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Abstract 49 

Understanding vegetation dynamics is very challenging because of the multitude of contributing processes at 50 
widely different spatial and temporal scales. In this Perspective we propose that understanding of vegetation 51 
dynamics can be improved, permitting better predictions, based on organizing principles that constrain plant 52 
and ecosystem behaviour: natural selection, self-organization, and entropy maximization. Although these 53 
ideas are increasingly used, a limited common understanding of their theoretical basis has prevented their full 54 
potential to be realized. We explain the power of natural selection-based optimality to predict photosynthesis 55 
and carbon allocation responses to multiple environmental drivers, and how individual plasticity leads to the 56 
predictable self-organization of forest canopies. We show how models of natural selection acting on a few key 57 
traits can generate realistic plant communities, and how entropy maximization can distinguish between 58 
stochastic and deterministic drivers of vegetation patterns. We present directions for how these principles can 59 
be combined to improve the capacity of vegetation models to explain and predict the complex responses to 60 
environmental changes, resting on strengthened theoretical foundations. 61 

Introduction – the challenge of vegetation complexity 62 

Vegetation dynamics involves processes operating at widely different spatial and temporal scales, from 63 
stomatal opening and closing (minutes to days, at leaf level) to biome shifts (decades to centuries, across 64 
entire continents). Tremendous research efforts have been devoted to understanding and predicting how 65 
plant processes and functional traits at the level of individuals combine to determine the structure, function 66 
and dynamics of vegetation on larger scales. Because no single scientific discipline or theory deals with all 67 
processes, dynamic vegetation models (DVMs) have been developed that combine elements from several 68 
areas of research on plants and ecosystems – plant biogeography, biogeochemistry, plant physiology, forest 69 
ecology and micrometeorology. The most well-known DVMs, dynamic global vegetation models (DGVMs), 70 
have found a wide field of application including: assessments of land-atmosphere carbon, water and trace gas 71 
exchanges; water resources; impacts of environmental change on plants and ecosystems; land management; 72 
and feedbacks from vegetation changes to regional and global climates (Prentice and Cowling 2013, Fisher et 73 
al. 2014). DVMs have also been applied on local scales for testing of ecological hypotheses, and to practical 74 
questions in forest management and agriculture. All DVMs have in common that they are mechanistic, i.e. 75 
based on the assumption of universally valid mechanisms (processes), which may enable them to make 76 
predictions under conditions outside the range of observations.  77 

Over time, DVMs became more complex as their developers strove to represent an ever-greater number of 78 
processes. However, this additional complexity has rendered models dependent on the provision of values of 79 
an ever-increasing number of parameters, many of which are poorly constrained by observations. This 80 
tendency has created a “complexity trap”, whereby apparent increases in realism are offset by decreases in 81 
transparency, robustness and predictive power (Prentice et al. 2015). In the last decade some important 82 
limitations of current DVMs have become apparent through strongly diverging predictions of C fluxes and 83 
vegetation cover among state-of-the-art DGVMs that have stubbornly resisted resolution (Prentice et al. 2015, 84 
Whitley et al. 2017, Pugh et al. 2018). Underlying reasons for these divergences include contrasting 85 
representations of N uptake, water responses, and mortality (Walker et al. 2015, Huang et al. 2016, Thurner 86 
et al. 2017). For example, DVMs have underestimated the ability of plants to enhance N uptake through 87 
increased below-ground C allocation and at the same time overestimate changes in leaf N (Medlyn et al. 2015), 88 
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resulting in overly strong projected nutrient limitations of future C sequestration (Sulman et al. 2019). C 89 
allocation is a key uncertainty in current DVMs (Montané et al. 2017, Xia et al. 2017) which is rooted in a lack 90 
of consensus as to how plants and vegetation acclimate to combined water, C and N resource variations.  91 

Plant diversity is another key challenge. The effects of diversity have recently been evaluated in DVMs using 92 
observed plant trait variation as an input (Fyllas et al. 2014, Sakschewski et al. 2016) and some have even 93 
addressed the generation and dynamics of plant diversity in some ecosystems (Langan et al. 2017, Gaillard et 94 
al. 2018). However, it remains a general challenge to predict how diversity is maintained and may change over 95 
time. Including diversity in DVMs without sufficient understanding of its mechanistic basis may further 96 
aggravate the complexity trap.  97 

In summary, substantial progress has been made in understanding individual plant processes, which is used to 98 
continuously enhance existing DVMs. While this improves predictions of current vegetation, the remaining 99 
problem is to reliably predict dynamics in response to environmental changes. Among the wide range of 100 
empirical and technical challenges linked to this problem here we focus on a particular but fundamental 101 
aspect: controlling principles of the dynamics of plants and communities. We argue that general organizing 102 
principles – based on natural selection and optimality, self-organization, and entropy maximization – can 103 
facilitate the development of more reliable vegetation models. These ideas are not new but have been 104 
explored primarily in small-scale and theoretical studies, and some are already in use in some prognostic 105 
DVMs. However, their full potential for explaining vegetation dynamics has not yet been realized due to limited 106 
common understanding of these concepts among empiricists, theoreticians and applied modellers. Here we 107 
aim to clarify the theoretical basis, and the potential and limitations, of general organizing principles for 108 
improving our understanding and ability to predict vegetation dynamics.  109 

The concept of organizing principles 110 

An organizing principle determines or constrains how components of a system, such as different plants in an 111 
ecosystem or different organs of a plant, behave together. In mathematical terms, it is an additional equation 112 
added to a system of equations, which allows one or more previously unknown variables in the system to be 113 
determined, thus reducing the total uncertainty. Here we highlight three key principles that are valuable for 114 
understanding the complexity of organisms and ecosystems and, we argue, will help vegetation models to 115 
escape the complexity trap. The first is natural selection, operating primarily on individuals (genotypes) and 116 
their traits but also on community composition. The second is self-organization, whereby the interactions of 117 
system components (including individual plants) can lead to a predictable system structure. The third is 118 
entropy maximization, a statistical selection principle which expresses the aggregated outcome of a large 119 
number of underlying stochastic processes subject to a small number of system-level constraints.  120 

Natural selection – the “missing law” for vegetation modelling 121 

All persisting plant traits and behaviours must have passed the filter of natural selection. Acting on individuals 122 
of a species, natural selection eliminates unfit or uncompetitive traits and trait combinations rapidly and 123 
effectively. Natural selection is thus the reason why species do not possess arbitrary combinations of 124 
important traits. Acting on differences between species, natural selection is a driver of population and 125 
community dynamics. It generates strong relationships among traits, and correlations between traits and 126 
environment, that are not mandated by physical laws alone. Therefore – and despite the underlying complex 127 
interactions among organisms, communities, and ecosystems – natural selection is a key source of 128 
predictability in biological systems. This simple and powerful idea allows models to predict more and require 129 
less input information (fewer uncertain parameters), which ultimately can improve both their predictive 130 
power, and our scientific understanding of the patterns they describe. However, the operational application 131 
of natural selection-based concepts to vegetation modelling is non-trivial, for several reasons.  132 

Eco-evolutionary optimality shapes individual plants 133 

Given that the evolution of traits and community composition are subject to natural selection for increased 134 
fitness, the resulting trait combinations may be predictable as those maximising fitness. Optimality approaches 135 
based on this principle can be seen as a shortcut to predicting evolved traits and how they vary with 136 
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environmental conditions (i.e. functional biogeography and phenotypic plasticity), without explicitly 137 
simulating the underlying evolutionary dynamics (Optimality here refers to eco-evolutionary optimality of the 138 
plants and not the method of optimization used to estimate model parameters). Optimality does not 139 
necessarily imply that there is an overall control mechanism (e.g. hormones) but may also result from bottom 140 
up effects, such as optimal allocation resulting from local sink and source dynamics in each organ (Thornley 141 
1998) or coordination of processes (Chen and Reynolds 1997). Regardless of the underlying mechanisms, 142 
optimality hypotheses address the outcome of these mechanisms. 143 

Optimality approaches often make use of economic concepts (Bloom 1986), expressing the fitness proxy and 144 
the traits optimized in terms of costs and benefits in a common currency – usually carbon (C) (fig. 1, 145 
Supplementary table 1). A key advantage of the optimality approach is that the fitness function integrates the 146 
effect of all processes and does not have to be calibrated for different conditions or species. This makes it 147 
suited to address complex and highly variable plant properties, such as C allocation and the pressing question 148 
how plants will respond to continued increases in atmospheric CO2 concentration in the presence of other 149 
resource limitations. Based on the optimality hypothesis that plants minimize the combined C costs of 150 
maintaining photosynthetic capacity and supporting water transport, a photosynthesis model explains a large 151 
fraction of the global variation among biomes in leaf CO2 uptake properties in response to multiple 152 
environmental factors using only two parameters that are common to all C3 plants (Wang et al. 2017, 153 
Bloomfield et al. 2019) (Fig. 2). An optimality hypothesis stating that trees maximize net biomass increment 154 
and reproduction explains the interacting effects of elevated CO2 and nitrogen (N) availability on tree growth 155 
and allocation, as observed in Free Air Carbon Dioxide Enrichment (FACE) experiments (Franklin 2007, Franklin 156 
et al. 2009) (Fig. 1). Maximization of a related fitness proxy also explained water use responses to elevated 157 
CO2 in FACE experiments (Schymanski et al. 2015).  158 

 159 
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160
Figure 1. Optimality model of CO2 and N availability effects in free air CO2 enrichment (FACE) experiments. (a) The 161
hypothesis is that trees optimize canopy N (vertical dotted lines) by maximizing net C gain, G = GPP – Costs, where costs 162
are carbon costs for maintaining the canopy (respiration + leaf and root turnover). Elevated CO2 increases GPP (subscript 163
e) compared to ambient CO2 (subscript a), causing a potential large increase in optimal canopy N and net C gain (Geh), 164
which is not realized due to a simultaneous increase in C costs per N uptake (due to soil N limitation), resulting in smaller 165
net effect (Ge). (b) Modelled versus measured CO2 effects on productivity (GPP and NPP) and leaf area index (LAI) in forest 166
FACE experiments with sweetgum (ORNL), loblolly pine (Duke), poplar (Pop), and aspen. Adapted from (Franklin 2007)167
and (Franklin et al. 2009).168

169

170
Figure 2. CO2 uptake parameters predicted by optimality principle. Using uniform parameters in conjunction with a cost-171
minimizing optimality hypothesis, a theoretical model predicts the ratio of leaf-internal to ambient CO2 (ci/ca) – a key index 172
of leaf-level C and water exchange – across the world’s biomes (Wang et al. 2017). The inputs are growing-season 173
temperature, vapour pressure deficit and elevation. Observations (based on leaf δ13C data) are compared with model 174
predictions. Means and standard deviations are indicated for each biome, showing that although there is considerable 175
unexplained variation among individual plants (grey points, r2=0.26), biome means are well predicted by the model 176
(r2=0.73). The continuous line is the regression line (constrained through the origin); the dashed line is the 1:1 line. 177

178
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Despite the power of eco-evolutionary optimality approaches to explain a wide range of observed phenomena 179 
(Supplementary table 1), only a few have been applied in prognostic DVMs (e.g. DGVMs), notably optimal 180 
stomatal conductance (De Kauwe et al. 2015, Xu et al. 2016, Eller et al. 2018, Kennedy et al. 2019) and also 181 
optimal leaf level N allocation (Xu et al. 2012). Optimal C allocation has also been addressed in a prognostic 182 
DVM, however not in terms of optimal acclimation (as in Fig. 1) but as an outcome of competition between 183 
different plant types, each with a fixed allocation (Weng et al. 2015). It is not straight forward to introduce 184 
optimal allocation in existing DGVMs because it requires a rethinking of the structure, from a typically 185 
sequential C flux from one compartment to the next to an inter-linked regulation of leaves, stem, and roots 186 
based on the costs and benefits of all limiting resources. However, in addition to this real technical challenge 187 
some conceptual confusion may have hampered the application of optimality in prognostic DVMs. 188 

A potential argument against the optimality approach is that in a variable and fluctuating environment 189 
optimality may never be reached (Fisher et al. 2015). This however rather calls for a careful analysis of the 190 
appropriate temporal and spatial scale of the fitness proxies and the environmental variables and vegetation 191 
responses analysed (Schymanski et al. 2015). At the leaf scale, the cost efficiency of leaf photosynthesis in 192 
terms of water and C use has been used as a fitness proxy to predict regulation of stomatal conductance 193 
(Medlyn et al. 2011, Manzoni et al. 2013, Dewar et al. 2018). At the whole plant scale, maximization of fitness 194 
proxies related to whole plant production has been used to predict CO2 uptake, root distributions (Schymanski 195 
et al. 2009, Guswa 2010, Yang et al. 2016), C allocation (Franklin et al. 2012), and tree height (King 1990). By 196 
also including survival in the fitness proxy, an optimality model explained broad patterns in such whole-life 197 
dependent strategies and traits, such as observed spectra of growth rate, mortality, wood density, and drought 198 
response in trees (Franklin et al. 2014b). Hypothetically, and in contrast to previous attempts to separate 199 
ontogeny and “true” plasticity (McConnaughay and Coleman 1999), a whole plant fitness proxy could also be 200 
used to model ontogeny of traits as a form of plasticity, based on the effects of increasing size on fitness costs 201 
and benefits.  202 

Another source of confusion is a perceived conflict between optimality and the evolutionary stable strategy 203 
(ESS, the strategy, or trait values, emerging from competition among alternative strategies) (Hikosaka and 204 
Anten 2012, Fisher et al. 2015). Based on game theory, it may be argued that evolution does not result in 205 
optimal solutions, because the winning strategy in competition with others (the ESS) is not the same as the 206 
optimal strategy in the absence of competitors. However, the conflict disappears once it is recognized that, (i) 207 
optimality is defined at the individual level, and (ii) if competition plays a role for the trait in question, then its 208 
impact has to be included in the definition of the environment, which otherwise would be incompletely 209 
defined. Effects of competition can be included in the fitness proxy, e.g. by maximizing height growth as the 210 
winning strategy under competition for light (Valentine and Mäkelä 2012), or by explicitly modelling the 211 
competition for light and nutrients (King 1990, Franklin et al. 2012), water (Farrior et al. 2013), or mycorrhizal 212 
N supply (Franklin et al. 2014a). Competition can have large effects on optimal behaviour. For example, 213 
competition for water reduces the benefits of saving water and leads to different optimal stomatal behaviour 214 
than non-competitive optimality (Wolf et al. 2016).   215 

An important – yet still largely ignored – question is to what extent trait variation along environmental 216 
gradients is due to phenotypic plasticity (individual acclimation) or genotypic differentiation. Traits differ in 217 
this respect (Meng et al. 2015, Dong et al. 2017, Yang et al. 2018) and the difference is critical for the time 218 
scale of changes, as plastic acclimation of traits is fast compared to mean-trait changes due to shifts in 219 
community composition. Further, although often clumped together in empirical studies, plasticity is not 220 
equivalent to intraspecific variation, because the latter may also include non-plastic variation. While plastic 221 
traits acclimate to the current environment, non-plastic variation has been shaped by the whole evolutionary 222 
history, which is significantly more challenging to represent and makes it precarious to predict non-plastic 223 
traits from the plant’s current environment. However, some inter-relationships between different traits 224 
(rather than trait versus environment) may be more predictable across variable environments, as indicated by 225 
trait economics spectra (Wright et al. 2004, Reich 2014, Díaz et al. 2016). These relationships can not only be 226 
used to reduce the number of independent traits (degrees of freedom) in models, but also to test optimality 227 
hypotheses, which can explain the mechanisms underlying the trait relationships (McMurtrie and Dewar 2011, 228 
Maire et al. 2013) – and thus be used to predict how the trait relationships may vary across environments, in 229 
time as well as in space.  230 
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Fitness-based optimality is well-defined only at individual or genotype level and predict a single strategy or 231 
plant type for a given environment. However, although real communities usually consist of many coexisting 232 
types, the single optimal strategy may be a good first-order approximation of the dominant plant type in a 233 
given environment. For example, a model that postulates that plants optimize the proportions of leaf, stem 234 
and root growth to compete with neighbours for N and C (resulting in an ESS) successfully reproduces observed 235 
global distributions of primary production and the allocation of N and C to leaves, stems and roots (McNickle 236 
et al. 2016). This finding suggests that maximization of individual competitiveness for resources, is a useful 237 
optimality principle to explain the dominant vegetation type and traits in a given environment. Moreover, it 238 
may be possible to use an optimality approach to address diversity by generating a range of equally or similarly 239 
optimal strategies (Marks 2007). A key advantage of the optimality compared to alternative empirical 240 
community-mean-traits approaches, e.g. (van Bodegom et al. 2014), is that the fitness function integrates and 241 
thereby accounts for covariation among traits (Laughlin and Messier 2015, Clark 2016). 242 

In summary, the theory of eco-evolutionary optimality is a powerful approach to predict plant traits as a 243 
function of environmental conditions, especially for plastic phenomena such as C and N allocation, which is a 244 
weak spot in predictive DVMs (Achat et al. 2016). There is also a considerable potential to use optimality 245 
hypotheses to better understand how and why different plant traits co-vary, and to apply them in both DVMs 246 
and empirically based frameworks to improve predictions of how traits and species distributions respond to 247 
environmental changes.  248 

Emerging communities and functional diversity 249 

Optimality concepts help in predicting a single (or dominant) strategy or plant type in a given environment, 250 
but they do not predict biodiversity within a site (α-diversity). For understanding vegetation dynamics, 251 
functional diversity – variation in functional traits among the plants in a community – is the most relevant 252 
aspect of biodiversity (Tilman et al. 1997). Natural selection drives the evolution of traits and community 253 
dynamics precisely by operating on functional diversity; so the concept is fundamental for understanding 254 
community dynamics in the long term. The inability of many current DVMs to realistically account for 255 
functional diversity has been shown to cause underestimation of local acclimation and adaption (de Almeida 256 
Castanho et al. 2016), artificial threshold behaviour (Kleidon et al. 2007, Lavorel et al. 2007), and 257 
underestimation of the resilience of vegetation to environmental change (Sakschewski et al. 2016). Functional 258 
trait diversity has been included as an input in a tropical forest model to improve its predictions of ecosystem 259 
processes (Fyllas et al. 2014, Sakschewski et al. 2016). This approach however does not address the generation 260 
and maintenance of diversity over time. Diversity-generating approaches were pioneered in a simulation of 261 
the large-scale biogeography of marine phytoplankton (Follows et al. 2007) and have been applied to 262 
theoretical analysis of vegetation dynamics (Scheiter et al. 2013, Falster et al. 2017) and even to the prognostic 263 
modeling of tropical ecosystems (aDGVM2 (Langan et al. 2017, Gaillard et al. 2018)). How best to represent 264 
functional diversity in DVMs nonetheless remains an open question. 265 

Functional diversity can be viewed as the outcome of two interacting effects: environmental filtering by the 266 
abiotic environment determines where a plant can potentially survive (the fundamental niche), while biotic 267 
interactions determine which plants can persist together (the realized niche). Environmental filtering is 268 
relatively straightforward to model (Pavlick et al. 2013) but coexistence is much more difficult. One approach 269 
is to more-or-less explicitly model the process of natural selection to derive trait combinations (genotypes or 270 
species) corresponding to evolutionary stable strategies (ESS), i.e. an ESS-community that cannot be invaded 271 
by other strategies (Hofbauer and Sigmund 1988, Falster et al. 2017). By embedding the process of natural 272 
selection within models, functional diversity becomes an emergent property of ecosystems, thereby avoiding 273 
the need to pre-specify trait combinations or the number of types or species within a model. This approach 274 
may also provide a framework for addressing evolutionary adaptation to a changing climate (Jump and 275 
Peñuelas 2005, Franks et al. 2007).  276 

The community ESS concept provides a way to generate and test hypotheses on co-existence (mechanisms 277 
that prevent one species from out-competing another) that can be applied in predictive models. In such a 278 
model, successional processes involving size-structured competition for light and disturbance can maintain 279 
functional diversity in a plant community (Falster et al. 2017). By allowing species to differentiate along two 280 
functional trade-offs, functional diversity could be recovered despite the absence of any imposed 281 
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environmental heterogeneity (Fig. 3). However, without disturbance and the process of growing from seed, 282
diversity in this model disappears. It follows that successional processes and individual dynamics need to be 283
included in order to maintain diversity in vegetation models; processes that are represented in recent 284
demography-enabled DVMs (Medvigy et al. 2009, Weng et al. 2015, Fisher et al. 2018), which therefore 285
possibly could be further developed into diversity-enabled prognostic DVMs.286

287

288

289
Figure 3. Modelling diverse communities based on evolutionary stable strategies. By modelling reproductive success in 290
competition with existing types (white dots), ESS models estimate the fitness of potential invaders (coloured shading) 291
and use this to guide community assembly. Here species are allowed to vary in two traits, underpinned by physiological 292
trade-offs. A) Initially, a wide variety of trait combinations have positive fitness and could establish. B) Through directional 293
selection, any single species is driven towards a local evolutionary attractor. However, this single species cannot prevent 294
the invasion of other types, if regions of positive fitness occur elsewhere in trait space. C) Through repeated rounds of 295
mutation and selection, an ESS mix may be established, i.e. existing residents all have positive abundance while fitness is 296
zero or negative elsewhere. The ESS trait mixture represents a prediction for the system diversity. D) In traditional models 297
with pre-specified trait combinations, species may coexist, but are not evolutionarily stable – i.e. they could be invaded 298
if new plant types were allowed into the system. In each panel, the solid white line delimits trait combinations that are 299
not viable even in the absence of any competition (pure environmental filtering, as indicated in Panel A). In panel B, the 300
dashed white line shows the evolutionary attractors for each trait when allowed to evolve in isolation (Falster et al. 2017).301

However, while the diversity-enabled models are advancing the science of vegetation dynamics, developing 302
them into prognostic tools pose additional challenges compared to traditional DVMs, such as the testing and 303
calibration of diversity maintaining mechanisms. In particular, the predictive ability of diversity-enabled 304
models is potentially limited by the set of traits and coexistence mechanisms that are accounted for. In 305
addition to trade-offs between costs and benefits of traits linked to resource (light) competition discussed 306
above (Falster et al. 2017) there are many mechanisms of coexistence, involving resources, natural enemies, 307
spatial heterogeneity, and temporal variability (Loreau 2010, Adler et al. 2013), making species coexistence a 308
high-dimensional problem (Clark et al. 2007). For example, complementarity – more species can use the total 309
resources more completely – has been shown to reduce competition and promote coexistence in theoretical 310
and empirical studies (Loreau 2010, Cardinale et al. 2012, Craven et al. 2018, Isbell et al. 2018) and therefore 311
deserves more attention in future applied DVMs. While explaining the basis and roles of biodiversity has long 312
been at the centre of interest among theoretical and empirical ecologists (García-Palacios et al. 2018), it is 313
now also becoming critical for DVMs.314

Self-organization at the ecosystem level315

While plant processes and behaviours originate at the level of individuals that are subject to natural selection 316
and environmental constraints, the collective actions of individuals also drive patterns and processes that can 317
provide organizing principles at the ecosystem level. For example, the collective spatial behaviour of plants 318
gives rise to remarkable patterns in vegetation structure that provide both scientific insights, and possible 319
ways to reduce model complexity. 320
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Self-organization simplifies forest structure321

In forests, the individual acclimation (plasticity) of stem angles, leading to the collective organization of crown 322
layers, is an example of self-organization at the ecosystem level. The most computationally intensive aspect 323
of many forest dynamics models is the calculation of plant light availability based on all individuals’ locations 324
heights, and shapes (Moorcroft et al. 2001, Weiner et al. 2001). Despite their detail, however, these individual-325
based models often do not produce realistic-looking forest stands. There are too many gaps, and the emergent 326
“jig-saw puzzle” canopy pattern is missing. The Perfect Plasticity Approximation (PPA) was developed to 327
correct the problems of both computational intensity and unrealistic canopy. The PPA is based on the 328
observation that individuals can move their crowns horizontally towards sunlight (phototropism), which leads 329
to a simple pattern (Fig. 4): Canopy trees fill the horizontal space and there is approximately one height above 330
which individual crowns are sunlit and below which individuals are in the shade of those canopy trees (Strigul 331
et al. 2008). There will be a single height of canopy closure, and information on the locations of stems is no 332
longer needed to calculate access to light. A rule defined at the level of individual trees (the search for sunlight) 333
thus leads to a simple, emergent pattern that greatly simplifies the modelling of forest stand dynamics (Purves 334
et al. 2008).335

The PPA has also made possible the analytical ESS analysis of allocation strategies and predictions of their 336
variation across environmental gradients in temperate forests (Dybzinski et al. 2011, Farrior et al. 2013, Farrior 337
et al. 2015). Although many tropical forests exhibit a different size structure, the same individual rule of 338
phototropism, though with different growth rates for canopy trees and frequency of stand-level disturbance, 339
predicts the emergent structure of tropical stands (Farrior et al. 2016). 340

341

342

343
Figure 4. Spatial self-organization in ecosystems. A-C) Individual level phototropism leads to emergent regularity in 344
forest crown height and size. Model and forest images from above. A) A forest dynamics model without phototropism 345
(Strigul et al. 2008). B) The same forest dynamics model with individual phototropism (individuals allowed a maximum of 346
5° lean in their trunks). Brightness indicates the height of the canopy. Note with phototropism, canopy height and crown 347

D
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size are more regular. C) Image of a near-natural forest in the Hainich National Park, Germany. A and B redrawn from 348 
(Strigul et al. 2008) Figure 7, and C from (Getzin et al. 2012) , Figure S1. D) Spatial self-organization in dry lands. Typical 349 
sequence of vegetation patterns along a rainfall gradient. Modeled (upper panels) and observed (lower panels), redrawn 350 
from (Meron 2016). 351 

 352 

Spatial self-organization at the landscape scale 353 

Spatial self-organization is driven by feedbacks between vegetation and the environment. For example, when 354 
trees establish in grasslands, they shade and suppress light-demanding grasses, competitively favoring other 355 
trees and eventually stabilizing patches of forests (Favier et al. 2004). Dryland landscapes provide another 356 
striking example of vegetation self-organization into regular spatial patterns (Fig. 4b) caused by positive 357 
feedbacks between local vegetation growth and water transport towards the growth location, by laterally 358 
extended roots, overland water flow, or soil-water diffusion (Meron 2012). That is, water transport helps 359 
vegetation growth, and that growth, in turn, enhances the water transport. The emergence of these patterns 360 
can be modeled in spatially continuous models, which reveal that the underlying positive feedback loop is a 361 
common organizing principle for spatial patterns across different locations and systems. The spatial self-362 
reorganization in response to reduced rainfall slows desertification and results in successive state transitions 363 
to patterns of lower productivity (Fig. 4b), rather than in abrupt, direct collapse to bare soil (Rietkerk et al. 364 
2004, Meron 2016). Vegetation patterning can also promote species coexistence and help mitigate 365 
biodiversity loss (Gilad et al. 2007, Meron 2016). However, the process is missing in general prognostic DVMs, 366 
perhaps due to the difficulty of representing spatial feedbacks in these spatially discrete (cell or gap-based) 367 
models. This problem may be addressed in future DVMs when enhanced computational power allows 368 
sufficiently high spatial resolution for explicit modeling of spatial feedbacks. Alternatively, the regularity of the 369 
patterns across rainfall gradients suggests that it may be possible to find universal approximations of their 370 
impacts, such as scaling relationships between fraction of vegetation cover and NPP or biomass (Glenn et al. 371 
2008). Such a relationship could readily be incorporated in large-scale DGVMs or land-surface models to 372 
account for the larger scale impacts of fine scale spatial feedbacks without modeling these explicitly. The idea 373 
of simplification by upscaling, or aggregation is also central to another simplifying organizing principle, entropy 374 
maximization– as discussed next. 375 

Entropy maximization – making order from chaos 376 

Ecosystems are complex systems with myriads of interacting organisms and processes, yet there are obvious 377 
patterns in their macroscopic features. This fact echoes the situation in physics where, for example, 378 
reproducible relationships among the pressure, temperature and volume of a large assembly of molecules 379 
emerge from the chaos of the underlying molecular collisions. The principle of Maximum Entropy (MaxEnt 380 
(Jaynes 2003)) has proved successful in predicting those relationships from a statistical perspective, as the 381 
most likely outcome of the underlying microscopic variables treated as random noise within the imposed 382 
experimental constraints (e.g. fixed volume and temperature). MaxEnt can be applied at many scales but the 383 
most interesting from the point of view of vegetation dynamics is the ecosystem scale where the aggregated 384 
behaviour of large numbers of interacting individuals may to an extent be treated stochastically within the 385 
limits imposed by community-level environmental constraints (e.g. community resource use = resource 386 
availability). The stochasticity means that many ecosystem states (e.g. vegetation cover in a grid cell) can 387 
correspond to the same resource use (constraint) and MaxEnt predicts the probability of each state based on 388 
the number of ways it can be realized.  Thus, in contrast to both purely mechanistic models and climate-based 389 
species distribution models MaxEnt does not ignore stochastic factors but accounts for their effects.  390 

 391 

Identifying the stochastic and deterministic drivers of community assembly  392 

MaxEnt is not a purely stochastic principle because the description of community resource use (e.g. of water 393 
or nitrogen) within the resource constraints requires some underlying biology to be modelled 394 
deterministically. MaxEnt enables us to test the assumed division between stochastic drivers (treated as 395 
random noise) and deterministic drivers, or mechanisms (treated as constraints): agreement between MaxEnt 396 
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predictions and observations indicates that the correct distinction has been identified; disagreement signals 397 
missing constraints or mechanisms. In MaxEnt, extension to more than one resource constraint is 398 
straightforward.      399 

An illustrative example is the use of MaxEnt to predict statistical patterns of tree-grass distribution over large 400 
areas of tropical savannas across a gradient in water availability (Bertram and Dewar 2013). The key constraint 401 
was assumed to be the mean annual community-scale water balance (evapotranspiration = water availability), 402 
with a simple hierarchy in the water use of trees versus grasses versus bare ground. The broad agreement 403 
between predictions and satellite-based data (Fig. 5) suggests that, indeed, the main deterministic driver of 404 
global patterns in tree-grass distribution is mean annual water availability, and the essential biology that needs 405 
to be modelled deterministically is the higher water demand of trees compared to grasses and bare ground.  406 
Other processes, which include disturbances by fire and herbivory, contribute to the statistical spread of the 407 
data in Fig. 5 at any given water availability, and can be treated as random noise that has no systematic effect 408 
on the mean trends.  409 

An important caveat here is that just as the laws of probability only predict the most likely frequency 410 
distribution of heads and tails in a long run of coin tosses, and not the outcome of an individual toss, MaxEnt 411 
only predicts the most likely frequency distribution of tree-grass cover fractions across many sites, and not the 412 
tree-grass cover fractions at a given site (an individual data point in Fig. 5). The latter would require explicit 413 
representation of, and site-specific information about, other processes such as fire history and herbivory.  414 

 415 

  416 
Figure 5. Vegetation distributions predicted by the principle of maximum entropy (MaxEnt). Observed and modelled 417 
frequency distributions of tree, grass and bare ground cover fractions vs. mean annual water availability (E) in tropical 418 
savannas at a 1 km2 resolution. Points: frequency histogram of satellite-based (MODIS) fractional cover estimates 419 
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sampled from Africa, South America and Australia. Black curves (from bottom to top): 5th percentile, mean, and 95th420
percentile of the observed sample frequency histogram vs. E. Blue curves (from bottom to top): 5th percentile, mean, 421
and 95th percentile of the modelled frequency distributions vs. E. Adapted from (Bertram and Dewar 2013).422

In this simple example, the link between MaxEnt and the underlying biology occurs through the assumed water 423
use rates ei of each cover type i (trees, grass, bare ground), which determine the community water use that 424
appears in the water balance constraint. MaxEnt then predicts that the cover type with the highest (lowest) 425
value of ei dominates at high (low) water availability (Fig. 5). A natural generalisation of this approach would 426
be to replace assigned values of ei by an eco-physiological optimality model, e(FT, FTo), for the dependence of 427
plant resource use on plastic acclimating traits (FTo) and other plant functional traits (FT). Then, at high (low) 428
resource availability MaxEnt would predict a relative abundance distribution in trait space that follows the 429
peaks (troughs) of e(FT, FTo), thus establishing a link between diversity in FT and FTo at the community level 430
and optimality at the individual level (FTo). Effects of climate change could also be incorporated through the 431
additional dependence of e on environmental conditions.432

MaxEnt based approaches could potentially be developed to incorporate stochastic effects on coexistence and 433
in DVMs, and to identify the key deterministic drivers that generate and maintain diversity – an important 434
challenge for understanding long-term vegetation dynamics, as discussed below.435

A roadmap for the use of organizing principles in vegetation modeling436

We have demonstrated the nature and utility of three types of organizing principles in explaining and 437
predicting different aspects of vegetation dynamics. We propose that the principles can be combined in a 438
hierarchically structured framework for vegetation modeling, from functional traits (FTs), to species (or plant 439
functional types), to stand structure and community composition (Fig. 6). We do not attempt to provide a 440
complete blueprint for the development of next-generation DVMs. Instead we highlight some fundamental441
challenges that the organizing principles can help address, with focus on dynamics at individual to community 442
scales.443

444
Figure 6. Framework for the use of organizing principles in vegetation modelling. Each organizing principle (circles, white 445
text) helps predict (arrows) different vegetation properties (boxes). Natural selection drives the evolution of heritable 446
functional traits (FTs). Phenotypic plasticity is predictable through fitness-proxy maximization (optimality). Collective self-447
organization among many plants results in predictable patterns of spatial structure at the stand level (e.g. due to plasticity 448
of stems, the Perfect Plasticity Approximation -PPA). Natural selection controls community dynamics together with 449
stochastic factors. Many different community compositions may be possible and the most likely may be predicted by450
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entropy maximization (MaxEnt). The external environment includes abiotic factors and all other external drivers such as 451 
disturbances.  452 

 453 

Which functional traits are most relevant? 454 

In DVMs, plant species (or functional types) are defined in terms of a number of FTs, for which measured 455 
values are available, and which have been observed to vary among plants and to be important for plant 456 
function. Our perspective implies more precise criteria for how to select and use FTs. First, the observation 457 
that only two underlying dimensions of variation explains 75% of the global variation in key FTs (Díaz et al. 458 
2016) suggest a potential to reduce the number of FTs used to define species compared to most current DVMs. 459 
Furthermore, we propose a shift from the traditional approach of using measurements (e.g. mean values per 460 
PFT) of traits directly in models towards using traits measurements to test optimality principles and quantify 461 
interrelationships that constrain trait values (Fisher et al. 2015). Plastic traits which vary with environmental 462 
conditions, such as leaf:stem:root ratios, relative growth rate, and height, should not be used to define species. 463 
Instead they can be predicted based on optimality approaches (as described in the section on Eco-evolutionary 464 
optimality and Supplementary table 1). An efficient representation of species should be based on a few 465 
functionally important FTs that are as non-plastic (heritable) as possible (Fig. 6). To establish such FTs, 466 
observed trait variation and function can be analysed in new ways that separate plasticity from other sources 467 
of trait variation (Niinemets et al. 2015). For example, SLA is commonly used to define species in terms of a 468 
mean value although it varies strongly with environmental conditions, even within individuals (Scheepens et 469 
al. 2010). To resolve this problem, SLA could be separated into a non-plastic maximal SLA and a plastic 470 
component.  471 

Once a set of non-plastic FTs have been identified, observed inter-relationships between them (trait 472 
spectrums) can be used in two ways: (i) to constrain potential species in terms of possible (or more or less 473 
probable) trait combinations to generate candidate species in model of community or (ii), they could be used 474 
to calibrate and evaluate ESS approaches such as (Falster et al. 2017)) which predict such inter-trait 475 
relationships.  476 

How should vegetation structure and competition be modelled? 477 

As discussed in section Self-organization at the ecosystem level, self-generating spatial structures have strong 478 
effects on vegetation dynamics by both generating and reducing heterogeneity. The latter effect is used in the 479 
PPA to simplify models of light competition in forest canopies, but the question is: can the PPA be applied for 480 
all forest or what are its limitations? Intuitively, PPA appears well suited to low diversity canopies whereas its 481 
binary light availability may lead to artificial exclusion of species with low shade tolerance in more diverse 482 
communities. Or could such problems be resolved by a sufficiently high spatial resolution in the critical canopy 483 
height? Similarly, while competition below ground can be readily modelled by assuming common pools of soil 484 
resources for all plants in a stand, the actual spatial extent of competition for nutrients and water is not well 485 
understood despite potentially large impacts on key processes, such as root growth (Farrior 2019) water use 486 
(Wolf et al. 2016) and whole plant growth (Franklin et al. 2012). Thus, although the representation of 487 
vegetation structure and competition has been improved in recent DGVMs (Weng et al. 2015, Fisher et al. 488 
2018), quantitative evaluations of the accuracy and efficiency of different approximations of vegetation 489 
structure and competition are urgently needed.   490 

How can we handle the complexity of communities? 491 

As discussed in the section Emerging communities and functional diversity, DVMs have emerged recently that 492 
generate communities by modeling the natural selection process (diversity-enabled DVMs, (Scheiter et al. 493 
2013, Falster et al. 2017)). While the prognostic use of these innovative approaches is yet limited (Langan et 494 
al. 2017, Gaillard et al. 2018), compared to traditional DGVMs they have a fundamentally improved capacity 495 
to predict long-term ecosystem dynamics under climate change. This includes biome shifts and the role of 496 
biodiversity for ecosystem resilience. Adding individual plasticity in addition to diversity in these models (as 497 
described above) could lead to novel insights in how plasticity and community dynamics interact and influence 498 
the rate of adaptation of vegetation to climate change, which is critical for projections of future vegetation 499 
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processes and carbon balance (Chevin et al. 2010, Walker et al. 2015). The need to model both individual 500 
plasticity and community dynamics further highlighted by the observation that they sometimes drive mean 501 
values for FTs in opposite directions along environmental gradients (Kichenin et al. 2013).  502 

A critical question for the further development of community ESS approaches is if the relevant coexistence 503 
mechanisms are included. An important, but often neglected, factor in this context is demographic and 504 
environmental stochasticity. The MaxEnt approach has been used to account for randomness in predicting 505 
community composition, i.e. the abundance of each species, using mean trait values as site level constraints 506 
(Shipley et al. 2006). Potentially, a similar approach may also be applied with a (deterministic) diversity-507 
enabled DVM that represents the hypothesized coexistence mechanisms and with resource availabilities as 508 
additional constraints. For given resource availabilities there is stochastic variation in environmental variables 509 
and plant demography (e.g. recruitment and mortality) and the DVM generates many communities with 510 
different species compositions. The mechanisms incorporated in the DVM and the resource availabilities 511 
influence the probability (or frequency) that a given community is generated. Based on the generated 512 
accumulated distribution of community compositions, MaxEnt is used to find the most likely community 513 
composition. The MaxEnt model’s ability to explain observed community compositions is then a measure of 514 
the relevance of the hypothesized (deterministic) coexistence mechanisms, as described in the section 515 
“Identifying the stochastic and deterministic drivers of community assembly”.  516 

In conclusion, the principles and approaches put forward here all address the same underlying key challenge 517 
in the science of vegetation dynamics – how to make sense of complexity. During the initial development of 518 
DVMs (1980s), very few ecologists were looking for general patterns in nature. The phrase “despairing 519 
empiricism” (Prentice 1998) was coined to describe the view (still held in some circles) that such patterns do 520 
not exist – implying that models will always require large numbers of parameters to be measured directly, 521 
rather than predicted from underlying principles. Since then many promising but sometimes diverging 522 
approaches have emerged. With the perspectives on organizing principles presented here we hope to 523 
contribute to a coherent theoretical basis for explaining and predicting interactions among plants and the 524 
environment. While many other strands of vegetation research not discussed here are also needed for this, 525 
organizing principles are necessary for putting progress on different processes and traits into a consistent 526 
framework and avoiding the “complexity trap”, which is essential for a better understanding of vegetation 527 
dynamics under climate change.  528 
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