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• Land use change caused most carbon
change in soils with high baseline con-
centration.

• The effect of change in woodland cover
is also dependent on baseline carbon.

• UK soil pH distribution has changed dra-
matically, due to recovery from acidifi-
cation.

• Models suggest this recovery has shifted
the relationship between carbon and
pH.

• SO4 deposition helps to explain the spa-
tial pattern of these shifts.
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The UK Countryside Survey (CS) is a national long-term survey of soils and vegetation that spans three decades
(1978–2007). Past studies using CS data have identified clear contrasting trends in topsoil organic carbon (tSOC)
concentrations (0–15 cm) related to differences between habitat types. Here we firstly examine changes in tSOC
resulting from land use change, and secondly construct mixed models to describe the impact of indirect drivers
where land use has been constant.Where it occurs, land use change is a strong driver of SOC change, with largest
changes in tSOC for transitions involving SOC-rich soils in upland and bog systems. Afforestation did not always
increase tSOC, and the effect of transitions involving woodlandwas dependent on the other vegetation type. The
overall national spatial pattern of tSOC concentration where land use has been constant is most strongly related
to vegetation type and topsoil pH, with contributions from climate variables, deposition and geology. Compari-
sons of models for tSOC across time periods suggest that declining SO4 deposition has allowed recovery of top-
soils from acidification, but that this has not resulted in the increased decomposition rates and loss of tSOC
which might be expected. As a result, the relationship between pH and tSOC in UK topsoils has changed signifi-
cantly between 1978 and 2007. The contributions of other indirect drivers in the models suggest negative rela-
tionships to seasonal temperature metrics and positive relationships to seasonal precipitation at the dry end of
the scale. The results suggest that the CS approach of long-term collection of co-located vegetation and soil bio-
physical data provides essential tools both for identifying trends in tSOC at national and habitat levels, and for
identifying areas of risk or areas with opportunities for managing topsoil SOC and vegetation change.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2020.138330&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.scitotenv.2020.138330
mailto:athomas@ceh.ac.uk
https://doi.org/10.1016/j.scitotenv.2020.138330
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


2 A. Thomas et al. / Science of the Total Environment 729 (2020) 138330
1. Introduction

Soil carbon represents the largest terrestrial carbon pool and its fate
has important implications for climate change mitigation (Batjes, 1996;
Smith et al., 2008). The recent “4 pourmille” initiative, for instance, sets
a global target for annual soil carbon increases of 0.4% through changes
in land use and management to offset global C emissions (Rhodes,
2019), although the feasibility has been challenged (e.g. Poulton et al.,
2018). Soil carbon is also a primary indicator of soil health (e.g. FAO
and ITPS, 2015) and a strong determinant of global food and nutritional
security (e.g. Lal, 2016). Within the soil carbon pool, topsoil or shallow
soil carbon concentrations are generally the easiest to measure and
most often used to identify trends in the soil carbon pool or provide in-
dicators of soil health. Approximately 699 Pg of carbon are stored in the
top 30 cmof soils globally (Hiederer andKöchy, 2011) andmost decadal
scale fluctuations in total soil carbon stocks occur in topsoil (e.g. Chen
et al., 2013). Spatial and temporal patterns of topsoil carbon concentra-
tion are determined by both local drivers (e.g. land use, soil, geological
parent material) and global drivers (e.g. climate, weather, pollutant de-
position) which govern the balance between soil organic carbon (SOC)
inputs from vegetation and losses from decomposition (Schmidt et al.,
2011). The interplay and shifting balance amongst local and global
drivers leads to complex patterns of change in topsoil carbon, making
large-scale, long-term trends in soil carbon difficult to detect and inter-
pret with current soil monitoring budgets which are frequently well
below those for other natural capital assets such as water and
biodiversity.

Large declines of topsoil carbon have been reported in China (Xie
et al., 2007) and New Zealand (Schipper et al., 2007), and there are con-
cerns that climate change will cause SOC loss, creating a positive feed-
back loop in the carbon cycle (Davidson and Janssens, 2006).
However, in the UK, studies disagree over whether there is a trend of
loss in tSOC which can be linked to changes in climate (Bellamy et al.,
2005; Chapman et al., 2013; Reynolds et al., 2013). The pattern of
change is also variable across Europe; increase has been shown for agri-
cultural soils in the Netherlands (Reijneveld et al., 2009) whilst losses
have been identified in the French mountains (Saby et al., 2008), and
cropland soils in Norway, Belgium and Finland (Riley and Bakkegard,
2006, Sleutel et al., 2007, Heikkinen et al., 2013). In Belgium the direc-
tion of change has been shown to vary with land use (Goidts et al.,
2009), and spatially varying fluctuations have also been recorded in Ba-
varia (Kühnel et al., 2019). Where trends have been recorded, there is
uncertainty about the drivers of topsoil carbon change, with a range of
possible explanatory factors proposed including: climate change
(Bellamy et al., 2005; Davidson and Janssens, 2006); land use and land
use change (Guo and Gifford, 2002; Dawson and Smith, 2007; Xie
et al., 2007); land management practices (Schipper et al., 2007; Smith
et al., 2007); increased atmospheric CO2 concentrations (Jastrow et al.,
2005); and atmospheric deposition of pollutants (de Vries et al., 2009;
Janssens et al., 2010; Tipping et al., 2017). Many studies identify a com-
bination of factors, for example, decline in SOC for Finnish croplands
may be linked to climate warming and historic land use change
(Heikkinen et al., 2013); similarly, losses in Belgium may be attributed
to land use and management changes and climate warming (Sleutel
et al., 2007).

Previous studies have identified statistically significant trends in
topsoil organic carbon (tSOC) concentrations (0–15 cm) at national
and habitat levels from the Countryside Survey (CS) dataset; a national
long-term survey of soils and vegetation that spans three decades
(1978–2007). At a national scale for GB there was a small increase in
tSOC between 1978 and 1998, followed by a small decrease to 2007,
resulting in no significant overall change between 1978 and 2007
(Reynolds et al., 2013). When considered for sites with no change in
vegetation type, there are contrasting trends related to differences be-
tween habitat types. There was an increase for woodlands from 1978
to 1998 and from 1978 to 2007; an increase for heath and bog from
1978 to 1998; and a decrease for arable from 1998 to 2007 and 1978
to 2007 (Emmett et al., 2008). These changesmay be related tomanage-
ment, e.g. reduced woodland management (Kirby et al., 2005; Smart
et al., 2014) may explain the observed carbon increase, and increased
intensity of arable management may explain the observed decrease
(Smith et al., 2007). Whilst it is interesting to explore the impacts of
changes inmanagement based on habitat level assessments, these anal-
yses do not help us to understand influence from long term large scale
drivers such as climate change and air pollution.

Tomake sense of the apparently inconsistent trends reported for the
UK, it helps to understand the expected effects of both local and global
drivers on topsoil carbon, and to account for the (potentially co-
varying) spatial patterns and temporal trends of these drivers. An anal-
ysis of change based only on repeated observations (surveys) of topsoil
carbon is insufficient evidence of soil carbon risk (even discounting the
scarcity of such long-term, national scale observations). It has been
noted that such surveys face the challenge of simultaneously
minimising sample variability to maximise change detection power,
and maximising variability to maximise potential for understanding
drivers of change (Goidts et al., 2009). We are also moving into un-
known territory, with the potential for climate extremes beyond those
experienced in recent history.

If drivers of change are varying in a compensatory manner, the net
effect on topsoil carbon might be no change over several decades. It
would be foolhardy to plan policy for sustainable soils based on such
simple trend observations (the future is seldom identical to the past es-
pecially where land management policies are concerned). Robust deci-
sion support for managing soil health and contributing to global climate
mitigation requires an integrated understanding of the drivers of
change for soil carbon in order to anticipate future shifts in the balance
of processes affecting topsoil carbon. Modelling approaches combining
a range of climate and site factors can beused to improve understanding
of spatial and temporal patterns of changes in tSOC (e.g. Kühnel et al.,
2019).

Land use and land use change can potentially have the most signifi-
cant impacts on topsoil carbon concentration due to the associated
changes in carbon inputs from primary production and physico-
chemical conditions related tomanagement practices and rooting traits.
In general, meta analyses have found conversion to grassland causes
SOC increase, conversion to arable causes SOC decrease and conversion
to forest produces mixed results (Guo and Gifford, 2002, Poeplau et al.,
2011, Poeplau and Don, 2013). Impacts are generally nonlinear over
time, and trends may reverse as soils approach a new equilibrium,
which may take over a century (Poeplau et al., 2011, Poeplau and Don,
2013). Even without change in land use, changes in land management
practices such as efficiency of removal of yields, depth of tillage and
rates of manure application can also have significant impacts (Smith
et al., 2007). Losses of topsoil carbon from arable soils reported by mul-
tiple UK surveys (Bellamy et al., 2005; Emmett et al., 2010; Chapman
et al., 2013) may relate to ongoing or intensified management (Smith
et al., 2007).

Climate driven changes in temperature and precipitation have var-
ied impacts on SOC, due to nonlinear responses of decomposition and
plant growth to both drivers and interactions between their effects. Ris-
ing global temperatures are expected to enhance SOC losses due to in-
creased rates of microbial decomposition and enzyme activity,
particularly in topsoil (Wiesmeier et al., 2019). Response of decomposi-
tion rates to warming is modulated by initial temperature, water stress,
complexity of substrates, and substrate availability which is controlled
by concentration, diffusion, and physical and chemical protection
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(Knorr et al., 2005, Davidson and Janssens, 2006, Davidson et al., 2006).
Thresholds may also be important, either for decomposition or for plant
species composition and growth (e.g. Barraclough et al., 2015). Colder
sites may experience more relative change in decomposition, since
Q10 of decomposition reactions increases with decreasing temperature,
and there may be more recalcitrant carbon at cold sites (Davidson and
Janssens, 2006) resulting in higher risk for high SOC soils (Crowther
et al., 2016).

The strong correlation of soil moisture and temperaturemakes it dif-
ficult to separate apparent and intrinsic sensitivity to either driver
(Davidson and Janssens, 2006; Sierra et al., 2015). Soil moisture has a
nonlinear relationship to decomposition, which peaks at intermediate
moisture levels where oxygen supply and substrate diffusion through
soil water are balanced (Skopp et al., 1990). For some sites, climatic
changes may also increase or decrease net primary productivity (NPP)
and associated organic carbon inputs to soil, affecting carbon balance
(Gang et al., 2017). Modelling suggests that global impacts of increased
temperatures may be more significant for accelerating decomposition
than for increasing NPP (Kirschbaum, 2000). Subsequent work has
shown the added importance of dry soil anomalies, which may reduce
NPP more than wet soil anomalies increase it (Green et al., 2019).

Fundamental shifts in soil properties affecting soil carbon can also
result from increasing frequency of climate extreme. Periods of drought
can alter soil structure to prevent re-wetting, increasing aerobic condi-
tionswhich increases decomposition losses, particularly forwet podsols
(Robinson et al., 2016). Lowered water tables can also have significant
impacts through accelerated decomposition in peats (Ise et al., 2008).
Conversely, long periods of saturated water content in mineral soils
have been shown to increase C losses through reduction of Fe and re-
lease of mineral bound SOC (Huang and Hall, 2017).

Soil pH is known to affect soil organic matter cycling and CO2 efflux
(Reth et al., 2005; Oulehle et al., 2006), and is commonly applied as a
modifier for SOC decomposition rates in models (e.g. Smith et al.,
2010). Direct impacts of pH on microbial decomposition rates have
been demonstrated in lab studies (Andersson and Nilsson, 2001), and
in China, an increase in SOC in croplands has recently been linked to
acidification (Zhang et al., 2020). The relationship is nonlinear with
greatest inhibition of decomposition in acidic soils and decomposition
increasing as pH rises from 2 to 5 (Smith et al., 2010). Soil pH has
changed significantly in Europe and North America over the last
80–120 years as soils have acidified in response to atmospheric sulphur
emissions during the industrial revolution (Hedl et al., 2011), and sub-
sequently recovered as acidic deposition has declined due to interna-
tional air quality policies (Menz and Seip, 2004, Oulehle et al., 2006,
Kirk et al., 2010). Increase in soil pH across all UK habitats was reported
by several independent monitoring schemes: The National Soil Inven-
tory (NSI); The Countryside Survey (CS); Environmental Change Net-
work; International Cooperative Programme on Assessment and
Monitoring of Air Pollution Effects on Forests- Level II; and the re-
survey of British Woodlands (Kirby et al., 2005; Emmett et al., 2010;
Kirk et al., 2010; Vanguelova et al., 2013). Within CS data, the shift
was an increase of 0.5 pH unit at a national scale from a mean of 5.39
to 5.87 which given the baseline distribution of pH moves many soils
from sitting within the microbial pH-sensitive range (Reynolds et al.,
2013).

Fertilisation by atmospheric deposition of inorganic nitrogen has
been shown to increase NPP and associated organic carbon inputs to
soil from vegetation in woodland, grassland, shrubland and heath
(Magnani et al., 2007; de Vries et al., 2009; Tipping et al., 2017). Ni-
trogen deposition impacts may differ for oligotrophic bogs, which
have been shown to shift in species composition from sphagnum
and heather to more easily decomposable grasses such as Molina
with subsequent SOC losses (Bobbink et al., 1998). Even where
sphagnum remains, increased nitrogen deposition will reduce poly-
phenol content of litter, increasing decomposition rates (Bragazza
and Freeman, 2007).
Geological parent material determines many soil properties that ul-
timately affect SOC cycling and retention such as soil mineralogy, tex-
ture, pH and cation concentration (Torn et al., 1997, Wiesmeier et al.,
2019). Exchangeable soil calcium, for instance, is important for carbon
stabilisation and has been shown to positively correlatewith SOC across
multiple studies, depending on other limiting factors (Wiesmeier et al.,
2019). Parent material also affects drainage controlling rates of forma-
tion of soils, depth to water table and suitability for different types of
vegetation (Jenny, 1941).

Here we examine spatial and temporal trends in tSOC concentra-
tions across the UK, using Countryside Survey (CS) data on soils and
vegetation, and explicitly accounting for spatial and temporal changes
in the drivers discussed above. This work differs from previous analyses
of the CS soils data in exploring the influence of potential drivers of
change, rather than looking for changes in mean at national or habitat
level (as per Reynolds et al., 2013) or using the data in process based
modelling to explore the importance of N deposition in semi-natural
habitats (e.g. Tipping et al., 2017). We use tSOC data from 783 soil
plots sampled in both 1978 and 2007 along with national datasets for
the drivers downscaled to the soil sample plots. Replicated changes in
vegetation cover occurred on 36% of these re-sampled soil plots be-
tween the two survey years providing robust estimates of the direction
and magnitude of tSOC change for 21 different land use transitions. For
the 64% of re-sampled soil plots with no land use change, we developed
mixed models of the spatial patterns of tSOC in 1978 and 2007 using as
local and global drivers: topsoil properties (pH); geology (parent mate-
rial attributes); atmospheric deposition (nitrogen and sulphur); climate
(mean and extreme precipitation, growing degree days, mean temper-
ature and range); and land use (aggregate vegetation class, broad habi-
tat type).

Using the plots with no land use change, we also attempted to de-
velop a mixed model of the temporal changes in tSOC between the
two years but did not achieve a significant result. Despite the robustly
significant models of tSOC spatial pattern in each of the years, it was
not possible to derive a model based on the observed changes between
the years. However, the changes in relative importance of the drivers
between the 1978 and 2007 spatial models provides evidence and in-
sight into the covariation and shifting balance of the drivers of tSOC
change, and re-enforces the assertion that no detectable change in
tSOC does not necessarily mean no significant dynamics affecting tSOC
(further discussion of the change model is restricted to the supplemen-
tary material).

2. Materials and methods

2.1. Data sources

The tSOC data analysed here are from the Countryside Survey (CS), a
unique audit of the natural resources of the countryside of Great Britain
(http://www.countrysidesurvey.org.uk). The CS dataset provides a
stratified random sample of topsoil, vegetation and ecosystem proper-
ties across England, Scotland and Wales. Samples were collected from
5 randomly selected locations within 1 by 1 km squares across GB in
three years: 1978 (256 squares), 1998 (569 squares) and 2007 (591
squares) resulting in an increase from 1280 to 2955 sampling locations
over time, whilst re-sampling in the same locations as the previous sur-
veys. The survey squares were stratified within each of 45 land classes
derived from major environmental gradients based on topography, cli-
mate and human infrastructure (Firbank et al., 2003) (see supplemen-
tary material for more detail). The use of a stratified random sample
enables estimation of means and trends at a national scale. Full details
of the sampling design and methodology are described elsewhere
(Carey et al., 2008). Soil analysis included measurement of pH in
water and soil carbon by loss on ignition (LOI); detailed description of
the topsoil (0–15 cm) sampling and analysis is available elsewhere
(Emmett et al., 2008, 2010) and summarised below.

http://www.countrysidesurvey.org.uk
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Sampling of topsoil (0–15 cm) was carried out on 2 m × 2 m “soil
plots” located at the centre of randomly placed 200m2 X-plots at 5 loca-
tions within each survey square (Wood et al., 2017). Vegetation and
biophysical data associated with each soil plot were collected over the
area of the associatedX-plot. In 2007, the soil plots from the 256 squares
sampled in 1978 were relocated using maps and/or markers placed in
the 1978 survey and the topsoil resampled. The repeat soil plots are
within 2–3 m of the original survey locations, and detailed vegetation
and biophysical measurements were taken at the same X-plot locations
for both surveys. Loose leaf litter was brushed from the soil surface be-
fore sampling in both years. In 1978 soil samples were taken from soil
pits, whereas soil cores were sampled in 2007. Cross comparisons be-
tween pit and coring methods indicated similar bulk densities were
achieved (Emmett et al., 2008) however, since bulk density was not
measured in 1978, we were not able to analyse change in stock. Rigor-
ous cross-comparison of laboratory analytical methods employed in
the two survey years was also carried out (Emmett et al., 2010). In
some cases the original soil plots could not be located or the data from
one of the surveys was incomplete, but the resampling effort nonethe-
less produced 783 “repeat soil plots” with complete observations. The
tSOC values from these 783 sites form the core of our analyses here.

Land use was determined using the Aggregated Vegetation Class
(AVC) scheme evaluated for each soil plot in each survey year, based
on species composition as recorded in the field (Bunce et al., 1999a,
1999b). The AVC classifies floristically well-defined vegetation types
where differences in species composition between classes are
maximised. On this basis they constitute powerful strata for analyses
of plot data, increasing the chances of detecting meaningful land use
change. Shifts of individual plots within aggregate classes imply subtle
changes due to management and/or gradual environmental change or
succession. Transitions between aggregate classes imply major changes
in land use, land management or environmental drivers (Bunce et al.,
1999a). The eight AVC classes are: 1) crops and weeds; 2) tall grass
and herb; 3) fertile grassland; 4) infertile grassland; 5) lowland
wooded; 6) upland wooded; 7) moorland grass and mosaic; 8) heath
and bog.

All 8 AVC classes appear in the 783 soil plots analysed here. AVC class
was used to define land use for each soil plot in a given survey year.
Transitions fromoneAVC to a different AVC defined land use change be-
tween survey years. If land use change occurred for a given plot, the
exact timing of AVC transitions within the 29 years between surveys is
not known. Of the 783 soil plots analysed, 504 plots recorded no land
use change (same AVC in both years) and 279 plots recorded AVC tran-
sitions, implyingmajor land use changes had occurred (Supplementary
Table S4). There are 56 possible pairwise AVC transitions that can occur.
To provide replication in our analyses of land use change, we only in-
cluded AVC transitions that occurred on three ormore soil plots. This re-
sulted in 263 soil plots representing 21 different AVC transitions for our
analysis of land use change.

Climate data at 5 km resolution were processed for the five years
preceding each survey year (Met Office, 2014). Mean seasonal temper-
atures (°C) were derived from monthly data, to account for impacts on
plant growth and tSOC decomposition. Annual average growing degree
days (GDD), were calculated to best reflect impacts on NPP. Mean sea-
sonal precipitation values (mm) were included as surrogates for soil
moisture content and associated controls on decomposition rates and
moisture limitations on vegetation growth. Change was calculated as
the difference between the two periods.

Atmospheric deposition data at 5 km resolution, to account for po-
tential soil acidification and fertilisation impacts on tSOC decomposition
and plant growth, were obtained from Concentration Based Estimated
Deposition (CBED) (Dore et al., 2015). Due to CBED data limitations
the deposition values associated with the 1978, 1998 and 2007 surveys
are from 1987, 1997 and 2005 respectively. Average annual deposition
of sulphur and inorganic nitrogen (kg ha−1 yr−1) were calculated for
each countryside survey 1 km× 1 km square. To account for the varying
deposition rates over different land use types (arable, forest, moorland
and grassland) countryside survey squares were assigned the deposi-
tion rate for the land category which best matched the dominant land
use type for that square (i.e. a square which was dominated by conifer-
ous woodland was assigned the deposition estimate associated with
forest).

Soil parent material data was obtained from British Geological Sur-
vey (BGS), and key descriptors of soil group and CaCO3 rank were in-
cluded as terms for model selection, to account for soil texture and
mineralogy (British Geological Survey, 2010).

2.2. Modelling approaches

Models of spatial patterns of tSOC as a function of local and global
drivers were constructed for each survey year, and a combined spatial
model was constructed using data from both survey years. A further
model was constructed for 2007 using only drivers available at national
scale, to allow construction of a predictive map (see Supplementary
Fig. S4). Of the 504 soil sites with no land use change, 472 had full
data for all required variables, and were used for these spatial models.
An additional model of temporal changes in tSOC between the 1978
and 2007 surveys was also fitted to the drivers using the 472 constant
land use soil sites. To account for random factors, we used a mixed
model structure (Generalised Additive Mixed Model, GAMM). The
countryside survey square (each of which contained up to 5 soil plots)
was included as the random factor in the separate yearmodels, and sur-
vey square nested within survey year in the combined spatial model.
Importance of selected discrete variables was then assessed against re-
siduals of this model, using Kruskal-Wallis rank sum tests, and those
with a significant relationshipwere put into themainmodel. All models
were constructed and tested in R (R Core Team, 2013).The full list of
input variables for the spatial model is listed in Table S1. Due to the bi-
modal distribution of tSOC, Gaussian models were not appropriate, and
a Tweedie distribution was used for model fitting.

The distribution of the data is important for interpretation of the
models as well as statistical fit. The two peaks in the data represent or-
ganic soils and mineral soils, and datapoints in between could be split
into humus-mineral and organo-mineral, as per previous reporting
(e.g. Emmett et al., 2008). Although soils exist as a continuum across
these categories, the groupings are instructive conceptually due to vary-
ing processes controlling measured tSOC change. Since organo-mineral
and humus mineral soils generally consist of an organic later over min-
eral soil, the measured tSOC will reflect spatial or temporal variation in
the depth of the organic layer, rather than variation in concentration per
se.Whilst organo-mineral soils make up a relatively small proportion of
the dataset, humus-mineral are more significant (6–7% and 35–38% re-
spectively, across CS as a whole). Short range variation is of particular
importance for monitoring these soils, but impacts on data should not
contain bias, as discussed in supplementarymaterial. It is also important
to consider that organic soils, which will include deep peats, are often
subject to loss of depth rather than C concentration, which will not be
identified bymodelling ormonitoring tSOC. Because of these conceptual
differences, splitting the soils into these categories for model construc-
tion was considered, however the impacts on sample size outweighed
any potential for improvement in the ease of interpretation of the
model. This issue also applies for any other potential subsetting of the
data, e.g. by vegetation type; although the dimensionality of the prob-
lem is reduced, the reduction in sample size reduces the statistical
power of findings. Furthermore, this work seeks to identify influence
of large scale drivers across habitat and soil types.

As part ofmodel fitting, non-linear smoothly varying functions of co-
variates, henceforth termed “smooths”, were fitted to all model terms
and deviations away from a constant zero effect were tested. Smooths
allow themodel to vary the coefficient applied to the covariate of inter-
est in a non-linear manner. Smooths were applied via the gamm func-
tion in the ‘mgcv’ library (Wood, 2011). In order to test the



Fig. 2. Impacts of land use change on tSOC concentration at 263 CS soil plots grouped
according to directional changes in aggregate vegetation class (AVC) that occurred
between 1978 and 2007 (box: 25th (lower), 50th (median), 75th (upper) percentiles;
whiskers extend to highest value within ±1.5 interquartile range of these; outliers
plotted as points). AVC is assigned from ordination of vegetation characteristics.
Moorland grass mosaics are typically upland habitats, consisting of grassy vegetation
and dwarf shrubs. Only those AVC transitions that occurred on 3 or more soil plots are
included. These data have been aggregated from Fig. 1 as indicated in Supplementary
Table S5.
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importance of our variables as predictors, we applied a double penalty
smoother approach, which allows the penalized regression routine
that selects for the “wiggliness” of the smooths to also shrink spurious
covariates out of the model entirely (as demonstrated by Marra and
Wood, 2011). To do this, we applied shrinkage smoothers using cubic
regression splines for each term. Two dimensional tensor product
smooth interactions (Wood, 2006) were applied to the spatial variables
(combined latitude and longitude) to account for large scale spatial var-
iation in the data. Variables which were not important (F = 0 and no
statistically significant effect) were removed when the discrete vari-
ables were added to produce the final model, to enable the models to
converge. We did not include interaction terms in the models, in order
to assess the marginal influence of individual covariates.

It's important to note that therewere statistically significant correla-
tions between most of the variables tested here (Supplementary
Table S2). The underlying spatial co-variance driving these co-
correlations between variables has beenminimised andmitigated by in-
clusion of the purely spatial variables within the model. The use of dou-
ble penalized smooths allows the model to fit nonlinear partial
responses for each variable, and thus to only include variables so far as
they improve the model. This approach should create the model
which best fits the data, but nevertheless, as with all correlative studies
care should be taken with interpretation.

For model validation, we applied the 2007 model generated on the
CS data to predict topsoil C concentration for the independent LUCAS
(Toth et al., 2013) dataset (sampled in 2009). An additional spatial
model for topsoil C concentration was created for mapping across GB
at a 1 km grid resolution, using only variables that were available at a
GB scale (Supplementary Table S3, Fig. S4).

3. Results and discussion

3.1. Land use change effects

Replicated (n ≥ 3) land use change occurred at 263 of the re-sampled
CS soil plots between 1978 and 2007. These plots were used to provide
estimates of the direction andmagnitude of tSOC change for 21 different
Fig. 1. Impacts of land use change on tSOC concentration at 263 CS soil plots grouped according
2007 (box: 25th (lower), 50th (median), 75th (upper) percentiles; whiskers extend to highest
from ordination of vegetation characteristics, hence species changes can create a transition fr
consisting of grassy vegetation and dwarf shrubs. Only those AVC transitions that occurred on
land use transitions (Fig. 1, Table S5). The pattern of change in tSOCwith
change in AVC becomesmore apparent if the observed land use changes
in Fig. 1 are aggregated into broader directions of land use transition
(Fig. 2, Table S5).
to pairwise changes in aggregate vegetation class (AVC) that occurred between 1978 and
value within ±1.5 interquartile range of these; outliers plotted as points). AVC is assigned
om upland to lowland woodland. Moorland grass mosaics are typically upland habitats,
3 or more soil plots are included, giving 21 different land use changes in the analysis.
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Past studies have suggested soils with larger carbon stocks have
greater potential for SOC loss (Crowther et al. (2016)). That pattern is
also observed here with larger losses of tSOC at CS sites converted
from heath and bog (ranging from losses of 209 g/kg to 53 g/kg)
(Figs. 1 and 2). Comparatively, transitions at cropland and grassland
sites where carbon stocks are generally lower were associated with
much smaller changes in tSOC (ranging from 22 g/kg loss for crops
and weeds to tall grass and herbs to 6 g/kg gain for tall grass and
herbs to fertile grassland).

Losses of tSOC are generally seen in organic-rich soilswhere land use
change has led to a greater abundance of grasses i.e. along the gradient
from bogs to moorland grass mosaics (less boggy habitats consisting of
grassy vegetation and dwarf shrubs) and infertile grasses. These land
use transitions may reflect management changes in e.g. grazing inten-
sity, drainage or changes in atmospheric N deposition or temperature,
both of which have been shown to shift the species composition of
bog towards grassier species (Bobbink et al., 1998; Barraclough et al.,
2015). The observed tSOC changes are in line with expectations based
on soil nutrient status and decomposability of OM inputs from grasses
to soil. Both transitions are therefore likely to represent both an increase
in proportion of C inputs from readily decomposable grasses and an in-
crease in soil oxygen and nutrient status.

Surprisingly, transitions from woodland to heath and bog had tSOC
increase of similarmagnitude (74 g/kg) to the transition frommoorland
grassmosaics to bog, highlighting that woodlands do not necessarily in-
crease SOC in these surface layers as is often assumed. The shift in hy-
drological conditions associated with bog formation or loss over-rides
any increase in SOC driven by the presence of trees and higher rates of
primary productivity. However transitions in both directions between
woodland and the moorland grass mosaic habitat always lost tSOC per-
haps indicating management practices with these transitions enhanced
decomposition or loss of litter or topsoil.

Although grassland to forest transitions tends to result in C loss ini-
tially (Poeplau et al., 2011), or no change for broadleaved (Guo and
Gifford, 2002), our data show a trend for increased tSOC. This may re-
flect sampling depth, since afforestation of grassland has been shown
to generally lose aggregated C from subsoil (30–80 cm,which is not cap-
tured here), but gain tSOC in surface layers from increased organic mat-
ter (OM) input (Poeplau et al., 2011,Poeplau and Don, 2013). SOC loss
from deeper layers on afforestation may also be significant, since the
N balance of forests has been shown to suggest mining of soil N
(Emmett et al., 1997). For afforestation, forest type and management
are also important (Guo and Gifford, 2002; Pérez-Cruzado et al.,
2011). These issues likely contribute to variance in our data and dis-
agreements in the literature over influence of afforestation on soil C
stocks for grasslands.

Change in tSOC with transition from upland wooded to lowland
wooded species had a large variancewhich reflects diverse species com-
position within both classes. (It should be noted that the reported
change of upland to lowland woodland vegetation class is based on
the increased presence of ground flora species more commonly associ-
ated with lowland habitat types). Crops and weeds to lowland wooded
was accompanied by a small increase in tSOC, in linewith findings from
meta-analyses (Guo and Gifford, 2002). Evidence from (Poeplau and
Don, 2013) suggests there may be no increase in SOC for horizons
deeper than the sample for this transition.

Potential influences on topsoil C from land use which cannot be
accounted for by this analysis include; changes taking place before the
first survey which could have significant impact on changes during
the survey as soil pools move to a new equilibrium (as also noted for
the NSI data Smith et al., 2007), annual or other rotational changes
which mean a consistent land use should not really be assigned, or
changes in management such as reductions in manure inputs or incor-
poration of crop residues (Smith et al., 2007).

It is important to note that changes below the top 15 cm of soil
which are not measured here may be significant, and in some cases
might reverse the direction of observed change (Chapman et al.,
2013). Erosion associated with land use change, or changes in topsoil
densitymay also create spurious results (Smith et al., 2007). Future sur-
veys are including changes in bulk density and visual evidence of ero-
sion which will enable these issues to be explored.

3.2. Climate and pollution drivers of tSOC

For 472 of the re-sampled CS soil plots there were no land use
changes recorded between 1978 and 2007, and all required variables
were available for modelling. The distribution of tSOC on these plots
was largely unchanged between the two years (Fig. 3a),with a slight de-
crease in tSOC at sites with very low carbon and slight increase in tSOC
at sites with very high carbon. However, from visual comparison, there
was some change in the distribution of a number of global (climate, pol-
lution) and local (soil pH) drivers of tSOC between 1978 and 2007
(Fig. 3b–h).

SO4 deposition has reduced significantly across the UK (RoTAP,
2012) and for our sample (Fig. 3b) between 1978 and 2007. Declining
deposition allows recovery fromacidification,with pH rising at rates de-
pendent on soil buffering capacity, rates of weathering and other site
factors. This recovery from acidification due to high deposition in the
70s explains the drastic change in pH distribution from a peak in acidic
topsoils in 1978 to a broader distributionwith a greater number of neu-
tral topsoils in 2007 (Fig. 3c). This is reflected in the statistically signifi-
cant increase in mean pH previously reported across the countryside
survey data (Reynolds et al., 2013). Similar pH recovery patterns have
been observed elsewhere in Europe, and the US over recent decades
(e.g. Driscoll et al., 2001; Menz and Seip, 2004; Reinds et al., 2009;
Lawrence et al., 2012). Associated change in SOC has only been shown
for some sites (e.g. Lawrence et al., 2012). For peat, recovery from acid-
ification leads to desorption and increased solubility of dissolved or-
ganic carbon (DOC) (Evans et al., 2006; Kipton et al., 1992) which may
explain large increases in export to streams in Europe and North
America (Monteith et al., 2007).

There has also been some decline in NO3 and NH4 deposition at CS
sites over the study period (Fig. 2d–e) in line with the national trend;
combined N deposition decreased by 17% between 1970 and 2005 in
the UK, according to outputs from FRAME, as published in RoTAP
(2012). This may have led to some reduction in C inputs associated
with the N fertilisation effect increasing NPP (Magnani et al., 2007; de
Vries et al., 2009; Tipping et al., 2017), but may also have led to vegeta-
tion changes and reduction in decomposability of OM inputs at oligotro-
phic bogs (Bobbink et al., 1998; Bragazza and Freeman, 2007).

Metrics of temperature (seasonal means and GDD) have increased
between 1978 and 2007 (Fig. 3f–j). The change for precipitation
(Fig. 3k–n) is less dramatic, but indicates some shift towards higher
spring and summer precipitation for our sample. The impacts of these
changes on soil carbon will be dependent on the balance of the effects
on decomposition and NPP (Kirschbaum, 2000), and site factors includ-
ing baseline precipitation regimewhich affect soil moisture status in re-
lation to the response curve (Skopp et al., 1990).

3.3. Models of spatial patterns of tSOC

To explore the shift in the importance of the local and global drivers
on spatial models of tSOC, we compared spatial models of tSOC across
time periods for the 472 re-sampled soil plots with consistent land
use and all available data. Models were constructed using the data for
each of the years (1978, 2007) individually and also combined as a sin-
gle dataset (Table 1). The drivers are all co-correlated, which compli-
cates the process of interpretation (Table S2). The 2007 model was
validated against the independent LUCAS (Toth et al., 2013) topsoil
dataset (sampled in 2009) achieving r2 of 0.45, in spite of differences
in sample depth between the surveys (LUCAS is 0–20 cm, compared
to the CS 0–15 cm).



Fig. 3. Distributions of topsoil carbon and local and global drivers of tSOC change at 472 CS soil plots sampled in 1978 and 2007 for which no land use change was recorded.
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The model results indicate that Broad Habitat and pH had the stron-
gest relationships to tSOC in all three models. Climate metrics were im-
portant in all threemodels, however therewas variation in the variables
which best explained tSOC; in the combined years model summer tem-
perature and precipitation and winter precipitation were all important,
whereas in the 1978 model autumn temperature was selected, and in
the 2007 model summer temperature was the only statistically signifi-
cant climate metric. Growing degree days metric was not selected for
any of the models, indicating that the seasonal climate metrics better
explain the spatial and temporal pattern of tSOC. In the combined
years model, SO4 deposition was the second most important variable,
but was not significant in either the 1978 or 2007 models. NH4 deposi-
tion was significant in both the combined years model and the 2007
model. Spatial location was important in all three models.

3.3.1. Shifted relationship between soil pH and tSOC
The spatial relationship between pH and tSOC changed between

1978 and 2007 (Fig. 4). The relationship shifts upwards in 2007, partic-
ularly in acid soils. This reflects an increase in pH at low tSOC soils (re-
ducing the number of these soils in the acidic range) as well as the



Table 1
Spatial models of topsoil carbon in 472 CS re-sampled soil plots where no land use change was recorded between 1978 and 2007. Variables are listed in order of descending F statistic
(whilst direct comparison of F statistics is not statically robust due to differences in the estimated degrees of freedom for each variable, it is adopted here purely to serve as a guide to
relative importance rather than for formal testing or comparison).

Model 1978 2007 Combined

Goodness-of-fit r2 = 0.67, n = 472 r2 = 0.779, n = 472
Validation against LUCAS: r2 = 0.45

r2 = 0.711, n = 944

Parameter F p F p F p

pH 4.380 1.02e-08*** 13.556 b2e-16*** 11.955 b2e-16***
SO4 deposition 2.775 1.02e-06***
Spatial location (easting, northing) 1.748 4.04e-08*** 1.020 6.09e-06*** 1.742 3.09e-08***
NH4 deposition 1.101 0.004114** 1.413 0.000408***
Summer temperature (5 year mean) 6.521 3.79e-15*** 0.831 0.003212**
Summer precipitation (5 year mean) 0.000 0.526366 0.000 0.5491 0.829 0.016122*
Winter precipitation (5 year mean) 0.774 0.006402**
Spring precipitation (5 year mean) 0.000 0.281051
Winter temperature (5 year mean) 0.081 0.102278 0.441 0.0145* 0.000 0.577801
Autumn temperature (5 year mean) 1.247 0.000496***
Autumn precipitation (5 year mean) 0.051 0.2287

Parametric terms (complete inclusion or exclusion based on significance against residuals)
Broad habitat 16.01 b2e-16*** 14.78 b2e-16*** 16.346 b2e-16***
CACO3 rank Not significant against model residuals Not significant against model residuals 3.104 0.00516**
Soil group Not significant against model residuals Not significant against model residuals 1.884 0.01624*

Significance codes: b0.001=***; 0.001 - 0.01=**; 0.01 -0.05 =*.
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small increase in sites with high tSOC soils noted in Fig. 3a. The inflec-
tion point of the graph also shifts towards higher pH in 2007. There
was a stronger relationship between SOC and pH in 2007 (r2 = 0.57)
than in 1978 (r2 = 0.39). At pH 7, the relationships converge and
tSOC for a given pH was broadly similar between 1978 and 2007.

3.3.2. Climate and air pollution effects on tSOC
Fig. 3 shows that over the study period SO4 deposition has declined

significantly, which may have led to the observed shift in pH towards
neutral soils. The distribution of tSOC has remained relatively constant,
and as a result, the relationship between pH and SOC in UK topsoils has
shifted between 1978 and 2007, as shown in Fig. 4. This shift may rep-
resent hysteresis creating a lag in the response of tSOC to acidification
or recovery, or alternatively may indicate a shift between stable rela-
tionships in response to changes in other drivers.

In the models (Table 1), it was expected that SO4 deposition would
have a positive relationship to tSOC, reflecting the mechanism of acidic
deposition lowering topsoil pH and slowing decomposition resulting in
increased tSOC. However, SO4 deposition was not important in either
Fig. 4. Comparison of the relationships between soil pH and tSOC for 1978 and 2007 for
472 sites with no land use change between the years. Relationships plotted are for a
model of tSOC from pH, fit with smooth to account for nonlinear relationship: (r2

1978 = 0.39, 2007 = 0.57). Arrows indicate the shift of the pH tSOC relationship
between 1978 and 2007 towards higher pH, and an increase in SOC relative to pH.
the 1978 or 2007 models, whilst in the combined model there was a
negative relationship to tSOC. Therefore, the importance of SO4 in the
combined model suggests that the spatial pattern of SO4 deposition ac-
counts for some of the shift from 1978 to 2007 in the relationship be-
tween tSOC and soil pH (since year is accounted for as a random
factor). There is a steep portion of the partial response curve at the
high end of the SO4 deposition, which only occurred in the lead up to
1978 (Supplementary Fig. S3f).We infer that these areas had been acid-
ified due to high deposition in previous decades, and had lower carbon
relative to inherently acidic sites (resulting from underlying geological
parent material) in 1978. This is also seen in Fig. 4; the trend line in
acidic soils was much lower in 1978, whichmay reflect recent acidifica-
tion of these soils through high SO4 deposition, without associated tSOC
accumulation; this supports our interpretation of the combined model.
A shift towards higher pH at these sites by 2007, with little change in
tSOC suggests recovery from acidification has returned them to a
more natural relationship between pH and tSOC. Fig. 4 also shows
some soils with high tSOC are experiencing an increase in pH, and
these may be vulnerable to SOC loss due to reduced pH suppression of
decomposition. Thus it appears the response of UK soils to acidification
(and subsequent recovery)may bemore complex than the C sequestra-
tion recently reported for acidified croplands in China (Zhang et al.,
2020).

The strong relationship between pH and tSOCmay in part reflect the
shared scale of measurement, and include influence of drivers which af-
fect both pH and SOC. pH has strong negative correlations to precipita-
tion and deposition metrics, and positive correlation to temperature
metrics (see Supplementary Table S2). These co-correlations between
drivers make it more difficult to identify direct causal relationships. In
our dataset, acid topsoils tended to have higher precipitation (anoxia
slows decomposition), and were colder (low temperature slows de-
composition), with generally higher deposition (N inputs increase NPP
and associated C inputs). Therefore the observed strong relationship be-
tween pH and tSOC may reflect suppression of decomposition in acid
soils, but may also represent influence of these other variables.

Climate variables were less important than pH (lower F value) but
were statistically significant in spatial models of tSOC for 1978 and
2007 and the combined years model. Previous work by Kühnel et al.
(2019) explored relationships between seasonal climate variables and
change in SOC, and found evidence suggesting that rising winter tem-
perature and autumn precipitation increased decomposition, whilst in-
creased temperature and precipitation in spring and summer increased
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C inputs from vegetation, leading to tSOC accumulation. For our data
sample, temperature and precipitation have similarly increased in
spring, summer and winter, however autumn precipitation has de-
creased, leading to warmer but dryer soils during this period. Unlike
the study by Kühnel et al. (2019), we found negative spatial relation-
ships between summer temperatures and tSOC, suggesting that this
metric is more important for decomposition than NPP. This has previ-
ously been seen in a review of laboratory and field experiments
(Kirschbaum, 2000) and for annual temperaturemetrics in several stud-
ies across Europe (e.g. Riley and Bakkegard, 2006, Sleutel et al., 2007,
Heikkinen et al., 2013). By allowing nonlinear relationships in our
models, we can identify thresholds in these patterns for our sites.

The partial response curve (supplementary Fig. S3l) shows that in
the 1978 model, the coefficient for autumn temperature decreases fol-
lowing a sigmoid curve, which is steepest between 10 and 12 °C, indi-
cating greater change in the relationship to tSOC in this region, and
flattens out above 12 °C where further warming does not affect the re-
lationship to tSOC. Fig. S3q shows that in the 2007model the coefficient
for summer temperature followed a similar decreasing sigmoid curve,
which flattens out above 14 °C, again indicating that above this temper-
ature, further warming did not affect the relationship to tSOC. This may
reflect the fact that the shift towards higher summer temperature be-
tween 1978 and 2007 for our sample (as seen from the large increase
in sites N14 °C in Fig. 3i) has not been accompanied by reduction in
tSOC at these sites. However, in the combined years model, the partial
response curve for summer temperature (Fig. S3d) shows a linear neg-
ative relationship to tSOC, which does suggest that across the dataset,
warmer sites do in general have lower tSOC. It is important to note
that our data may reflect hysteresis in response to warming, which
may create artificial apparent thresholds in the 2007 model, and that
much larger changes in temperature metrics are forecast (IPCC
Climate Change, 2014)whichmay lead to greater response in the future.

Precipitation is known to be one of the most important controls on
SOC (Jenny, 1980) and has been shown to be effective in modelling
SOC and other soil properties (Gray et al., 2009; Kühnel et al., 2019).
However, control is via soil moisture, which is affected by many other
factors such as evapotranspiration, geology and topography, which
will reduce the strength of the relationship. Additionally, soil saturation
has nonlinear effects on vegetation growth and decomposition rates,
hence impacts of change are dependent on the initial saturation of soil
(Skopp et al., 1990). This may explain why precipitation metrics were
not statistically significant in the model for 1978 or 2007. Summer
and winter precipitation were statistically significant in the combined
spatial model; the partial response curves initially increased with in-
creasing precipitation, levelling out at higher winter precipitation, and
following a hump shaped curve to decrease at higher summer precipita-
tion (Supplementary Fig. S3b–c). This may suggest that the small in-
crease in sites with N800 mmwinter precipitation (Fig. 3k) has not led
to increase in tSOC. The increase in sites with wetter summers
(Fig. 3m) observed for our sample correlates with lower than expected
tSOC, with the partial function falling in this region (N350 mm), which
suggests that the increase in sites with very wet summers may have
led to tSOC losses. The partial response plot (Fig. S3c) indicates few
data points in this region, which combined with possible hysteresis in
soil response to the changing conditions may limit potential to draw
conclusions.

Precipitation is strongly co-correlated with pH, which is sampled at
the same spatial scale as tSOC, and thereforemay account for the appar-
ent unimportance of precipitationmetrics in the individual yearmodels.
Precipitation also has positive co-correlation with deposition variables
and negative relationship to temperature variables, whichmay all affect
the observed relationships in the models.

NH4 deposition was significant in 1978 and combined year models,
with similar partial response functions, showing positive trends at low
andmid-range of deposition. This could suggest that the spatial pattern
of NH4 deposition may have contributed to SOC accumulation in 1978
through increased NPP (as. per. Magnani et al., 2007, de Vries et al.,
2009, Tipping et al., 2017), which might explain some of the variation
between the surveys. However in the 1978 model the coefficient de-
creased in the high deposition range above 10 kg ha−1 yr−1, whereas
in the combined years model the coefficient levelled out in this data
range. This suggests that sites with recent higher deposition in 1978
hadnot accumulated tSOC, and the slight shift towards lower deposition
in 2007 does not appear to have caused any loss of tSOC. Positive corre-
lation with SO4 deposition, precipitation and mean temperature may
mean that, in the models, these other variables could account for
some of the influence of N deposition. Equally, co-correlation with SO4

deposition may explain why the partial correlation coefficient for NH4

decreases at high deposition in the 1978 model. Negative co-
correlation with pH may mean that the observed relationship in the
combined years model reflects a balancing out of lower than expected
tSOC at acidic sites in 1978. The effect of N deposition was estimated
to be ca. 10% SOC increase over 160 years in the UK data set compiled
by Tipping et al. (2017) which included a subset of CS sampling loca-
tions. Therefore declining deposition will affect NPP and as well as pH
and decomposition but at a far slower rate (0.06% pa) than promoted
under the 4 pour mille initiative, which may not be easily detected in
models or indeed by monitoring programmes such as CS.
3.4. Modelling topsoil carbon change

The process of identifying potential drivers of topsoil C change may
be complicated by interactions between drivers, and nonlinearity of re-
lationships, aswell as the issue thatmany drivers affect both inputs and
losses of C from topsoil. Landmanagement changes have been shown to
be useful in understanding and modelling SOC change elsewhere in
Europe (e.g. Goidts et al., 2009; Kühnel et al., 2019). For the UK, changes
in landmanagementwhich are known to have occurred nationally over
the study period, forwhich site level data are not available, further com-
plicate the process of identifying influence from large scale drivers, but
may be partially accounted for by the inclusion of habitat type in the
models (Smith et al., 2007).Modelling byManning et al. (2015) showed
that impacts of cutting, grazing and fertiliser regimes did not help to ex-
plain national level variation in SOC, which were better explained by
vegetation indices such as those collected here.

Understanding of site level change is further complicated by small
scale variation, meaning that repeat samples will capture variation
within a field or between horizons (particularly if erosion or tillage
has occurred) in addition to change over time. A viable tSOC change
model relating changes at the soil core scale to changes in drivers at
1 km scale is reliant on a change signal which is greater than the noise
associated with resampling error. Although the validation of the 2007
spatial model against LUCAS data showed good performance, it would
not be sufficient to pick up the 0.4% per year level of change in SOC of
interest for the 4 pour mille initiative for site level changes (Rhodes,
2019). Indeed, Smith et al. (2010) note that for National Soil Inventory
Scotland sites without land-use change, the uncertainty in currentmea-
surements exceeded recorded change over a 19–31 year period. How-
ever, site level errors can be expected to average out across a
sufficiently large sample, hence the use of statistical approaches across
a large dataset like CS, which are designed to detect national and habitat
level trends in soil properties for national-scale reporting. At this level
they have proved useful in demonstrating changes such as a 0.4% loss
a year from well-mixed arable soils between 1978 and 2007
(Reynolds et al., 2013). However for site level changes, short range var-
iability for many unimproved soils, combined with the current slow
rates of change over our study period, limits the power of this type of
dataset to use change models to identify potential drivers without
major additional investment in sampling intensity. There is potential
for rapid changes in upland soils driven by climate change extremes,
which may result in a larger signal more easily detected in the future.
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Nonetheless, we tested whether site level change and co-located
driver data can be used to identify a model of tSOC change, assuming
that error is equally distributed about the mean, and the large number
of soil plots could enable identification of statistically significant effects.
Using the 472 re-sampled soil plots with consistent land use and all re-
quiredmetrics, we attempted to develop amixedmodel of the temporal
changes in tSOC between the 1978 and 2007 (see supplementarymate-
rial). Despite the robustly significant models of tSOC spatial pattern in
each of the individual years, it was not possible to derive a useful
model based on the observed changes between the years. However,
the changes in relative importance of the drivers between the 1978
and 2007 spatial models provides evidence and insight into the covari-
ation and shifting balance of the drivers of tSOC change, and re-enforces
the assertion that no detectable change in tSOC does not necessarily
mean no significant dynamics affecting tSOC.

It is critical to improve understanding of the impacts of the key
drivers of change in SOC given projected global changes. Findings will
support development of new mechanistic models in terms of process
representation (e.g. work by the International Soil Modelling Consor-
tium (Vereecken et al., 2016), or the MEMS model (Robertson et al.,
2019)), as well as helping to identify possible risk factors for soil carbon
loss, whichwill enable targeting ofmore data and time intensive assess-
ments. Improved understanding of drivers, controls and areas at risk of
soil C loss can also improve sustainability of soil management (Nisbet,
2007) andmay help tomeet theUNState of Soils ambition formore sus-
tainable management of soils, the UN Sustainable Development Goal
15.3 to avoid land degradation and the 4 pour mille initiative (Rhodes,
2019).
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