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O C E A N O G R A P H Y

Dynamic flows create potentially habitable conditions 
in Antarctic subglacial lakes
Louis-Alexandre Couston1,2,3* and Martin Siegert4

Trapped beneath the Antarctic ice sheet lie over 400 subglacial lakes, which are considered to be extreme, isolated, 
yet viable habitats for microbial life. The physical conditions within subglacial lakes are critical to evaluating how 
and where life may best exist. Here, we propose that Earth’s geothermal flux provides efficient stirring of Antarctic 
subglacial lake water. We demonstrate that most lakes are in a regime of vigorous turbulent vertical convection, 
enabling suspension of spherical particulates with diameters up to 36 micrometers. Thus, dynamic conditions 
support efficient mixing of nutrient- and oxygen-enriched meltwater derived from the overlying ice, which is 
essential for biome support within the water column. We caution that accreted ice analysis cannot always be used 
as a proxy for water sampling of lakes beneath a thin (<3.166 kilometers) ice cover, because a stable layer isolates 
the well-mixed bulk water from the ice-water interface where freezing may occur.

INTRODUCTION
The Antarctic continent is covered with ice, growing and shrinking 
over periods of tens to hundreds of thousands of years, since at least 
the last 14 million years (1). Over 250 hydrologically stable subglacial 
lakes (in which water inputs are constantly balanced by outputs) 
trapped between the bed and the ice are known to exist at and close 
to the ice sheet center (2). They comprise a wide variety of sizes and 
glaciological and topographic settings (3) and have been hypothe-
sized as potential habitats for the in situ development of microbial 
organisms (4). Such remote, extreme, and isolated places qualify as 
analogs to extraterrestrial environments where life may occur, such 
as the subsurface oceans on Jovian and Saturnian moons (5). A fur-
ther ~130 hydrologically active lakes, which experience rapid water 
discharges and large volume changes, exist toward the margin of the 
ice sheet (6, 7). While these may contain microbial life (8), they are 
not considered as isolated habitats where microbes can adapt inde-
pendently over long periods due to the flushing of water in and out 
of their systems and their potentially ephemeral nature.

The Antarctic ice and bed material carry life’s building blocks, 
with oxygen and minerals held within dust in the former, and min-
erals trapped inside sediments and bedrock in the latter. Numerical 
models and radar observations have shown that the ice sheet base 
above subglacial lakes typically melts where the ice is thickest and 
freezes where it is thinnest (4, 9, 10). Thus, oxygen and minerals are 
released at the top of the water column. The rate at which this 
happens is key to assessing the possibility of having a biome, but 
remains largely uncertain. Although microbial life is anticipated at 
the floors of subglacial lakes, where sediments are known to exist 
(11), dynamic flows and mixing of bottom water within the water 
column are essential for life to be widespread and detectable, avoid-
ing, for example, anoxic conditions if oxygen-rich surface water is 
unable to access deeper parts of the lake.

Subglacial lakes are isolated from winds and solar heating but can 
experience vertical convection flows due to the upward geothermal 

flux [at a background level of roughly 50 mW/m2; (12)], and hori-
zontal convection flows due to the ubiquitous—albeit variable—tilt 
of their ice ceiling (about 10 times and in opposite direction to the 
ice surface slope). Previous work has estimated that velocities of few 
tenths of a millimeter/second are generally required to suspend sedi-
ments in the water column (13). This is of the same order of magni-
tude as that predicted by ocean modeling for a handful of subglacial 
lakes, including Lake Vostok (14), Lake Ellsworth (15), and Lake 
Concordia (9). However, uncertainties are large, and velocities 
remain unknown for most subglacial lakes, including Lake CECs, 
which might be the first stable lake to be drilled into in a clean way 
in the coming years (16). As a result, plans for direct sampling can 
be helped by establishing hydrological conditions in subglacial lakes, 
and their variation between lake settings, to recognize where micro-
bial life is most likely to thrive.

Here, we predict the intensity of turbulence and large-scale water 
circulation for the entire range of stable subglacial lakes found in 
Antarctica, i.e., with ice cover thicknesses up to 5 km and lake water 
depths up to 1.5 km (Fig. 1). Thus, our work complements previous 
studies on convection in lakes at atmospheric pressure (i.e., open) 
or with thin ice covers (17), and, more specifically, previous efforts 
that aimed to predict the hydrological conditions of individual sub-
glacial lakes, including Lake Vostok (18). We demonstrate that most 
subglacial lakes have large supercritical convective parameters, i.e., 
the geothermal flux is much larger than the minimum critical heat 
flux required to trigger convective flows, such that they are in a 
regime of vigorous turbulent convection. We show that vertical 
convection is as important as horizontal convection and that the 
convective dynamics vary considerably based on the ice thickness, 
water depth, and ceiling slope. For simplicity, we restrict our atten-
tion to freshwater, because salt concentration is typically low in iso-
lated subglacial lakes (4).

We first calculate the minimum critical heat flux, Fc, required to 
trigger thermally forced vertical convection (Fig. 3) by solving an 
eigenvalue problem for the local stability of subglacial lakes with a 
nonlinear equation of state (19). We show that Fc is much smaller 
than 50 mW/m2, which is (approximately) the average geothermal 
flux, for a wide range of geophysical conditions and conclude that 
most Antarctic subglacial lakes are unstable to convection. We then 
demonstrate that most subglacial lakes (Figs. 4 and 5) subject to a 

1British Antarctic Survey, Cambridge CB3 0ET, UK. 2Department of Applied Mathe-
matics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. 
3Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, 
F-69342 Lyon, France. 4Grantham Institute and Department of Earth Science and 
Engineering, Imperial College London, London, SW7 2AZ, UK.
*Corresponding author. Email: louis.couston@ens-lyon.fr

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

 on F
ebruary 18, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

mailto:louis.couston@ens-lyon.fr
http://advances.sciencemag.org/


Couston and Siegert, Sci. Adv. 2021; 7 : eabc3972     17 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 11

geothermal flux of 50 mW/m2 experience dynamic flows by applying 
state-of-the-art scaling laws of classical thermal convection to con-
vection in cold-temperature high-pressure lake environments.

RESULTS
Subglacial lakes can experience dynamic vertical convection flows 
[also known as Rayleigh-Bénard (RB) convection (20)], because the 
lake’s deepest waters, heated by Earth’s geothermal flux, are generally 
buoyant and will tend to rise through and mix with the rest of the 
water column. How far up and how quickly bottom water masses rise 
depend on the geothermal flux, F, the water depth, h, and the ice cover 
thickness, H (or ice overburden pressure pi). Convection in subglacial 
lakes is complex, because the thermal expansion coefficient of fresh-
water (p, T), which indicates how fluid parcels contract or expand 
with changes in temperature (i.e., are buoyant), depends on water 
pressure p > pi and the temperature T itself (21). For relatively thick 
ice cover, i.e., H ≥ H* = 3166 m, the thermal expansion coefficient is 
always positive (i.e., the density decreases with temperature) and in-
creases with pressure and temperature, such that convection becomes 
more vigorous as F, h, and H increase. For ice covers less than the 
critical ice depth H*, or ice pressure pi < p* = 2848 dbar (which we 
refer to as the critical ice pressure), however, the thermal expansion 
coefficient changes sign with temperature, such that density does not 
simply decrease with temperature but becomes a nonlinear and non-
monotonic function of T. Specifically, as is shown in Fig. 2, for H < H*, 
 increases with temperature but is first negative for Tf(pi) ≤ T < Td(p) 
(close to the ice ceiling), where Tf is the freezing temperature and Td 
is the temperature of maximum density, before becoming positive at 
higher temperature. Having  < 0 close to the ice ceiling for H < H* 
means that the density stratification is always stable at the top of the 
lake and that the bottom layer is buoyant only if the bottom tem-
perature exceeds Td, i.e., such that the density stratification is top 
heavy near the bottom. Having  > 0 on the bottom boundary is a 
necessary condition for deep water masses to be buoyant but, however, 
is not sufficient for convection to set in. The geothermal flux must be 
also larger than the adiabatic heat flux and adequate to sustain a buoy-
ancy force that can overcome viscous dissipation and thermal diffusion.

Here, we estimate the minimum critical heat flux that overcomes 
dissipation effects and permits convection in subglacial lakes from a 

stability analysis of the perturbation equations for a water column 
subject to geothermal heating and the Coriolis force due to Earth’s 
rotation. We consider a realistic nonlinear equation of state for fresh-
water using the Thermodynamic Equation of Seawater 2010 (TEOS-10) 
toolbox (19) and the Coriolis frequency at 80°S. We take into account 
the adiabatic temperature gradient by including compressibility ef-
fects in the energy equation. We perform the calculations for a wide 
range of ice thicknesses and water depths up to 20 m. For water depth, 
h > 20 m, the eigenvalue problem becomes too difficult to solve, so 
we use scaling laws that are either conservative or inferred from 
classical RB convection results in the limit of rapid rotation (22).

Figure 3A shows the minimum critical heat flux Fc that permits 
vertical convection for a wide range of ice pressures and water depths 
relevant to Antarctic subglacial lakes. Fc is large at small pressure and 
small water depth (top left corner) but then decreases with h and pi in 
most of the parameter space. We find Fc < 50 mW/m2 (as shown by 
the black isocontour labeled “50”), which is a typical background value for 
Earth’s geothermal flux around Antarctica, in most of the parame-
ter space. We predict that Lake CECs and South Pole Lake (SPL) are 
unstable to vertical convection if subject to a 50 mW/m2 flux, i.e., 
their critical heat flux Fc is less than 50 mW/m2, despite having rel-
atively thin ice covers H < H* (shown by the gray dashed line). Here, 
we have centered the vertical axis of Fig. 3A on the critical pressure 
p* by using the shifted ice pressure variable pi − p* and a symmetric 
logarithmic scale. As a result, the transition from a fully convective 
water column (for pi > p*) to a convective water column with a stably 
stratified upper layer (for pi ≤ p*) is smooth even though Fc increases 
rapidly as pi decreases below p*. Figure 3B shows that subglacial lakes 
reported in the last inventory (2) have ice cover thicknesses almost 
equally distributed on either side of H*. Thus, the pi = p* isobar, 
which separates lakes that are fully convective from lakes that are 
only partially convecting, is important not only for the theoretical 
calculation of Fc but also in practice. Almost half of the subglacial 
lakes (with pi < p*) may be expected to have a top layer that is stable, 
although possibly modified by the dynamics near the ice ceiling 
and overshooting convection. We remark that Fc is constrained pri-
marily by the condition of having  > 0 on the bottom boundary 

Fig. 1. Problem schematic. We provide predictions about the characteristic velocity 
of the large-scale circulation Ulsc, the characteristic velocity of turbulent plumes U, 
the thickness  of the top stable conductive layer, and the anomalous temperature 
of the well-mixed bulk Tbulk (i.e., in excess of the freezing temperature Tf). The problem 
parameters are the water depth h, the ice thickness H (or ice overburden pressure pi), 
the Coriolis frequency f (due to Earth’s rotation), and the geothermal flux F.

Fig. 2. Thermal expansion coefficient. Plot of the thermal expansion coefficient 
 as a function of (T, p) superimposed with profiles of the temperature of maximum 
density Td (red solid line) and freezing temperature Tf (black solid line) with pressure. 
For small pressures p < p*, with p* the critical inversion pressure (blue dashed line), 
Td > Tf such that there exists a range of temperatures Tf < T < Td for which  is nega-
tive (area appearing with red colors) and water masses become anomalously denser 
with increasing temperatures. For p < p* and T > Td, or p ≥ p*, the water becomes mono-
tonically lighter as temperature increases, which is the typical behavior of most fluids.
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for small pi and h (top left corner) and by the condition that it must 
exceeds the adiabatic flux for large pi and h (bottom right corner). 
In between, viscous dissipation and thermal diffusion dominate the 
calculation of Fc. Note that our prediction of Fc for small pi and large 
h is conservative and may overestimate the true Fc. We provide fur-
ther details about the calculation of Fc in Materials and Methods and 
in the Supplementary Materials.

For a geothermal flux F greater than the critical heat flux Fc, it is of 
interest to know whether the convective instability results in high or 
low flow velocities. In general, estimates of flow velocities require 
dedicated simulations or laboratory experiments. For the case of tur-
bulent vertical convection, however, various scientific communities 
have proposed predictive laws of hydrodynamic variables based on 
control parameters, which can be used as leading-order estimates 
for turbulence intensity in convective subglacial lakes [see (20) and 
references therein]. The canonical problem of natural convection 
relevant to our work is known as rotating RB convection and has 
applications in many different fields, including geophysics (23), 
astrophysics, and engineering (20). Hydrodynamic variables such as 
turbulent flow velocities, large-scale flow velocities, and temperature 
fluctuations are predicted on the basis of the value of the Rayleigh 
number Ra of the system, which is a dimensionless measure of the 
available convective energy; the Prandtl number Pr, which compares 
viscous dissipation to thermal diffusion; and the Ekman number Ek, 
which compares viscous dissipation to the Coriolis force. The Rayleigh 
number, Prandtl number, and Ekman number for subglacial lakes 
in Antarctica can be written as

	​​ Ra​ F​​  = ​  
g ​​ eff​​ ​Fh​eff​ 

4 ​
 ─ 

k  ​, Pr  = ​   ─  ​, Ek  = ​    ─ 
∣ f  ∣ ​ h​eff​ 

2 ​
 ​​	 (1)

where g is the gravitational acceleration, eff is the characteristic 
thermal expansion coefficient, heff is the effective water depth where 
convection occurs,  is the kinematic viscosity,  is the thermal dif-
fusivity, k is the thermal conductivity, and f is the Coriolis frequency 
(note that we use ∣f∣ in our definition of Ek > 0, since f < 0 in the 
Southern Hemisphere). The subscript F of RaF means that the 
Rayleigh number of subglacial lakes is a flux-based Rayleigh number, 
since it is based on a prescribed geothermal flux rather than a pre-
scribed temperature difference, which is more common in idealized 
studies of natural convection (20). Note that we neglect compress-
ibility effects for the prediction of variables in the turbulent regime 
because Earth’s geothermal flux is several orders of magnitude larg-
er than the adiabatic heat flux.

In the context of subglacial lakes, the geothermal flux is suffi-
ciently large that the lake water is in a fully turbulent state that is 
almost not affected by rotation, i.e., F ≫ Fc, and the effect of rota-
tion is weak [see the Supplementary Materials and (24)]. Thus, here 
we use scaling laws derived for fully turbulent nonrotating convec-
tion to make predictions about hydrodynamic variables. The vari-
ables of interest are the thickness of the conductive layer near the ice 
ceiling , the anomalous temperature of the well-mixed bulk Tbulk 
(in excess of Tf), the characteristic turbulent flow velocity U, and the 
length scale of turbulence 𝓁, which represents the typical distance 
between thermal plumes (Fig. 1). We assume a geothermal flux of F 
= 50 mW/m2 throughout and use scaling laws derived from nu-
merical simulations (25) as well as scaling laws inferred from the 
Grossmann-Lohse (GL) unifying theory of RB convection, which is 
based on theoretical arguments (26).

We first show in Fig. 4 (A to D) the results for  and Tbulk based 
on the scaling laws derived in (25) for a wide range of ice thicknesses 
and water depths. The thickness of the conductive layer near the ice 

Fig. 3. Critical heat flux. (A) Minimum heat flux required to trigger vertical convection in subglacial lakes as a function of lake depth (bottom axis) and ice overburden 
pressure (left axis) or ice thickness (right axis). Solid lines are isocontours in mW/m2 of required heat flux, while filled circles highlight the positions of five well-known lakes 
in parameter space (see legend to the right). (B) Ice thickness distribution of isolated subglacial lakes from the last published inventory (2). The dashed gray lines highlight 
the critical thickness H*.

 on F
ebruary 18, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Couston and Siegert, Sci. Adv. 2021; 7 : eabc3972     17 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 11

ceiling is almost independent of lake depth but varies substantially 
with ice pressure (Fig. 4, A and B). For thin ice cover, the top con-
ductive layer consists of a layer with a stable density stratification 
attached to the ice ceiling (where  < 0), which can be several meters 
thick (thickness S), and a turbulent transition layer (just above the 
convective bulk), which is typically on the order of a few centime-
ters or smaller (thickness t), i.e.,  = S + t. For ice thickness, H < 
2000 m, S is between 10 and 40 m. The stable layer thickness S 
decreases with H and vanishes for H > H* (since  > 0 everywhere 
in this case), such that the full conductive layer is limited—for a thick 
ice cover—to a turbulent boundary layer attached to the ice ceiling, 
which is small. In all cases, the top stable layer transfers heat by conduc-
tion only. Thus, the temperature increases linearly from Tf(pi) near the 
ice to Tf(pi) + F/k at the bottom of the stratified layer. The anomalous 
temperature of the well-mixed convective bulk (above freezing) can 
then be approximated as Tbulk = F/k (Fig. 4, C and D), and hence 
shows similar trends as . The white area on the top left corners of 
Fig. 4 (A and C) highlights subglacial lakes that are stable  because 

the thermal expansion coefficient is negative everywhere in the water 
column. The filled squares in Fig. 4 (B and D) show  and Tbulk based 
on scaling laws derived in (26) (labeled “GL”). There is a good agree-
ment between predictions based on the scaling laws in (25) (shown 
by circles) and (26).

Figure 5 shows the predicted lake velocity U and horizontal length 
scale 𝓁 based on previously derived scaling laws (25). Figure 5 
(A and B) shows that U is almost independent of ice pressure but 
increases with lake depth, up to about 1 cm/s for h = 1500 m. 
Figure 5 (C and D) shows that 𝓁 increases slowly with lake depth 
and remains on the order of 1 m for all ice pressures. Both U and 𝓁 
appear discontinuous at pi = p* because the effective thermal expan-
sion coefficient eff, which we estimate conservatively (cf. Materials 
and Methods) and use in Eq. 1 for RaF, decreases rapidly across the 
p* isobar for small water depths. For instance, eff decreases from 3 × 
10−6 ° C−1 to 3 × 10−7 ° C−1 between pi = p* + 100 dbar and pi = p* 
for h = 10 m. We expect that the discontinuity would become less 
sharp but would not completely disappear upon relaxing our 

Fig. 4. Conductive layer thickness and anomalous bulk temperature. (A and B) Thickness  of the conductive stratified layer at the top of subglacial lakes assuming a 
geothermal flux of 50 mW/m2. (A)  as a function of lake depth (bottom axis) and ice pressure (left axis). (B)  as a function of ice pressure only for selected lake depths of 
32, 156, and 1067 m [shown by vertical lines in (A)]. GL refers to results obtained with the GL theory and h = 1067 m. (C and D) Same as (A) and (B) but for the anomalous 
bulk temperature Tbulk (above Tf) of the well-mixed convective layer.
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conservative approximation for eff, because  will always be (overall) 
much smaller in lakes with a thin ice cover (pi ≤ p*) than in lakes 
with a thick ice cover (pi > p*). We also show in Fig. 5B the predic-
tion for the characteristic velocity Ulsc based on the scaling laws de-
rived in (26) (labeled GL) for an ice thickness H = 3945 m (filled 
squares), which is the ice thickness above Lake Vostok. Ulsc is smaller 
than U (shown by the filled circles) by up to a factor 5 because the GL 
theory focuses on the velocity of the large-scale circulation, while U 
is the characteristic root-mean-square velocity of turbulent plumes 
(25), which is likely to be faster than the mean large-scale flow. 
Figure 5B also shows a prediction for the horizontal velocity Vhc of 
the baroclinic flow expected along a sloped ice-water interface, using 
scaling laws inferred from recent results on horizontal convection 
(27). We show the prediction for Vhc assuming two different ice-water 
interface slopes, i.e., s = 10−3 and s = 10−2, the steepest slope resulting 
in the largest horizontal velocity due to the increased temperature 

gradient along the ice ceiling. The horizontal velocity of the baro-
clinic flow is of the same order (for a steep slope, s = 10−2) or one 
order of magnitude smaller (for a moderate slope, s = 10−3) than the 
large-scale velocity of vertical convection (Ulsc).

DISCUSSION
We have demonstrated that the critical heat flux leading to vertical 
convection in subglacial lakes is much less than 50 mW/m2 for a 
broad range of ice overburden pressures and water depths (Fig. 3). 
Thus, it should be considered that most—if not all—Antarctic sub-
glacial lakes are dynamic hydrologic environments. We expect that 
the same conclusion holds for isolated subglacial lakes in Greenland 
and elsewhere in the solar system (5, 28). We note that our prediction 
of the critical heat flux Fc is conservative for large water depth and 
small ice pressure (see the Supplementary Materials). Also, estimates 

Fig. 5. Characteristic turbulent flow velocity and length scale. (A and C) Same as Fig. 4 (A and C), but for (A) the turbulent flow (plume) velocity U and (C) the charac-
teristic length scale 𝓁 in the convective layer. (B and D) Turbulent flow velocity U and length scale 𝓁 as functions of lake depth only, for selected ice thicknesses H = 3945, 
2653, and 1000 m [shown by horizontal lines in (A) and (C)]. GL refers to the GL predictions for the large-scale velocity Ulsc of vertical convection for H = 3945 m (shown by 
filled black squares). In (B), we also show a prediction for the horizontal velocity Vhc of the baroclinic flow along a tilted ice-water interface, assuming either a steep slope 
s = 10−2 (green stars) or a moderate slope s = 10−3 (tilted blue crosses).

 on F
ebruary 18, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Couston and Siegert, Sci. Adv. 2021; 7 : eabc3972     17 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 11

of Fc exceeding 50 mW/m2 (as is the case for a lake 20 m deep and 
under 1 km of ice), hence suggesting stable subglacial lakes, could 
be verified qualitatively through direct sampling and revised if mea-
surements demonstrate a dynamic environment.

Vertical convection in subglacial lakes is different from vertical 
convection in the canonical RB problem, mainly because the thermal 
expansion coefficient () of freshwater in subglacial lakes changes 
with pressure and temperature (Fig. 2), while it is typically constant 
in RB studies.  is negative at low pressures and low temperatures, 
such that a layer of stable density stratification exists at the top of 
subglacial lakes beneath a thin ice cover (H < H*). Here, we have used 
state-of-the-art scaling laws of RB convection and took into account 
the variability of the thermal expansion coefficient to make predic-
tions about the thickness of the stable layer near the ice ceiling (), 
the anomalous temperature of the well-mixed turbulent bulk (Tbulk), 
the characteristic velocity of plumes (U), the characteristic velocity 
of the large-scale circulation (Ulsc), and the characteristic distance 
between plumes (𝓁). For completeness, we have also used state-of-
the-art scaling laws of horizontal convection to make predictions 
about the typical horizontal velocity (Vhc) of the baroclinic flow that 
develops along a tilted ice-water interface.

The predictions for the different hydrodynamic variables are 
shown in Figs. 4 and 5. The key result of Fig. 4 is that subglacial 
lakes with a thin ice cover have an upper conductive layer several 
meters thick and a warm turbulent bulk (up to 1 K above freezing), 
whereas subglacial lakes with a thick ice cover have a thin conductive 
layer (centimeter scale) and a cold turbulent bulk beneath (0.01 K or 
less above freezing). The key result of Fig. 5 is that subglacial lakes 
deeper than 100 m experience substantial flow velocities, specifically 
U ≈ 4 mm/s and Ulsc ≈ 1 mm/s for a 1-km deep lake. These vertical 
velocities are larger than the horizontal velocity associated with the 
baroclinic flow along a tilted ice-water interface, even if the ice slope 
is as large as s = 10−2. The ratio Ulsc/Vhc is not much larger than 1 
for steep slopes. However, if we assume that the vertical velocity 
of the baroclinic flow scales like ∼Vhch/L with L ≫ h the horizontal 
length of the lake, then UlscL/(Vhch) ≫ 1. Thus, geothermal heating is 
a key factor—if not the dominant one—controlling hydrological con-
ditions in Antarctic subglacial lakes. We provide predictions of flow 
properties for five well-studied subglacial lakes in Table 1.

Our analysis assumes that vertical convection and horizontal convec-
tion are decoupled. This limitation comes from the fact that numerical 
simulations and laboratory experiments tackling both dynamics simul-
taneously (either in a realistic or idealized setting) are lacking. A handful 

of coarse numerical models have provided some insights into the large-
scale circulation of select subglacial lakes (9, 10, 14), but they rely on 
approximations (including parameterized turbulent processes) and are 
too expensive to run to allow the derivation of scaling laws of combined 
vertical and horizontal convection. There has been only one attempt 
so far at a laboratory analog of subglacial lake dynamics (29) in which 
the combined convective dynamics, dominated by rotation and taking 
the form of columnar vortex structures, was observed. The possibility 
to have vortices extending throughout the entire water column at full 
scale is an open question, which would be worth exploring.

Future work should also consider investigating the importance 
of the coupling dynamics between the lake circulation and melting/
freezing processes along the ice-water interface. For a flat ice ceiling, 
we may expect that melting and freezing patterns emerge where vertical 
convection drives upwelling and downwelling, respectively. Such 
patterns would be separated by a distance equal to the lake water 
depth, which is the characteristic length scale of the large-scale cir-
culation of vertical convection. For a tilted ice roof, state-of-the-art 
numerical models of subglacial lake dynamics typically predict that 
melting occurs where the ice is thickest (9, 10). However, vertical 
convection is not well represented in these models such that uncer-
tainties are large regarding melting patterns and the back reaction 
of melting and freezing processes on the underlying lake dynamics. 
For instance, melting induced by the baroclinic flow may intensify 
local vertical convection if the melt water is dense. The possibility 
that topographical features emerge because of variable melt rates 
along the ice-water interface and influence the long-term flow dy-
namics is another interesting point that has yet to be addressed.

Melting and freezing occur as a result of heterogeneous heat fluxes 
along the ice-water interface driven by the lake water circulation. 
Melting of the ice ceiling into the lake releases oxygen and minerals 
trapped in dust particulates, and sediments can be incorporated into 
the lake from upstream (30). An important question is: What happens 
to particulates released from the lake roof and how are they dispersed 
by the lake circulation? Particulates in subglacial lakes can most 
likely be considered as passive tracers because (i) their characteristic 
spherical radii, which are in the range 1 m < r < 100 m, are much 
smaller than the Kolmogorov length scale, which is  = h/Re3/4 ≈ 1 cm 
(20) for a typical water depth of h = 100 m; (ii) their density s is larger 
but of the same order as the density of water, i.e., s ≈ 30 with 0 ≈ 
999 kg/m3 the mean density of water; and (iii) particulates’ loading 
is expected to be dilute (13). In a quiescent fluid, sub-Kolmogorov 
particulates settle by gravity with speed W = 2gr2(s − 0)/9, 

Table 1. Properties and expected characteristics of five Antarctic subglacial lakes. The last column is the predicted maximum diameter of particulates 
maintained in suspension in the mixed bulk by the large-scale circulation of vertical convection (see Discussion section). Geophysical characteristics are 
obtained from (2, 9, 10, 16, 57, 58), while flow conditions are derived from scaling laws discussed in the Results section of the main text and described in detail in 
the sections, “Scaling laws for nonrotating vertical convection” and “Scaling laws for rotating horizontal convection,” in the Materials and Methods. Ice drop 
refers to the difference in ice thickness above the lake due to the mean slope of the ice-water interface. 

Ice 
thickness 

(m)
Ice drop 

(m)
Lake 

length 
(km)

Water 
depth (m)  (m) Tbulk (K) ℓ (m) U (mm/s) Ulsc 

(mm/s)
Vhc 

(mm/s)
2rmax 
(m)

CECs 2653 159 10.35 300 7.7 0.69 1.6 0.97 0.32 0.041 22

SPL 2857 30 10 32 4.7 0.42 0.8 0.10 0.04 0.010 7.8

Ellsworth 3400 300 10 156 0.077 0.0069 1.2 0.69 0.26 0.066 20

Vostok 3945 600 280 1067 0.066 0.0059 2.3 3.80 0.85 0.066 36

Concordia 4055 168 45 126 0.063 0.0056 1.0 0.83 0.31 0.044 22
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assuming a linear Stokes drag, with  = 0.0017 m2 s−1 the dynamic 
viscosity of water. In a convecting fluid, particulates can either settle 
with a similar velocity or stay suspended provided that the large-scale 
circulation is upward and has velocity Ulsc > W, where, here, Ulsc 
is estimated from the GL theory. We report in the last column of 
Table 1 twice the maximum radius rmax of particulates maintained 
in suspension by the large-scale flow, i.e., such that W(rmax) = Ulsc. 
We find 2rmax > 7.8 m in all cases (2rmax > 20 m for all lakes but 
SPL), which means that a broad range of particulates as observed in 
Vostok’s accreted ice, and qualifying as “fine silt,” may be suspended 
in all five lakes. For Lake Vostok, it may be noted that we predict a 
maximum radius (36 m) larger than that (23 m) reported by (13) 
(and for nonspherical particles, such as micas, the longest axis may 
be even larger). This difference arises because we calculate larger 
flow velocities in the lake. The flow velocities and suspended particu-
lates, which we predict for Lake Vostok, would certainly be observ-
able by direct measurements.

In addition to the large-scale circulation, subglacial lakes experi-
ence fast and turbulent motions that can lift sediments from the bed 
and oppose particulates’ settling by dispersing them. The mean vertical 
distribution of small particulates with low inertia can be approxi-
mated by an advection-diffusion equation. The steady-state distri-
bution in such a model is an upward-decaying exponential for the 
concentration of particulates n(z) ∼ e−zW/D in the bulk, which shows 
that increased turbulence increases the particulates’ concentration 
by raising the background effective diffusivity, which we denote by 
D, in the water column. The background effective diffusivity in the 
open ocean is well documented and typically ranges from D = 10−5 m2 s−1 
to D = 10−4 m2 s−1 (31). For a particulate with radius 4 m and set-
tling velocity W = 0.04 mm s−1, the corresponding e-folding decay 
length scale ranges from 25 cm to 2.5 m. The effective diffusivity in 
subglacial lakes is unknown but may be estimated from our predic-
tions for the characteristic velocity U and length scale 𝓁 of plumes as 
D ∼ U𝓁. For most subglacial lakes, we predict 0.1 mm/s < U < 1 cm/s 
and 𝓁 ∼ 1 m (Fig. 5), such that D ∼ U𝓁 ∼ 10−4 − 10−2 m2 s−1 and the 
e-folding decay length scale goes from 2.5 to 250 m. Whether an 
effective diffusivity based on the velocity and length scale of plumes 
is more applicable than an effective diffusivity typical of the open 
ocean is an open question. The effective diffusivity based on the prop-
erties of plumes is most likely an upper bound, since plumes are 
intermittent. Thus, we might expect that the mean concentration of 
particulates, i.e., uniform in space and time, is controlled by a weak 
diffusivity (∼10−4) and decays by at least one order of magnitude 
every 10 m. This means that future explorations limited to sampling 
in the bulk of the lake would have to rely on intermittent plumes 
and local upwelling of the large-scale circulation to bring particu-
lates upward. The mean number N of particulates in the water 
column, or turbidity, is key to fully assessing the habitability of sub-
glacial lakes, in addition to the concentration of oxygen molecules 
derived from the ice above (11). Our calculations demonstrate that 
mixing of subglacial lake water is highly likely and would encourage 
dispersion of oxygen-rich water throughout the water column and 
down to the lake floor sediments, where microbial life is likely to 
be most abundant. A comparison of predictions for N based on 
advection-diffusion models as well as inferred from particulates’ 
concentration in basal and accreted ice, as already done for Lake 
Vostok (32, 33), will be key to assessing the robustness of the hydro-
logical conditions predicted in this paper and of future particulate 
distribution models.

This paper provides predictions for flow velocities (0.01 to 1 cm/s), 
turbulent length scales (1 m), top stable layer thickness (0.01 to 10 m), 
temperature fluctuations (0.001 to 1 K), and the radius of particu-
lates suspended in the water column (1 to 40 m) due to vertical 
convection in Antarctic subglacial lakes. Those predictions will be 
verifiable by future explorations sampling lake waters and sediments 
using, e.g., conductivity, temperature, and depth (CTD) profilers, 
such as envisioned for Lake CECs and as was initially planned for 
Lake Ellsworth (34). To date, planning for the exploration of Lake 
Vostok has hinged on the analysis of accreted ice from the lake’s 
water in ice cores (32, 33). Our work shows that such an approach 
might prove inappropriate for lakes with ice covers thinner than 
H* = 3166 m, such as Lake CECs, since, in this case, a thick meter-
scale stable layer at the top of the water column prevents the upwelling 
of deep water and its freezing at the ice-water interface. It also means 
that sampling from Lake CECs should not take place at and close to 
the ice-water interface; instead, we predict essential measurements 
are required at least 1 m below the surface of the lake and likely along 
the entire water column.

We remark that having a stable density stratification at the top of 
the water column does not imply a completely quiescent environ-
ment adjacent to the ice ceiling (even if flat). Internal gravity waves 
(35) generated by penetrative convection (36) can propagate within 
the stable layer and affect particulate settling (37). How much energy 
is transferred from convective motions to internal waves depends 
on the ratio of the buoyancy frequency of the stable layer, fS, to the 
convective frequency, fc. For a subglacial lake, such as Lake CECs, 

we have ​​f​ S​​  = ​ √ 
___________

 − g ​ρ​0​ −1​ dρ / dz ​  ≅  1​ min−1 and fc ∼ Ulsc/h ∼ 0.1 day−1. 

Thus, fS ≫ fc, such that convection is unlikely to penetrate far into 
the stratified layer and internal wave generation is weak (although 
this prediction neglects the possible influence of horizontal con-
vection) (36). Nevertheless, it would be worth investigating whether 
internal waves in subglacial lakes can promote melting or freezing 
at the ice-water interface. Last, an analysis similar to the one devel-
oped in this work could be implemented for predicting dynamic 
conditions in icy moons in the solar system, where deep subsurface 
oceans exist and have attracted attention as potential habitats for 
extraterrestrial life (38).

MATERIALS AND METHODS
Equation of state
We use the TEOS-10 toolbox in MATLAB (19) to estimate values 
for (i) the density of water, e(T, p, S), as a function of in situ tem-
perature T, water pressure p, and absolute salinity S; (ii) the freezing 
temperature, ​​T​f​ 

e​(​p​ i​​, S)​, as a function of pi (the pressure at the ice-water 
interface) and S; and (iii) the temperature of maximum density, 
​​T​d​ e ​(p, S)​, as a function of p and S. Here, we restrict our attention to 
freshwater as opposed to seawater, i.e., we set S = 0, such that variables 
do not depend on S. We use superscript e to denote exact quantities, 
and we call the water pressure p the pressure for short, which is the 
absolute pressure minus atmospheric pressure pa = 10.1325 dbar. 
Note that p is the full water pressure, which includes pressure con-
tributions from the ice cover, such that p > pi, with pi the ice over-
burden pressure. The ice pressure is related to the ice thickness 
through pi = igH/104, with pi in decibars and H in meters, and we 
assume a mean ice density i = 917 kg/m3. Unless stated otherwise, 
all variables use SI units except temperature variables, which are in 
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degrees Celsius (°C) and pressure variables, which are in decibars 
(dbar), since °C and dbar are standard units in physical oceanography.

For simplicity, we derive explicit, approximate expressions for , 
Tf, and Td from the TEOS-10 exact values. The freezing temperature 
and the temperature of maximum density can be well approximated 
by quadratic polynomials in pi and p, respectively. For 0 < p, pi < 
104 dbar, we find that the best-fit polynomials (with p, pi in dbar)

	​​ T​ f​​  =  4.7184 × ​10​​ −3​ − 7.4584 × ​10​​ −4​ ​p​ i​​ − 1.4999 × ​10​​ −8​ ​p​i​ 
2​​	 (2)

	​​ T​ d​​  =  3.9795 − 2.0059 × ​10​​ −3​ p − 6.2511 × ​10​​ −8​ ​p​​ 2​​	 (3)

approximate ​​T​f​ 
e​​ and ​​T​d​ e ​​ to within 0.002 K. We approximate the density 

of water by a quadratic bivariate polynomial, which is maximum at 
T = Td(p). For 0 < p < 104 dbar and Tf < T < Tf + 15 K, we find that 
the best-fit bivariate polynomial (with p in dbar)

	​   = ​ ​ 0​​ + ​​ 1​​(p ) +  C(p ) ​[T − ​T​ d​​(p ) ]​​ 2​​	 (4)

with

	​​
​​ 0​​  =  9.9999 × ​10​​ 2​, ​​ 1​​  =  4.9195 × ​10​​ −3​ p − 1.4372 × ​10​​ −8​ ​p​​ 2​

​     
C  =  − 7.0785 × ​10​​ −3​ + 1.8217 × ​10​​ −7​ p + 4.2679 × ​10​​ −12​ ​p​​ 2 ​

  ​​	(5)

approximates e to within less than 0.01% relative error. This implies 
density errors less than 0.1 kg/m3, which is an order of magnitude 
less than density variations expected with temperature alone. From 
Eq. 4, we can derive the approximate thermal expansion coefficient

	​   =  −  ​ 1 ─ ​​ 0​​ ​ ​​ 
∂  ─ ∂ T ​ ∣​ 

p
​​ =  −  ​ 

2C(p ) [T − ​T​ d​​(p ) ]
  ─────────── ​​ 0​​  ​​	 (6)

which is shown in Fig. 2 and changes sign at T = Td > Tf for pres-
sures lower than p* = 2848 dbar.

We note that the nonmonotonic, anomalous behavior of water 
density at low pressure is well known for freshwater lakes at atmo-
spheric pressure (39) and disappears progressively with increasing 
salt concentration. With typical salinities of S ≈ 35 g/kg, the density of 
Earth’s oceans decreases monotonically with increasing temperatures.

Evolution equations
The evolution equations for subglacial lakes are the Navier-Stokes 
equations in the Boussinesq approximation. Here, we include com-
pressibility effects in the energy equation because we are interested 
in the calculation of the (small) critical heat flux at the onset of con-
vection, but compressibility effects can otherwise be neglected when 
considering the (large) geothermal heat flux. In a Cartesian coordi-
nates system (x, y, and z) centred on a lake’s top boundary, the equa-
tions for the velocity vector u, pressure p, density , and temperature 
T (in °C) read (40–42)

	​​ ​ 0​​ ​ Du ─ Dt ​ + ​​ 0​​ f ​e​ z​​ × u  =  − ∇ p +  ​∇​​ 2​ u − g ​e​ z​​​	 (7)

	​ ∇ ⋅ u  =  0​	 (8)

	​​ ​ 0​​ ​c​ p​​ ​ DT ─ Dt ​ − (T + ​T​ 0​​ ) ​ 
Dp

 ─ Dt ​  =  k ​∇​​ 2​ T​	 (9)

where f is the Coriolis frequency,  is the dynamic viscosity, k is the 
thermal conductivity, cp is the isobaric specific heat capacity, g is 
the gravitational acceleration, and T0 = 273.15 K; D/Dt ≡ ∂t + u · ∇ 
denotes material derivative, with ∂t the time derivative and ∇ is the 
gradient operator. Equation 7 is the momentum equation in the 
Boussinesq approximation; Eq. 8 is mass conservation for an in-
compressible fluid; and Eq. 9 is the energy equation including pres-
sure effects, which are relevant in the limit of small temperature 
variations. Note that p is in pascal (Pa) in the above equations but is 
converted to dbar by dividing by 104 when used in Eqs. 3 to 6.

We consider the Coriolis frequency at 80°S, i.e., we take f = − 1.4363 × 
10−4 rad/s; we use  = 1.7 × 10−3 kg m−1 s−1 and k = 0.56 W m−1 K−1, 
which are the dynamic viscosity and thermal conductivity values at 
reference pressure p = 0 dbar and temperature T = 0.01°C; we use cp 
= 4.2174 × 103 J kg−1 K−1; and we recall that g = 9.81 m/s2 at and near 
Earth’s surface. Note that  and k may be expected to vary with p 
and T. However, to the best of our knowledge, only few studies have 
investigated their dependence, in particular in the cold-temperature 
and high-pressure regimes, and reported little variations for the pres-
sure and temperature conditions of our interest such that we take 
them constants (43, 44). We denote by  = /0 = 1.7 × 10−6 m2/s the 
constant kinematic viscosity and by  = k/0cp = 1.3 × 10−7 m2/s the 
constant thermal diffusivity.

Subglacial lake water must be at the freezing temperature at the 
upper lake boundary, i.e., T = Tf(pi) at z = 0 m, while at the base of 
the lake, it is the heat flux that is enforced, i.e., k∂zT = − F at z = − h, 
with F > 0 the (geothermal) heat flux and h > 0 the lake depth; also, 
p = pi at z = 0. Equations 7 to 9, along with the equation of state 
(Eq. 4), have the stationary base-state solution (denoted by overbars)

	​​  ̄  u​  =  0, ​ ̄  T ​  = ​ T​ f​​(​p​ i​​ ) −  ​ zF ─ k ​, ​d​ z​​​ ̄  p ​  =  − (​ ̄  T ​, ​ ̄  p ​ ) g​	 (10)

i.e., the temperature increases linearly with depth, and the pressure 
is hydrostatic. For simplicity, we assume  ≈ 0 in the hydrostatic 
base-state equation, such that ​​   p ​  = ​ p​ i​​ − ​​ 0​​ gz​ at leading order (assum-
ing a pressure variable expressed in Pascals).

Static stability of an ideal compressible fluid
The criterion for an ideal (dissipationless) compressible fluid with 
hydrostatic base-state pressure p = pi − 0gz (overbar dropped) to be 
locally (statically) stable is (39, 45)

	​​​​  1 ─ ​​ 0​​ ​ ​ 
∂  ─ ∂ T ​∣​ 

p
​​​ ds ─ dz ​ = −​(​​ ​ 

​c​ p​​
 ─ T + ​T​ 0​​ ​ ​ 

dT ─ dz ​ − ​  ─ ​​ 0​​ ​ ​ 
dp

 ─ dz ​​)​​ = ​ 
−  ​c​ p​​

 ─ T + ​T​ 0​​ ​​(​​ ​ dT ─ dz ​ − ​ ​dT​ ad​​ ─ dz ​​ )​​ < 0​​

(11)

where s is the entropy, T0 = 273.15 K (we recall that we express tem-
perature variables in °C), and we approximate  ≈ 0 at leading order. 
dTad/dz is known as the adiabatic temperature gradient and reads

	​​  ​dT​ ad​​ ─ dz  ​  = ​  
− (T + ​T​ 0​​ ) g

 ─ ​c​ p​​  ​​	 (12)

such that dTad/dz > 0 if  < 0. Here, heating is provided from the 
bottom of the lake such that we always have dT/dz < 0. As a result, 
when  < 0, equation 11 is always satisfied and the lake is stable. For 
 > 0, equation 11 is not satisfied, and the lake is unstable to vertical 
convection if dT/dz < dTad/dz < 0, i.e., if the heat flux exceeds (in ab-
solute value) the adiabatic heat flux. Thus, the two conditions for 
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subglacial lakes experiencing geothermal heating (i.e., such that 
dT/dz < 0) to be locally unstable are

	​   >  0​	 (13)

	​​  dT ─ dz ​  < ​  ​dT​ ad​​ ─ dz  ​​	 (14)

Note that both  and dTad/dz are functions of z when considering 
the base state of a subglacial lake heated from below. Specifically,  
increases with depth, while dTad/dz decreases with depth (note that 
it is negative and so increases in absolute value), such that equation 
13 (resp. Eq. 14) is more readily satisfied at the bottom (resp. top) of 
the lake. As a result, it is possible to find cases where a subglacial 
lake is globally unstable but remains statically stable in some places. 
When this happens, convection is expected to occur in subregions 
of the water column where equations 13 and 14 are satisfied.

Equations 13 and 14 are necessary but not sufficient conditions 
for flow instability. The heat flux must sustain a temperature gradi-
ent with a buoyancy anomaly that is also large enough to overcome 
viscosity and diffusivity effects. The calculation of the exact, mini-
mum critical heat flux leading to convection in subglacial lakes, 
with dissipation effects taken into account, is the result of the stability 
analysis described in the next section.

Linear stability analysis
We study the stability of the base-state solution (Eq. 10) by investi-
gating how small initial perturbations evolve over time. We expand 
the variables (generically represented by X) as

	​ X  = ​  ̄  X ​ + X′​	 (15)

with primes denoting the perturbed variables. Substituting expanded 
variables in Eqs. 7 to 9, using Eq. 4, and linearizing, we obtain the 
perturbation equations

	​​ ​ 0​​ ​ ∂ u′ ─ ∂ t  ​ + ​​ 0​​ f ​e​ z​​ × u′= − ∇ p′+  ​∇​​ 2​ u′+ ​​ 0​​​ ̄  ​T′g ​e​ z​​ − ​​   ​​ p​​ p′g ​e​ z ​​​	(16)

	​ ∇ ⋅ u′= 0​	 (17)

	​​ ​ 0​​ ​c​ p​​(​∂​ t​​ T′− w′F / k ) − ​   ​(​   T ​ + ​T​ 0​​ ) (​∂​ t​​ p′− w′​​ 0​​ g ) = k ​∇​​ 2​ T′​	 (18)

where ​​​   ​​ p​​​ is related to the small compressibility of the background 
state and is derived from Eq. 4 as

	​​ ​   ​​ p​​  =  [​​ 11​​ + 2 ​​ 12​​​ ̄  p ​ + ​(​   T ​ − ​​   T ​​ d​​)​​ 2​(​C​ 1​​ + 2 ​C​ 2​​​ ̄  p ​ ) +  2​ ̄  C ​(​ ̄  T ​ − ​​   T ​​ d​​ )  
                        (− ​T​ d1​​ − 2 ​T​ d2​​​ ̄  p ​ ) ]​

(19)

with subscripts 1,2 denoting the linear and leading coefficients of 
the polynomial expressions for 1, Td, and C, e.g., Td1 = − 2.0059 × 
10−3 K/dbar (Eqs. 3 and 5).

Since the perturbation equations do not depend explicitly on x, 
y, and t, the stability criterion can be inferred from the temporal 
evolution of plane waves of the form

	​ X′(x, y, z, t ) = ​ ̂  X ​(z ) ​e​​ t+i(​k​ x​​x+​k​ y​​y)​ + c . c . ,​	 (20)

with  as the growth rate, kx and ky as the wave numbers in the x and 
y directions, and c.c. as the complex conjugate. Assuming horizontal 
isotropy, i.e., kx = ky, and substituting variables of the form given by Eq. 20 
in Eqs. 16 to 18, we derive a one-dimensional linear eigenvalue problem 
for the growth rate , which we solve numerically with the open-
source pseudospectral Dedalus code and the Eigentools package (46). 
We expand variables in the z direction using Chebyshev modes and 
compute the largest growth rate (k⊥, F) as a function of wave number 
​​k​ ⊥​​  = ​ √ 

_
 ​k​x​ 2​ + ​k​y​ 2​ ​​ and heat flux F for a range of input parameters (pi, h). 

The critical minimum heat flux Fc that destabilizes the base state is 
the minimum of F for which there exists a wave number k⊥ such 
that (k⊥, F) > 0. We report Fc in Fig. 3A. Note that the eigenvalue 
problem becomes challenging at large h, such that we limit the cal-
culations to h ≤ 20 m. We extrapolate to larger h using scaling laws 
that are either asymptotically valid or conservative, i.e., such that 
they may overestimate Fc. We describe the extrapolation procedure 
in detail in the Supplementary Materials.

Scaling laws for nonrotating vertical convection
We show in the Supplementary Materials that vertical convection in 
Antarctic subglacial lakes is better represented by nonrotating con-
vection than geostrophic convection. As a result, we use scaling laws 
obtained in the idealized limit of nonrotating turbulent convection 
to make predictions about , Tbulk, U, and 𝓁 for subglacial lakes sub-
ject to a geothermal flux F = 50 mW/m2.

First, we remark that the conductive layer at the top of the lake 
includes the turbulent boundary layer and a stable layer where  < 0 
for pi < p*. In other words, we write  = t + S with t as the thick-
ness of the turbulent boundary layer and S as the thickness of the 
stable layer. We obtain S as the positive solution of the equation 
Td(pi + 0gS/104) = Tf(pi) + SF/k, i.e., S is found as the location 
z = − S where the temperature of maximum density equals the tem-
perature of the conductive base-state profile. The temperature at the base 
of the stable layer is correspondingly TS = Tf + SF/k. The definition of 
the control parameter RaF (Eq. 1) of subglacial lakes includes the effec-
tive water depth heff and the characteristic thermal expansion coefficient 
eff. The effective water depth is simply the region of the water column 
where convection occurs ( > 0), such that we assume heff = h − S. 
Estimating eff inside a convective lake is difficult since the vertical pro-
files of temperature and  are unknown. Here, for simplicity, we use 
eff = (pi + 0gh/104, TS), i.e., we take  on the bottom boundary as the 
effective thermal expansion coefficient but assume that the tempera-
ture of the lake does not exceed TS. This assumption is likely to under-
estimate eff but is the best conservative assumption possible without 
prior knowledge of the vertical temperature profile.

We use scaling laws for the Nusselt number Nu and the Reynolds 
number Re as functions of Ra inferred from recent state-of-the-art 
numerical simulations (25, 47) to predict t, Tbulk, U, and 𝓁. We re-
late our flux-based Rayleigh number RaF to Ra following previous 
works (48, 49), i.e., such that

	​​ Ra​ F​​  =  RaNu​	 (21)

The scaling laws for Nu in (47) and Re in (25) are

	​ Nu  =  0.16 ​Ra​​ 2/7​​	 (22)

	​ Re  =  0.18 ​​(​​Ra − ​ Ra ─ Nu ​​)​​​​ 
1/2

​ ​Pr​​ −1​​	 (23)
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Combining Eq. 1 with Eqs.21 and 22, we can estimate Ra = 
(RaF/0.16)7/9 and predict t = 0.5heff/Nu = 0.5heff/(0.16Ra2/7), such that

	​   = ​   0.5 ​h​ eff​​ ─ 
0.16 ​Ra​​ 2/7​

 ​ + ​​ S​​​	 (24)

Assuming a conductive temperature profile in the stable and tur-
bulent boundary layers, we then find

	​​ T​ bulk​​  = ​  F ─ k  ​​	 (25)

The turbulent flow velocity is inferred from Re = Uheff/ and 
Eqs. 22 and 23 as

	​ U  = ​  0.18 ​√ 
_____________

  Ra − 6.25 ​Ra​​ 5/7​ ​  ─────────────  Pr ​h​ eff​​
  ​​	 (26)

The estimate of the characteristic turbulent length scale, or dis-
tance between plumes, is finally obtained from equation (6.3) 
of reference (25) as

	​ ℓ  =  0.8 ​√ 
_

 RePr ​ ​(3.125 ​Ra​​ −2/7​)​​ 
3/2

​ ​h​ eff​​​	 (27)

We provide a second set of predictions for t, Tbulk, and Ulsc based 
on scaling laws inferred from the GL unifying theory of RB convec-
tion (26). We use subscript lsc for the velocity as the GL theory 
applies to the velocity of the large-scale circulation rather than the 
velocity of the plumes, as is the case in (25). The procedure for de-
riving t, Tbulk, and Ulsc from the GL theory is the same as above, i.e., 
we combine Eqs. 1 and 21 with scaling laws for Nu and Re to derive 
t = 0.5heff/Nu, Tbulk = F/k (S is unchanged) and Ulsc = Re/heff. 
The scaling laws for Nu and Re combine the expressions derived in 
subregions Iu, IIIu, and IVu of the GL theory [see (26) and the Sup-
plementary Materials].

Scaling laws for rotating horizontal convection
The ice-water interface of subglacial lakes is often sloped such that 
a baroclinic horizontal convection flow develops along the ice-water 
interface. Here, we provide approximate estimates of the horizontal 
velocity of the baroclinic flow to compare the dynamical importance 
of vertical convection to horizontal convection. Besides the Prandtl 
number Pr, the control parameters for horizontal convection are the 
Ekman number EkL and the Rayleigh number RaL based on the lake’s 
horizontal length L (27, 50), i.e.

	​​ Ek​ L​​  = ​    ─ 
   ∣f∣ ​L​​ 2    ​

 ​, ​Ra​ L​​  = ​  
g ​​ i​​ ​​ i​​ ​L​​ 3​

 ─   ​​	 (28)

where i is the effective thermal expansion coefficient near the ice 
ceiling, and i is the temperature difference along the tilted ice-
water interface due to the changing freezing temperature Tf(pi) with 
the ice pressure (Eq. 2). The ice pressure drop along the ice-water 
interface is pi = sLig/104 dbar, with s the slope and L in meters, 
such that
	​​ ​ i​​  = ​ T​ f​​(​p​ i​​ ) − ​T​ f​​(​p​ i​​ + ​​ ​p​ i​​​​ ) >  0​	 (29)

For i, we take the maximum of  along the ice-water interface, i.e.

	​​ ​ i​​  =  max [ ∣(​p​ i​​, ​T​ f​​(​p​ i​​ ) ) ∣, ∣(​p​ i​​ + ​​ ​p​ i​​​​, ​T​ f​​(​p​ i​​ + ​​ ​p​ i​​​​ ) ) ∣]​	 (30)

We show in the Supplementary Materials that horizontal con-
vection in Antarctic subglacial lakes is constrained by rotation. Thus, 
here we use a recent scaling law for the Reynolds number Rehc of 
rotation-constrained horizontal convection (27) to estimate the char-
acteristic velocity of the large-scale horizontal flow Vhc. For simplicity, 
we assume a fixed aspect ratio of L/h = 250, i.e., the horizontal length 
is 250 times the water depth, even though subglacial lakes have vari-
able aspect ratio. We note that a ratio of 250 is on the higher end of 
observed aspect ratios (see Table 1), such that our estimates of the 
lakes’ lengths may be closer to an upper than a lower bound. The 
scaling law for rotating horizontal convection inferred from (27) is

	​​ Re​ hc​​  = ​  ​(​Ra​ L​​ ​Ek​ L​​)​​ 2/3​ ─ Pr  ​​	 (31)

such that

	​​ V​ hc​​  = ​   ​Re​ hc​​ ─ L  ​​	 (32)

Note that Vhc ∼ L1/3, such that estimates for the horizontal veloc-
ity would be only weakly affected (weakly decreasing) by decreasing 
the aspect ratio.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/8/eabc3972/DC1
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