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Abstract
Accurately predicting total sea-level including tides and storm surges is key to protecting and
managing our coastal environment. However, dynamically forecasting sea level extremes is
computationally expensive. Here a novel alternative based on ensembles of artificial neural
networks independently trained at over 600 tide gauges around the world, is used to predict the
total sea-level based on tidal harmonics and atmospheric conditions at each site. The results show
globally-consistent high skill of the neural networks (NNs) to capture the sea variability at gauges
around the globe. While the main atmosphere-driven dynamics can be captured with multivariate
linear regressions, atmospheric-driven intensification, tide-surge and tide-tide non-linearities in
complex coastal environments are only predicted with the NNs. In addition, the non-linear NN
approach provides a simple and consistent framework to assess the uncertainty through a
probabilistic forecast. These new and cheap methods are relatively easy to setup and could be a
valuable tool combined with more expensive dynamical model in order to improve local resilience.

1. Introduction

Predicting accurately the sea water level variability
from short to large time scales is of great import-
ance for coastal communities. The range of impacts
and challenges is broad, ranging from harbour man-
agement (where minimum water level is required to
allow ships to enter the harbour) to life-threatening
natural disasters or long-term sea level rise leading to
loss of land availability and fertility for agriculture.
Coastal flooding due to storm surges is considered as
one of the biggest sources of casualties during trop-
ical cyclones; storm surges have large social, economic
and environmental impacts [1–4]. Therefore, timely
and accurate prediction of sea-level variability and
extremes is crucial for global coastal resilience.

Deterministic numerical models have proven to
be powerful tools for predicting sea variability. In
particular they are effective for simulating storm
surge propagation and impacts, and facilitate under-
standing of the complex physical processes associ-
ated with the storms [5–11]. However, they are rel-
atively expensive and complex to set up and run

operationally, with associated additional computa-
tion costs if ensemble forecasts are required for ana-
lysis of risk or variability.

More generally, machine learning approaches and
particularly deep learning have shown huge potential
in pattern recognition for a wide range of applica-
tions. Recently, these techniques have emerged in cli-
mate, meteorological and oceanographic fields with
convincing results. For example, convolutional neural
networks have been trained to predict variations in
the El Ninõ/Southern Oscillation (ENSO) with skill
superior to state-of-the-art dynamical forecast sys-
tems [12]. Machine learning algorithms have also
been used to aggregate ‘best-estimate’ forecasts from
an ensemble for the predictions of ocean waves [13].
Neural networks have also successfully been used to
bias-correct measurements leading to more homo-
geneous climate data records [14].

In sea level and tide processes, regressions have
been used to infer meteorological impacts on sea
water level and storm surges [15, 16]. Regres-
sion models have also been successfully driven by
offshore gauge data in New York [17] and statistical
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models have been applied to estimate extreme storm
surges and associated return periods [18], or as
bias-correction to water level predictions along US
East Coast [19, 20]. The latter have shown similar per-
formance compared to deterministic hydrodynamic
models in capturing extremes in some cases. More
recently, storm surges hindcasts in estuarine ports of
the UK have been possible using artificial neural net-
works leading to accurate forecasting coastal flooding
[21]. Neural networks have also been used for tide
predictions at Mangalore, India [22], and along the
Swedish coast to analyse long sea level records [23]
where higher performance was obtained when local
sea level forcing was prescribed (compared to linear
models).

The aim of this study is to describe a general
non-tuned machine learning framework, based on
neural networks, and apply this around the globewith
demonstrable skill in predicting non-tidal sea level
residuals and extremes. The manuscript is structured
as follows. Section 2 presents the GESLA tide-gauge
data and associated pre-processing, the neural net-
work ensemble, and the split between training and
test sets as well as the scoring probabilistic meas-
ure. The first part of section 3 shows the key res-
ults of the study based on performance statistics for
over 600 gauges around the world while the second
part focuses on two particular regions with contrast-
ing behaviours. Finally, section 4 discusses the results,
the benefits and limitations of the approach, and the
future steps.

2. Methods

2.1. Global extreme sea level analysis
dataset—GESLA
The Global Extreme Sea Level Analysis database
(GESLA version 2 [24]) provides unified high-
frequency (15 min to 1 hour temporal resolu-
tion) quasi-global coastal sea level water informa-
tion. Only public data (around 1070 gauges) are
used in the present study. While data have been
standardised, a simple but strict methodology was
applied to pre-process each gauge in a system-
atic and reproducible manner. The key aspect of
this stage was the elimination or reduction of
potential issues arising from spurious data (e.g.
temporal or reference height shifts) as well as
removing long-term trends. An example of the pre-
processing stage is illustrated in Supplementary figure
1 (stacks.iop.org/ERL/15/074030/mmedia). The fol-
lowing steps were sequentially applied to each gauge:

• Data from 1980 to 2015 are included and overlaps
with the atmospheric reanalysis (see 2.2),

• For simplicity, only gauges with scheduled hourly,
data are processed (as this only excluded 21
gauges). However, if the time steps are not constant
and the percentage of time steps equal to the

statistical mode is less than 95%, the gauge is rejec-
ted;

• Sections are defined as time-series records where
breaks are less than 7 days long;

• A yearly moving average is computed on each sec-
tion;

• Given a record that isN years long, tidal harmonic
analysis is computed yearly (going backwards)
from the most recent one-year period, using the
open-source pytides pythonmodule [25]. The ana-
lysis outputs 37 complex constituents per year (Sa,
Ssa, Mm,MSF,Mf, 2Q1, Q1, rho1, O1, M1, P1, S1,
K1, J1,OO1, 2N2,mu2,N2, nu2,M2, lambda2, L2,
T2, S2, R2, K2, 2SM2, 2MK3, M3, MK3, M4, MS4,
S4, MN4, M6, N6, M8);

• Spurious years in harmonic analysis are identified
by separately inspecting just the M2 and K1 con-
stituents. A gauge year can be rejected by either
constituent if it exceeds a threshold separation
from the mean (see e.g. Fig S1b). The procedure
is as follows: an average complex value is calcu-
lated from N yearly values (red square). The aver-
age separation from thismean is calculated (ϵ̄) over
N years. The complex difference (ϵyeari) for each
year from the mean is independently assessed and
the gauge year is rejected if

ϵyeari >max(3 cm,min(5 cm,10% ϵ̄))

(e.g. green diamonds). This procedure ensures the
rejection is based on the relative size of the separa-
tion from theN-yearmeanwhilst preventing rejec-
tion for very small amplitudes.

• The total water signal is re-interpolated over a con-
stant 1 h time vector based on the original tem-
poral resolution excluding rejected periods of data;

• Finally, only gauges with over 3 (not necessarily
contiguous) years of data are kept, with at least
2 years for training and one year for testing the
model.

At the end of this process, 621 gauges remain
and are used in this study. They provide an extensive
coverage of the coastlines worldwide. The non-tidal
residual is computed as the difference between the
observations and the harmonic tide prediction (com-
puted from all remaining sections). The aim was to
implement a reasonably simple, robust and consist-
ent pre-processing methodology to objectively deal
with the large amount of data available. However, one
could define different thresholds or apply different
type of pre-processing to the gauge; exploratory ana-
lysis suggests that this would not impact the key res-
ults of this study.

2.2. High resolution atmospheric and ocean wave
reanalysis - ERA5
To assess the impact of atmospheric and ocean wave
processes on the non-tidal residual, an ensemble
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of hourly physical predictors are extracted from
the high-resolution atmospheric reanalysis ERA5 of
ECMWF[26]. These are pre-processed over three
length scales:

Local −10 m wind components and mean sea level
pressure at 0.25◦ resolution as well as signific-
ant wave heights (including wind waves and
swell) and peak periods (at 0.5◦ resolution) at
the closest grid point from the gauge;

Neighbourhood - spatially accumulated precipitation
in a 3.5◦ box centred on the gauge;

Regional - maximum and minimum wind speed
components, maximum wave heights and min-
imum mean sea level pressure in a 5◦ box
centred on the gauge.

In addition, proceeding 3 h gradients of all the
atmospheric predictors are computed to capture late
intensification / de-intensification (for example a low
pressure system developing rapidly) as well as for the
harmonic tidal level.

2.3. Machine learning
Each gauge is modelled independently using arti-
ficial Neural Networks (NNs). Each NN is com-
posed of 3 hidden layers of 48 neurones. The input
layer has 33 nodes (one for each environmental pre-
dictor described in previous sections combined with
7 hourly time steps of harmonic tide), and the outer
layer has a single node providing the non-tidal resid-
ual target. While a sigmoid activation function is
used for the last layer, the hidden layers consists of
Leaky ReLU activation functions [27] combined with
batch normalization layer to normalise the activations
[28]. The NN had just under 7000 trainable para-
meters and its schematic view is provided in Sup-
plementary figure 2. Finally, an Adam solver [29] is
used tominimise the root mean square error between
non-tidal residual predictions and observations; the
NN is fitted for 150 iterations or less if the errors is
not reduced within 10 consecutive iterations. Due to
the large number of gauges available, this configura-
tion has been lightly tuned on three random gauges
(namely, a few combinations of the number of neur-
ones, number of hidden layers and type of activa-
tion) and then applied to the full set without further
adjustment.

For each gauge, the test set consists of the most
recent year of recorded data (8784 time steps) while
the rest is part of the training set. Therefore depend-
ing on the gauge, the training set extends from 2 years
to 32 years permitting an analysis of the impact of the
training size on the performance. Figure 1(a) shows
the number of gauges as a function of the length of
the training data.

An ensemble of 20 Neural Networks (NNs)
is trained at each gauge location to generate a
probabilistic forecast. Each NN is fitted using 50%

of the training set, randomly sampled. While a lar-
ger ensemble would have improved our probabilistic
forecast, 20 members were chosen as a pragmatic bal-
ance between computational cost (over 12 000 NNs
have been fitted in this study) and variability in the
predictions.

All data (features and targets) have been stand-
ardised and normalised. The Neural Networks (NNs)
are built with the Keras Python module [30] interfa-
cing with Tensorflow[31] while processing wasmainly
done with the Scikit-Learn packages [32]. The neural
networks have the traditional structure, where each
node is connected to every node of the next layer.
The temporal evolution of sea water level and non-
tidal residual is continuous. Recurrent layers (such
as Long Short-Term Memory, LSTM layers [33]) can
be used to capture the dynamics of temporal pro-
cesses. An LSTMneural network structure was imple-
mented and tested for a few gauges but it did not
lead to significant improvements of the predictions,
and therefore a more simple and traditional struc-
ture was kept in this study. Finally, as a baseline, an
ensemble of multi-variate linear regressions are fit-
ted and used for predicting sea water level in the same
manner as the neural networks for comparison; again
for the linear regression no time series model was
used.

Note that the neural network described above
did not converge for 11 randomly-located gauges.
Given the global coverage and the large number of
gauges, these 11 gauges have been removed and no
further investigation were carried out on these par-
ticular gauges.

2.4. Continuous ranked probability score
To assess the skills of the probabilistic predictions,
a Continuous Ranked Probability Score (CRPS) is
computed, with units cm. In weather forecasting, this
is a common qualitative measure of performance for
probabilistic forecasts comparing a distribution with
observations [34–36].

The CRPS is defined as a quadratic measure of the
difference between predicted,Hp(ηr; t), and observed,
Ho(ηr; t), cumulative density functions (CDF). The
quadratic measure is integrated over all possible
residuals, z, and then averaged over time t to give a
CRPS for each gauge

CRPS=
1

N

N∑
t=1

(ˆ ηr<∞

ηr>−∞
[Hp(ηr; t)−Ho(ηr; t)]

2 dz

)
,

where for each gauge Hp(z; t) denotes the probabil-
ity of an anomaly less or equal to ηr being predicted
at time t; and Ho(ηr; t) is step-function, denoting the
probability of an anomaly less or equal to ηr being
observed at time t.

Intuitively, an ensemble producing a wide range
of outcomes or an ensemble with amean significantly
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Figure 1. Statistics per number of training years for the 95th percentile. (a) Distribution of the number of GESLA gauges, (b)
percentage skill gain from the non-tidal residual to the neural network predictions and (c) the continuous ranked probability
score (equivalent to a mean absolute error) for both non-tidal residuals and neural network predictions. The box plots shows the
mean, the quartiles and the extend of the distributions excluding outliers (marked as diamonds). Systematic gain of knowledge
with the neural network and significant for the full range of training periods.

different from the observed values would be heavily
penalised while a narrow ensemble centred on the
observations would lead to a better score. The CRPS
is computed for the one year test period as well as
for 95th percentile extreme values (surge). While a
20-member ensemble is not extensive, using a CRPS
metric is a better validation approach compared to
using the mean or median where the information

contained in the ensemble is mainly lost. The CRPS
are computed using the properscoring Python library.

3. Results

3.1. Global skills of the NN
The CRPS is computed for the observed non-tidal
residual to provide a baselinemetric for the signal not
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Figure 2. Continuous Ranked Probability Score for the 95th percentile for each of the 610 GESLA gauges; (a) for the non-tidal
residual (baseline) and (b) for the Neural Network ensemble predictions. Strong reduction of the errors are consistently obtained
with the Neural network, particularly in the mid-latitude regions.

captured by the astronomical harmonic analysis. The
harmonic analysis does not aim (and has not been
designed) to capture this kind of variability; the non-
tidal residual simply provides a first-order baseline
for comparison based on a 37 constituents harmonic
analysis and it is expected than any method should
capture parts of the non-tidal signal. The boxplot
summarising this baseline skills per number of train-
ing years as well as their global distribution for the
extreme values (over the 95th percentile anomaly) are
presented in figure 1(c) (yellow box) and figure 2(a),
respectively. The length of the time series has a weak
impact on the CRPS, which ranges from 15 to 25 cm
on average. Figure 2(a) illustrates the spatial variabil-
ity of the CRPS with larger value in mid latitudes due
to consistent winter storms and larger tides compared
to tropical regions.

The NNs consistently capture the non-tidal resid-
ual due to the effect of atmospheric forcing as well
as tide-tide interactions and tide-surge interactions
with a mean CRPS of around 10 cm (figure 1(c) -
blue box). The CRPS for outlier gauges with large
non-tidal residual can be improved from over 50 cm
to around 25 cm. Figure 1(b) shows the percent-
age of non-tidal residual (baseline) captured in the
NN predictions ranging from 30 to 60% on aver-
age. While longer training period improves the skills,
it appears that after 6 years of training data, the
performance remains fairly stable. While for any
gauge, the NN captures the non-tidal residual (fig-
ure 2(b)), the skill varies spatially (figure 3(a)). It
is mainly due to the ease of improving a bad skill
compared to reducing already good skills (lower than
10 cm).
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Figure 3. Percentage improvements between the different methods for the 95th percentile. (a) from non-tidal residual to neural
network and (b) from multivariate linear regressions to neural network. The neural network enhanced systematically the
improvement, particularly in regions where tides are large.

While the NN approach leads to high skill in
reconstructing extremes of non-tidal residual, it is
worth considering how a multivariate linear regres-
sion would perform in comparison. Figure 3(b)
shows the percentage improvement between the two
methods. While tropical regions show the lowest
improvements using a NN (10–20%), the skills at
higher latitude improves by up to 50% with clear
regions of the globe emerging as Europe, West coast
of North America, Alaska, Chinese Coast, North Aus-
tralia and the Northern coastline of Japan (facing the
Sea of Japan). Except one point in the Canary Islands,
the NN outperformed the regression anywhere else;
this might be due to a fitting issue at this particular
site (not investigated).

Supplementary figures 3, 4 and 5 highlight sim-
ilar results for the whole 1 year test time series. The
skill improvements is not as high as for the extremes
but is still significant and systematic. The Baltic sea
regions can be pointed here as a region of lower skill
improvement from the regression to the NN. This is
potentially due to the long time scale sea-level variab-
ility that is not included in the predictors used, due to
seasonally integrated winds and salinity changes [37].
Similar performance are also obtained for the lowest
levels (5th percentile, lowest level being of import-
ance for harbourmanagement) and the 99th percent-
ile (not shown) of the non-tidal residual.

Predicting the full range of non-tidal residuals
is key for a broad range of applications. However
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Figure 4. The 20 largest skew surges observed across all gauges in the test set, and the success of the neural net ensemble and
regression at modelling them. The skew surges are computed as the difference between the highest water level and the highest
harmonic tide level within a 12h window around the maximum non-tidal residual.

assessing the skill of the models in stressed condi-
tions is also of relevant importance. While the usual
extreme statistics cannot be applied to this study (the
test sets being only one year at each gauge), look-
ing at the most extreme skew surges within over 600
gauges highlights the capability of the models. Figure
4 shows the 20 largest skew surges in the test set. Pre-
dictions of these large skew surges are almost always
under-estimated compared to observations, but the
neural network ensemble shows some skill in cap-
turing them (over 2/3 of the signal) and systemat-
ically outperforms the multivariate linear regression.
Note that the present neural network and training set
have been designed to predict the complete time series
and not only the extreme storm surges; therefore the
training set is highly unbalanced such that extremes
are seen as outliers which penalises the model predic-
tions (more details on the impact of the the training
set are provided in discussion).

3.2. Time series at two particular locations
The previous section focus on time-averaged skills in
capturing the non-tidal residual. However, it is dif-
ficult to assess the highly-complex time variability of
this residual. Therefore, two gauges have been selected
for a more detailed investigation for their very differ-
ent characteristics:

• Anchorage (149.89 W / 61.24 N - around 14 years
of training data - Supp. Figure 6(a), Alaska, USA,
located at the end of the Cook inlet and protected
from the open ocean. Due to its location, Anchor-
age is not exposed to extreme surges (less than

1 m in the test year) but the time series exhib-
its significant tide-related variability not captured
by the harmonic analysis with this constituent set
(figure 5(a)),

• Dunkirk (2.37E / 51.05 N - also around 14 years
of training data - Supp. Figure 6(b). This gauge
was used in the light tuning, mentioned in the
method section),North France, located in the Eng-
lish channel, on the North Sea side. For Dunkirk
gauge, the test year includes the winter 2013–
2014 when severe winterstorm Xaver (Dec. 2013)
crossed Northern part of the North Sea and led
to significant surges all along the North Sea coast
[38]. This was also the highest sea water level
anomaly in our 15-year period atDunkirk (around
2.5 m while the highest peak in the 14 train-
ing years was 2.2 m). Finally, the storm occurred
far away from Dunkirk where pressure and wind
speed did not show any exceptional values but the
surge wave travelled around the North Sea, mak-
ing an interesting and challenging case for the NN
(figure 5(b)).

Figure 5 shows a fewweeks of non-tidal residual at
each selected gauge. The multivariate regression cap-
tures fairly well the long-term smoothed variability at
Anchorage (figure 5(a)) but cannot capture the high-
temporal variability induced by complex tides in the
Cook inlet that were not computed in the tidal har-
monic analysis; the ensemble variability is also almost
non-existent. On the other hand, the NN ensemble
captures efficiently the variability (with some spread)
leading to a good CRPS (9 cm versus 21 cm for the
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Figure 5. Example of time series extracted from the test time period in (a) Anchorage, Alaska, USA where strong tidal
interactions occurs and (b) Dunkirk, North France during a severe winter. The thick line shows the mean of the ensemble. The
neural network shows significant skills in predicting the variability and extremes. The green thick line shows the MetOffice
deterministic CS3x forecast for the same period for comparison.

regression over the one year test window). A Four-
ier transform is applied to the one-year signal (fig-
ure 6(a)), highlighting the compelling skill of the NN
to capture the energy of the system at all time scales
while the regression underestimates by an order of
magnitude the energy for time scales lower than a
day. This shows the capacity of a non-linear NN to
predict tide-tide interactions or tide components not
included in the harmonic analysis.

Similar conclusions are obtained at Dunkirk.
While the extreme storm surges induced by storm
Xaver (around 6th December 2013) are under-
estimated (and so is the previous peak in late Novem-
ber), the prediction is more accurate than the one

predicted with a regression. For comparison, the Met
Office CS3x deterministic forecast [39] also under-
estimates the peak by around 75 cm (figure 5(b)).
Over the test year, the NNCRP scores 8 cm and 18 cm
for the mean and 95th percentile when the regres-
sion gets 13 cm and 32 cm. As for the Anchorage, the
energy is well captured by the NN at this gauge except
the two smaller peaks for periods of around 3h 40min
and 4 h 50 min. For periods longer than 1 day, the
energy is slightly under-estimated by both the regres-
sion and the NN. This highlights skills into predict-
ing seawater anomaly and particularly extreme events
using a simple NN forced by a small range of atmo-
spheric and wave data.
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Figure 6. Energy spectrum extracted from the full test year in (a) Anchorage, Alaska, USA where strong tidal interactions occurs
and (b) Dunkirk, North France during a severe winter. Again the neural network shows high skills at capturing the energy peaks
in non-tidal residual.

4. Discussion and conclusion

An ensemble of NNs have been built for over 600 tide
gauges spread around the world in order to predict
the non-tidal residual (total sea water level minus an
harmonic analysis based on 37 constituents), in term
of general behaviours as well as extremes events. The
results presented in this study have highlighted the
global skill of NNs in capturing non-tidal residual
variability and extremes, systematically outperform-
ing predictions based on multivariate linear regres-
sions (in term of CRPS but also in term of correl-
ations). Due to the large amount of available data,
the same simple pre-processing and neural network
structure were applied to each gauge. A higher level
of data quality control or gauge-by-gauge NN tuning

could have been applied, and better performances
would then be expected. However, analysis and pre-
processing requiring localised intervention was not
the aim of the study.

While it was expected that the non-linearity of
the NN would play a key role in predicting extreme
events through environmental forcing, the results
have shown an even better performance of the NNs
in their ability to represent tide-tide non-harmonic
interactions, treat noise, and express uncertainty.
Similar advantages are also reported in the applica-
tion of Bayesian approaches to the study of tidal cur-
rents [40]. Traditional harmonic and response meth-
ods [41, 42] have successfully been used for decades
to predict tidal amplitudes across the world; however
the advent of easily accessible meteorological data
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combined with novel applications of methods (for
example neural networks, as in this study), could offer
a new avenue for improving predictions by capturing
non-linear processes.

The model has also shown significant skill in
reconstructing extreme surges but still lacks accuracy
in the strongest events, in capturing the peak eleva-
tion (figures 4 and 5(b) for example). This is partially
due to the training data. Extremes can be seen as out-
liers and are only a fraction of the training set. The
machine learning technique minimises a cost func-
tion (here, root mean square errors) which general-
ises common behaviours, and is not well designed for
outliers. This leads to bias in the performance toward
the average dynamics and not towards the extreme
anomalies (positive or negative). Therefore the cap-
ability at predicting extremes could be improved by
using a differently balanced training set [43]. As a
simplistic example, one can draw a similar amount of
training data in regular bins covering the range of out-
comes (using sampling with replacement technique
for bins with a very small amount of data); this leads
to a more balanced training set. Supplementary fig-
ure 6(a) illustrates the impact of the training set on
the model skill at Dunkirk (during storm Xaver in
2013). The NN now captures the amplitude of the
peak on the 5th December as well as the determin-
istic CS3x model, and the peak on the 6th December
almost perfectly. The mean of the NN ensemble with
a balanced training set is 50 cmhigher than the unbal-
anced result. As seen in Supplementary figure 6(b), in
term of energy, the balanced training set is in much
better agreement with data for periods longer than
12 hours but it penalises the weaker period where the
energy in-between peaks is over-estimated. In terms
of CRPS, the mean score decreases by less than 1 cm
while the extremes (95th percentile) score improves
by 6 cm.

This type of model can be a great tool along-
side a deterministic numerical model to improve
coastal resilience and potentially set-up warnings in
the future as they can also be used to solve classifica-
tion problems instead of regression ones (as done in
the present work) enabling an outcome such as low
risk, high risk and extreme risk for example. It was
shown here that only a couple of years of training
data were enough to get reasonable skills, and there
is not significant skill improvement in 30 years train-
ing data compared to 6–7 years. In addition, though
not shown, even old data collected in the past could
be used for present forecasts as long as reference levels
have been corrected.

So far the present work has not be extended to loc-
ations with no data and the next stepwould be to built
a globally connected tool to predict non-tidal resid-
uals spatially. In addition a better representation of
the regional / global atmospheric forcing might help
to improve skill. This could be achieved via dimen-
sionality reduction of environmental information

based on unsupervised learning such as principal
component analysis or auto-encoder. Finally, invest-
igating more in depth the impact of using a more
complex neural network structure adapted to time
series (Long- Short Termmemory for example) could
also be of interest in the future. Setting up high-
resolution full physics numerical models in complex
inshore regimes is time and computationally expens-
ive and requires physical expertise. These new types
of machine learning approaches are appealing for
informing stakeholders where there is no capacity
for implementing such deterministic weather - surge
forecasting systems.
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