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1. Introduction and motivation for the workshop 45 

Earth System Models (ESMs) include a sea ice component to physically represent sea ice 46 

changes and impacts on planetary albedo and ocean circulation (Manabe & Stouffer, 1980). 47 

Most contemporary sea ice models describe the sea ice pack as a continuum material, a principle 48 

laid by the AIDJEX (Arctic Ice Dynamics Joint EXperiment) group in the 1970s (Pritchard, 49 

1980). Initially intended for climate studies, the sea ice components in ESMs are now used 50 

across a wide range of resolutions, including very high resolutions more than 100 times finer 51 

than those they were designed for, in an increasingly wide range of applications that challenge 52 

the AIDJEX model foundations (Coon et al., 2007), including operational weather and marine 53 

forecasts. It is therefore sensible to question the applicability of contemporary sea ice models 54 

to these applications. Are there better alternatives available? Large advances in high 55 

performance computing (HPC) have been made over the last few decades and this trend will 56 

continue. What constraints and opportunities will these HPC changes provide for contemporary 57 

sea ice models? Can continuum models scale well for use in exascale computing? 58 

 59 

To address these important questions, members of the sea ice modelling community met in 60 

September 2019 for a workshop in Laugarvatn, Iceland. Thirty-two sea ice modelling scientists 61 

from 11 countries across Europe and North America attended, spanning 3 key areas: (i) 62 

developers of sea-ice models; (ii) users of sea-ice models in an ESM context; (iii) users of sea-63 

ice models for operational forecasting and (re)analyses. The workshop was structured around 2 64 

key themes: 65 

 66 

1. Scientific and technical validity and limitations of the physics and numerical approaches 67 

used in the current models 68 
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2. Physical processes and complexity: bridging the gap between weather and climate 69 

requirements 70 

 71 

For each theme, 5 keynote speakers were invited to address the motivating questions and 72 

stimulate debate. Further details can be found in the Supplementary Material. 73 

2. Key points and outcomes from the sea ice modelling workshop 74 

Continuum models remain a useful tool for sea ice simulation 75 

Sea ice consists of moving, growing or melting, often interlocked, irregular pieces of ice, which 76 

can vary in size from a few meters up to tens of kilometres (floes and plates, see WMO, 1970; 77 

Hopkins et al., 2004). In models, the representation of sea ice is divided into one-dimensional 78 

thermodynamic processes such as growth and melt, and two-dimensional, horizontal ice 79 

dynamics involving ice drift, deformation and transport. To describe the evolution of sea ice at 80 

scales of ~100 km over days to months, the AIDJEX group proposed a framework based on an 81 

isotropic, plastic continuum approach (Coon et al., 1974), whose validity relies upon statistical 82 

averages taken over a large number of floes (Gray and Morland, 1994; Feltham, 2008). 83 

Assuming that sea ice behaves as a plastic material at scales of ~100 km and beyond, a viscous-84 

plastic rheology (VP: Hibler, 1979; followed by its elastic formulation EVP: Hunke and 85 

Dukowicz, 1997) offered physically reasonable and numerically affordable solutions to 86 

represent sea ice dynamics. The continuum approach, as well as the (E)VP framework, have 87 

since been adopted in virtually all ESMs (IPCC, 2013). The sea ice modelling community now 88 

has several decades of experience using these continuum models. 89 

 90 

Many studies demonstrate the ability of the continuum (E)VP models to reasonably simulate 91 

key properties of the sea ice: the large-scale distribution of sea ice thickness, concentration and 92 
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circulation (e.g., Kreyscher et al., 1999); relationships between sea ice concentration, thickness 93 

and velocity (Docquier et al., 2017); long-term trends in winter sea ice velocity (Tandon et al., 94 

2018). With modifications for grounded ridges and tensile strength, continuum models are also 95 

able to realistically simulate the distribution of Arctic land-fast ice — the motionless fields of 96 

sea ice attached to the coast or seabed (e.g., Lemieux et al., 2015; 2016). 97 

 98 

However, the core assumptions of the continuum theory are appropriate only for large-scale sea 99 

ice evolution, where model grid-cells contain a representative sample of floes. With the increase 100 

in available computational resources over the last few decades, several sea ice model 101 

configurations have grid-cell sizes of ~1-10 km. This is particularly true for short-range 102 

forecasting applications and regional modelling studies, which tend to use such resolutions 103 

because the Rossby radius in high-latitude waters can be close to 1 km (Holt et al., 2017). At 104 

these resolutions, the continuum assumption likely breaks down (Coon et al., 2007; Feltham, 105 

2008). 106 

 107 

Nevertheless, even at kilometric resolution, continuum-based sea ice models continue to be 108 

useful. Early evaluations with synthetic aperture radar estimates of drift and deformation (Kwok 109 

and Cunningham, 2002) challenged continuum sea ice models’ representation of spatio-110 

temporal deformation, particularly in terms of localization and intermittency (Girard et al., 111 

2009; Kwok et al. 2008). However, simulations at kilometric resolutions (effective 10 km) 112 

reconcile the model results with observations for many drift and deformation feature statistics 113 

at these resolutions (Hutter and Losch, 2020). 114 

 115 

Solver convergence also impacts simulated deformation statistics (Lemieux et al., 2012) and 116 

Linear Kinematic Features (LKFs) within the ice pack (Koldunov et al., 2019). However, as the 117 
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spatial resolution is increased in VP continuum-based models, the numerical solution of the sea 118 

ice momentum equation is increasingly difficult to obtain due to the strong nonlinearity of the 119 

problem. Despite recent nonlinear solver developments (e.g. Losch et al., 2014; Kimmritz et 120 

al., 2017; Mehlmann and Richter, 2017), obtaining a fast and numerically converged solution 121 

remains a challenge. Another issue is that VP continuum models overestimate the prevalence 122 

of large intersection angles between LKFs, which might be fixed by amending the rheological 123 

formulation (Hutter and Losch, 2020; Ringeisen et al., 2019). 124 

 125 

Alternative rheological formulations have also been proposed to address shortcomings of the 126 

VP rheology; the Elastic-Anisotropic-Plastic (EAP) and Maxwell-Elasto-Brittle (MEB) 127 

rheologies were discussed at the workshop. The EAP rheology (Wilchinsky and Feltham, 2006) 128 

introduces a new state variable, the structure tensor, that tracks the history of past fracture 129 

events and allows the orientation of these fractures to evolve at the sub-grid level due to 130 

mechanical failure and melting or refreezing. In contrast, isotropic models either assume sub-131 

grid-cell cracks do not exist or are isotropically distributed. The EAP model produces realistic 132 

scaling of sea ice deformation in idealised configurations and has shown promising results for 133 

simulation of the basin-scale sea ice thickness distribution (Tsamados et al., 2013; Heorton et 134 

al, 2018). The MEB rheology (Dansereau et al., 2016) is a damage-propagation model, different 135 

from the plastic-flow approach taken by VP and EAP, simulating failure by tracking strain-136 

induced damage, which gives a high degree of stress localisation. To preserve the localised 137 

fields produced by the MEB rheology, the neXtSIM model uses a continuum Lagrangian 138 

formulation in which the mesh moves with the ice (Rampal et al., 2016). MEB-based models 139 

reproduce some sea ice processes as emergent properties (ice bridges, ridges, land-fast ice; 140 

Dansereau et al., 2017), as well as ice drift and spatio-temporal deformation statistics (Rampal 141 

et al., 2019).  142 
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 143 

In summary, despite their reliance on hypotheses that can become invalid at spatial resolutions 144 

typically used in modern ESM systems, these continuum-based sea-ice models cannot be 145 

readily invalidated using observation-based metrics, and remain useful for large-scale, and low 146 

resolution, modelling of sea ice.  147 

 148 

Discrete Element Modelling: a promising avenue for the future 149 

Discrete Element Models (DEMs) have long been used to model granular, discontinuous 150 

materials, including ice floes (e.g., Hopkins et al., 2004; Hopkins and Thorndike, 2006). By 151 

their very nature, DEMs are well suited to modelling sea ice, which - particularly around the 152 

ice edge - consists of many individual ice floes.  153 

 154 

Historically, DEMs have not been used to model sea ice within global climate models or 155 

forecasting systems because, relative to continuum sea ice models, they require extensive 156 

computational resources. However, with increases in available HPC resources, DEMs are 157 

becoming relatively more affordable and may actually be more suitable for future HPC 158 

architectures, although the uncertainties here are substantial. 159 
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The relatively large computational cost of DEMs also means that the sea ice modelling 160 

community has little experience with these models, and several unresolved issues currently 161 

present an obstacle for DEMs to be used for large-scale sea ice modelling. These include how 162 

physical processes fundamental to floe evolution, such as pressure ridging, floe aggregation or 163 

floe splitting, can be represented in a DEM framework. Current approaches to model 164 

initialisation and data assimilation also need to be rethought. Therefore, a considerable amount 165 

of time and development is needed before DEMs become usable by a large community. The 166 

workshop participants felt that DEMs are not presently able to satisfy the two-pronged criteria 167 

- both advanced enough and affordable - required to replace the continuum models used within 168 

operational forecasting and climate modelling systems. However, DEMs present a promising 169 

approach for future sea ice modelling, which should be explored further. In particular, DEMs 170 

would be particularly appealing for operational forecasting applications that require models to 171 

reproduce sea ice behaviour on fine spatio-temporal scales. In this regard, a possible future 172 

avenue could be a regional DEM nested within a global continuum model. 173 

 174 

Navigating the model complexity spectrum: finding the right amount of complexity 175 

The issue of model complexity is complicated and was discussed at length at the workshop. 176 

Here we take the term “model complexity” as synonymous with “number and level of detail of 177 

the model’s parameterisations of physical processes”. Although there were advocates for 178 

including more complexity and for using more simplified models, the general feeling was that 179 

present-day continuum models capture the most important physical processes, in principle. 180 

However, the representation of certain key processes is uncertain due to missing observational 181 

constraints. 182 

 183 
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The overall conclusion was that, given the diversity of model uses (e.g. climate projections, 184 

regional forecasts, process understanding), a large spectrum of different levels of complexity is 185 

warranted for sea ice modelling, from highly complicated to heavily simplified models. 186 

Although several physical processes were identified whose representation was considered crude 187 

or even missing in contemporary sea ice models (e.g. snow physics, wave-ice interactions, 188 

ridging processes, and intricate atmosphere-ice-ocean coupling/interactions), the impact of 189 

their absence from a model is hard to predict. In favour of more simplicity: simple models are 190 

cheaper to run and easier to use, debug, and tune, and their output is easier to understand 191 

because the likelihood of complex, nonlinear interactions is lower. Also, when considering the 192 

climate models participating in CMIP5 (44 distinct models), there is no systematic difference 193 

between the projections made by high- or low-complexity models. This suggests that sea ice 194 

sensitivity is likely related to the way key processes are treated, and that the simulated evolution 195 

of sea ice may depend more on the atmospheric and oceanographic forcing than on the 196 

complexity of the sea ice code itself. In favour of complexity: more sophisticated physical 197 

formulations are important for improved process understanding, to allow models to simulate 198 

changes in ice physics in different climate regimes, and to improve short-term predictions, 199 

particularly where there is a need to provide a detailed description of the sea ice state. 200 

 201 

In summary, the appropriate physical complexity required strongly depends on the specific 202 

model application. Workshop participants recommend that modellers select the most 203 

appropriate tool for the job at hand, and complexity should not be used ‘blindly’ - it is important 204 

to understand why one is including the chosen level of complexity. Code modularity is a good 205 

way to allow sea ice models to satisfy varying demands in terms of scientific complexity. 206 

 207 
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HPC requirements cause uncertainty (constraints and opportunities) for future sea ice model 208 

code structure and optimisation 209 

Current continuum formulations of sea ice dynamics require relatively high levels of 210 

communication between processor domains within the rheology and advection calculations. 211 

This can make sea ice components a bottleneck in coupled systems, as they tend to scale poorly 212 

with increasing HPC resources due to sea ice’s localization on the globe. The thermodynamic 213 

components, however, rely on one-dimensional ‘column’ formulations that require very little 214 

cross-domain communication, allowing them to scale well with increasing HPC resources.  215 

 216 

HPC resource constraints have historically favoured continuum models, with DEMs being too 217 

expensive to run. However, DEMs have the potential to scale better on newer, heterogeneous 218 

HPC architectures such those using Graphical Processing Units (GPUs). DEMs benefit from a 219 

natural domain decomposition via aggregates of floes, which can be moved to GPUs for 220 

Lagrangian and thermodynamic calculations requiring less bandwidth for communication with 221 

processors handling other parts of the domain. 222 

 223 

Whether current continuum sea ice models will be able to take full advantage of the resources 224 

available on future exascale HPC machines is currently an active area of research. Much of the 225 

uncertainty comes from not knowing the form future exascale HPC systems might take, and the 226 

fact that the efficiency of the sea ice model component is not likely to be a priority of those 227 

people choosing the HPC resources at large modelling centres. 228 

 229 
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In summary, the jury remains out on whether continuum models will be a viable choice for 230 

future HPC architectures and whether DEMs may become more favourable in the future. The 231 

answers to these questions will partly depend on the design of future exascale HPC systems, 232 

and on the continuum framework’s ability to produce sensible looking results for very high 233 

resolution simulations (say <100m). 234 

 235 

Community involvement plays an important role for sea ice model development, but current 236 

practices could be improved 237 

Engagement of the broad sea ice modelling community has been crucial for sea ice model 238 

development, especially for large community codes such as CICE (Hunke et al., 2020) and 239 

SI3/LIM (Rousset et al., 2015). Community involvement can bring considerable model 240 

advances by allowing many different research and operational groups to contribute new model 241 

functionality and physics, as well as thoroughly testing the code in diverse applications. 242 

However, it is important to have well defined long-term plans and to communicate these 243 

effectively, so that the wider community can efficiently contribute to the scientific direction of 244 

the model while maintaining a streamlined and relevant code base.  245 

 246 

Although engagement of the wider community has been hugely beneficial for the evolution of 247 

large-scale sea ice models, there is scope for even better integration of community activities 248 

within the development process.  249 

 250 

One area of potential collaboration involves common model evaluation tools. Having common 251 

outputs and model diagnostics, such as those defined by the SIMIP community for CMIP6 252 

(Notz et al., 2016), facilitates multi-model evaluation and comparison studies. However it was 253 
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felt that community tools, such as ESMValTool (Righi et al., 2020) and MET (Newman et al., 254 

2019), could be better utilised for evaluation of sea ice models. 255 

 256 

Another area that could benefit from community involvement is assessing the models at a 257 

process level, for instance by formulating idealised case studies for model inter-comparison 258 

(e.g., wind blowing on an ice pack in a rectangular domain). It was also felt that standard metrics 259 

are required against which to compare the models with each other and with observations, and 260 

to ascertain how well models capture the leading-order physical processes. For example, a 261 

standard metric for measuring the performance of model thermodynamics at leading order 262 

would be useful. 263 

3. Summary and recommendations 264 

Continuum sea ice models have been applied close to the presumed limits of their validity for 265 

many years, yet they remain compatible with current observations. The resolution requirements 266 

for sea ice models varies considerably depending on the application (e.g. large ensembles, 267 

paleo-climate simulations, short-range forecasting), and therefore continuum models will likely 268 

remain useful for many years to come. Meanwhile, it is highly desirable to explore the potential 269 

of DEMs. These models are expected to be more physically faithful at the highest resolutions 270 

envisioned for sea ice in ESMs, provided they incorporate all the required processes. DEMs 271 

may also prove more efficient for some new computer architectures. Such perspectives 272 

highlight the need for the sea ice modelling community to have a clear and consistent vision of 273 

the future evolution of HPC systems. 274 

  275 

Sea ice models are used for many different purposes and therefore benefit from modularity, 276 

which allows the activation or exclusion of parameterisations and code features. Thus, users 277 

can adjust model complexity to fit their specific application. 278 
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 279 

Considering limited human resources among core sea ice modelling groups, engagement of the 280 

wider community has proven a very efficient way to advance large-scale sea ice models. 281 

However, there is still scope for further integration of the wider community in model 282 

development activities. 283 

 284 

An important feature of the Laugarvatn sea ice modelling workshop was the open minded, 285 

friendly and respectful atmosphere in which very different views were exchanged. The 286 

workshop successfully brought together model developers and users of sea-ice models for 287 

Earth-system modelling, operational forecasting and (re)analyses. 288 

 289 

International sea ice modelling workshops such as this foster collaboration and community 290 

engagement in the field of sea ice modelling. A recommendation from this workshop is that the 291 

exercise should be repeated every 2-3 years to maintain community engagement, exchange 292 

cutting-edge ideas, and reinforce collaborative momentum.  293 
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