods, absolute bias for site i is 168 

considered, defined by A-Bias   100 %, where  and  are the predicted and 169 

true quantile, respectively, at the j-th time step, with  number of records at that site. This is 170 



 

9 

 

repeated 500 times to generate an ensemble. Figure 3 shows the box plot of A-Bias across the 171 

ensemble for Site#1. The other sites reveal similar performance and are therefore not shown.  172 

<Figure 3> 173 

It is observed that BSM*, along with OBM, leads to minimal A-Bias, indicating better 174 

performance as compared to HM, HM*, NM and SM. It can be observed that both HM and NM 175 

lead to over-estimation of  resulting in underestimation of the quantiles during the initial years 176 

and over-estimation during the later years. In HM, normalization of the non-stationary flood 177 

records by the time-varying location parameter might remove non-stationarity, at least partially. 178 

The forcible fitting of non-stationary regional growth curves after such removal leads to 179 

overestimation of trends, thereby resulting in steep slopes of the non-stationary return levels. In 180 

NM, on the other hand, partial presence of non-stationarity might lead to overestimation of the 181 

stationary regional growth curve, thereby causing steeper estimated non-stationary flood 182 

quantiles. In SM, the detrending of records might remove the actual tail behavior, resulting in 183 

poor performance in terms of the simulated transient flood quantiles.  184 

Since BSM* and OBM performed best in the simulated experiment, these two methods were 185 

further applied for non-stationary RFFA in four Canadian homogeneous regions previously 186 

identified by O’Brien and Burn (2014). Annual maximum daily streamflow data is obtained from 187 

the Water Survey of Canada’s HYDAT database. Three sites were not considered (Site 02LB020 188 

from Region-2; Site 02AB019 & Site 05UA003 from Region-4) in our analysis since they had 189 

record length less than 25 years. All the sites considered in the study show significant trends as 190 

established by the non-parametric Mann-Kendall trend test. Although the analysis is performed 191 

on all sites in each of the four regions, for illustration of non-stationary RFFA, four 192 

representative sites are chosen, one in each region, following O’Brien and Burn (2014). The 100-193 
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year effective return levels for the four representative sites and their 95% confidence intervals 194 

estimated by the bootstrap-based vector resampling approach (Obeysekera & Salas, 2014; 195 

Oehlert, 1992) are shown in Figure 4, along with the stationary quantiles and their confidence 196 

intervals. Details of the bootstrap-based vector resampling approach are provided in SI. While 197 

the sites in Region#1, Region#2 and Region#3 show decreasing trends, Region#4 has sites with 198 

positive trend in peak flows. It is evident that both BSM* and OBM capture the non-stationarity 199 

in flood records. The presence of decreasing (increasing) trends can lead to under (over)-200 

estimation of flood quantiles if such non-stationarity is not taken into consideration in RFFA.  201 

<Figure 4> 202 

4 Discussion and conclusions 203 

While individual research efforts on non-stationary index-flood approaches for RFFA are 204 

reported in hydrologic literature, this paper presents the first comprehensive summary and 205 

comparison between them. For such comparison, along with existing methods - OBM, HM, NM 206 

and SM, possible alternative extensions HM* and BSM* are also considered. The strengths and 207 

weaknesses of the existing non-stationary index-flood approaches are highlighted, and their 208 

performances analyzed for synthetically generated as well as real-world applications of RFFA. 209 

While methodologically BSM* satisfies the assumptions of the index-flood method even under 210 

non-stationarity, making it theoretically more suitable, a synthetic simulation experiment reveals 211 

that OBM and BSM* both outperform the other methods. Also, when applied to real-world data, 212 

both BSM* and OBM are found to yield comparable results, capturing the time-varying nature of 213 

flood quantiles realistically. Additionally, for the real-world RFFA application, uncertainty 214 

ranges of the estimated time-varying quantiles corresponding to the 100-year return period are 215 
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also computed using the non-parametric bootstrap-based vector resampling approach. Though 216 

the uncertainty limits resulting from OBM and BSM* are similar, BSM* yields narrower 217 

confidence intervals implying more precise estimates of return levels.  218 

It may be noted that the effect of spatial dependence is not accounted in this RFFA study. While 219 

some recent studies (Castellarin et al., 2008; Lilienthal et al., 2018; Wang et al. 2014) attempt to 220 

address this issue, it requires further investigation. Further, the homogeneity test adopted by 221 

O’Brien and Burn (2014) also needs to be reformulated to account for non-stationary flood 222 

records. Despite shortcomings and limitations, this study presents a much-needed summary of 223 

non-stationary index-flood approaches and provides a basic synthesis of the existing state-of-art 224 

on the important topic of non-stationary RFFA.  225 
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Figures385

386

Figure 1. Detailed non-stationary index-flood technique for regional flood frequency analysis in the modified Basu & Srinivas Method387

(BSM*), vis-à-vis existing methods from literature, namely the O’Brien & Burn Method (OBM), the Hanel Method (HM), the 388

modified Hanel Method (HM*), the Nam Method (NM) and the Sung Method(SM)389
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  390 

Figure 2. Synthetically generated (unitless) non-stationary flood data (dots) at all the seven sites 391 

in the homogeneous region. Time-varying 50-year flood quantile estimates using O’Brien & 392 

Burn Method (OBM, black dashed line), Hanel Method (HM, violet line), Modified Hanel 393 

Method (HM*, red line), Nam Method (NM, green line), Sung Method (SM, cyan line) and 394 

modified Basu & Srinivas Method (BSM*, blue dashed line) along with the true quantile (black 395 

line) are shown for each site. 396 
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  397 

Figure 3. Boxplot of percentage Absolute Bias (A-Bias) of the 50-year effective return levels at 398 

Site#1 in the synthetically generated region, obtained by leaving out records of that site in the 399 

index-flood framework, over 500 realizations, as computed by the different non-stationary index-400 

flood approaches. 401 

 402 
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 403 

Figure 4. The 100-year flood quantile estimates at a given site and their respective 95% 404 

confidence interval considering the stationary index-flood method (black), the O’Brien & Burn 405 

method (OBM, red) and the modified Basu & Srinivas Method (BSM*, blue) in (a) Region-1, (b) 406 

Region-2, (c) Region-3, (d) Region-4 in Canada. 407 
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