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ABSTRACT

Rifting may lead ultimately to continental breakup, but the identification and
characterization of the resulting crustal distribution remains challenging. Also, spatial and
temporal changes in breakup magmatism may affect the geophysical character of the newly
formed oceanic crust, resulting in contrasting interpretations of crustal composition and
distribution. In the Eastern Black Sea Basin (EBSB), the evolution from rifting to breakup has
been long debated, with several interpretations for the distribution of stretched continental and
oceanic crust. We interpret basement morphological variations from long-offset seismic
reflection profiles, highlighting a NW-SE transition from faulted and tilted continental blocks, to
a rough and then smoother basement. We model magnetic anomalies to constrain further the
various basement domains, and infer the presence of a weakly-magnetized, stretched continental
crust in the NW, and a 0.4-2.8 A/m layer coinciding with the smooth basement in the central and

SE area. We conclude that the EBSB oceanic crust extends further to the NW than was suggested
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previously from an abrupt change in crustal thickness and lower-crustal velocity. The apparent
discrepancy between these different types of geophysical evidence may result from changes in
magma supply during breakup, affecting thickness and velocity structure of the resulting oceanic
crust.

1. INTRODUCTION and METHOD
Observations of the structure and composition of the basement underlying rifted margins can
unravel the geodynamic processes driving their formation. High-quality, 2D/3D regional seismic
datasets provide insights into basement structures and sediment filling within the distal part of
the margin, thus helping geodynamic reconstruction (e.g., Tucholke et al., 2007; Haupert et al.,
2016). In deep-water and thick sedimentary infill settings, and when the basement is neither
exposed nor sampled by well data, our ability to interpret rifting and breakup features and
basement structures is limited. Particularly in these cases, refraction seismic (e.g., Dunn and
Martinez, 2011) and potential field data (e.g., Ball et al., 2013) can be used to investigate the
nature of the crust, its thickness and velocity structure, and the amount of magmatism
contributing at its formation (e.g., Franke, 2013). Only a few studies integrate these approaches
(e.g., Prada et al., 2014; Tugend et al., 2015).
In the Eastern Black Sea Basin (EBSB), interpretations of different datasets commonly disagree.
Crustal thickness and lower-crustal velocities from wide-angle seismic data define a small area
of oceanic crust to the SE of the basin (Shillington et al., 2009). Evidence for hummocky
basement structures along seismic reflection profiles suggest a narrow and elongated oceanic
crust extending further NW (Nikishin et al., 2015). Gravity modeling has also been used to
define crustal boundaries, with different results (e.g., Starostenko et al., 2004; Graham et al.,

2013) (Fig. DR1 in GSA Data Repository'). Therefore, although it is generally agreed that the
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EBSB formed as a Late Cretaceous-early Cenozoic back-arc basin (e.g., Zonenshain and Le
Pichon, 1986; Finetti et al., 1988; Okay et al., 1994), its crustal distribution is still debated.

New long-offset seismic reflection profiles, acquired in 2011 by Geology Without Limits (GWL)
and ION GXT (Table DR1), allowed Monteleone et al. (2019) to define the spatial and temporal
distribution of extension and breakup processes in the EBSB. Here, we build on that analysis
using additional data to untangle the lack of consensus on the EBSB crustal distribution. We first
differentiate crustal domains based on basement morphological changes and the interaction
between basement structures, stratigraphic and structural elements visible from long-offset
seismic reflection profiles. We then apply magnetic anomaly modeling constrained by our
seismic interpretation to investigate the magnetization character of the seismically identified
domains, using the Earth Magnetic Anomaly Grid (EMAG2-v3) over the EBSB region (Meyer et
al., 2017) (Fig. 1; Fig. DR2-8) (see GSA Data Repository). Magnetic data have been previously
used in the Black Sea to define the age of basin opening (Kazmin et al., 2007), crustal scale
structures and faulting (Starostenko et al., 2015), and the thermal structure of the lithosphere
(Starostenko et al., 2014), but no modeling has been attempted yet to define crustal composition.
Our results show a NW-SE change in morphological and magnetic character of the EBSB
basement. Our inferred oceanic domain extends into a region where the presence of thinned
continental crust was previously inferred from the seismic velocity structure. We relate our new

interpretation to along-axis changes in breakup kinematics and magma supply during spreading.
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2. RESULTS and DISCUSSION

2.1.  Seismic Interpretation and Magnetic Anomaly Modeling
We identify the EBSB basement as the most continuous seismic reflection underlying the
sedimentary infill, showing a variable morphological and structural character (Fig. 2). Over the
structural highs (Shatsky Ridge and MBSH) and within the narrow NW rift, the basement is
affected by normal faults generating half-graben structures bounded by faulted and tilted crustal
blocks overlain by clear wedge-shaped syn-rift deposits (Fig. 2B). These elements are typically
associated with stretched continental basement (Domain I) (Fig. 2A, 2B). In this area, the
observed magnetic anomaly is best fit by a weakly-magnetized layer (< 0.4 A/m), also
suggesting a continental nature for Domain I, bounded by two highly magnetized layers
corresponding to mafic magmatism over the Shatsky Ridge and MBSH (e.g., Starostenko et al.,
2004; Nikishin et al., 2015) (Fig. DR2-7). Previous results from wide-angle seismic data support
this interpretation (Fig. 2A).
Seaward of Domain I, the basement has relief of similar magnitude but with no evidence for
extensional faulting, nor clear syn-rift deposits (Fig. 2C). This basement extends 70-80 km
along-axis, and from its distinctive morphological character we interpret it as a separate crustal
domain (Domain II) (Fig. 2A, 2C). This rough basement was interpreted by Nikishin et al.
(2015) as having oceanic affinity. Rough basement may result from slow seafloor spreading
(e.g., Malinverno, 1991), or mantle exhumation processes (e.g., Sauter et al., 2018). The
observed magnetic anomaly along Domain II is best fit by a weakly-magnetized layer,
suggesting a continental rather than oceanic nature (Fig. 2C; Fig. DR4-5). Although we cannot

rule out the presence of exhumed mantle, which also may have rather weak magnetization (e.g.,
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Sibuet et al., 2007), seismic velocities suggest the presence of highly stretched continental crust
in this area (Shillington et al., 2009) (Fig. 2A).

The rough basement of Domain II becomes smoother towards the central and SE part of the
basin where well-layered, post-rift deposits are predominant (Domain III) (Fig. 2D, 2E; Fig.
DR4-7). No extensional faults are visible from seismic data, although high-angle NE-SW-
trending transform faults are present (Fig. 2A, 2E). Along some profiles, volcano-like structures
have been interpreted as evidence for enhanced magmatism in this area (Nikishin et al., 2015)
(Fig. 2A; Fig. DR7). Smooth basement with extrusive volcanic material may relate to
anomalously thick and/or fast spreading oceanic crust (e.g., Small, 1994; Searle et al., 2010),
exhumed mantle (e.g., Pickup et al., 1996), or thinned continental crust overlain by basaltic flows
(e.g., Zhao et al., 2016). At Domain III, magnetic anomaly data is best fit with negatively
magnetized layers with intensity bands between 0.4 and 2.8 A/m, in contrast to the weakly
magnetized Domain II (< 0.4 A/m) (Fig. 3; Fig. DR2), thus providing evidence against
continental crust or exhumed mantle. Serpentinized exhumed mantle may be significantly
magnetized (e.g., Sibuet et al., 2007), but its presence is excluded based on crustal seismic
velocities (Shillington et al., 2009).

Seismic data and magnetic anomaly modeling results support the presence of smooth and
magnetized oceanic crust along Domain III (Fig. 2-3; Fig. DR2-7). However, wide-angle data
indicate the presence of a thin crust (7-9 km) with low lower-crustal velocities (6.4-6.6 km/s) in
the NW, and of a thick crust (11-13 km) with high lower-crustal velocities (6.8-7.2 km /s) in the
SE. This change in crustal structure occurs close to the Ordu-Pitsunda transform fault (OPf) (Tari
et al., 2018), within Domain III (Fig. 2A, 2E). Shillington et al. (2009) interpreted this change as

a transition from highly stretched continental (NW) to thick oceanic (SE) crust (Fig. 2A), an
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interpretation inconsistent with the uniform magnetization character of Domain III. Our results
show that the best-fitting model along profile bs-110, over crust interpreted as continental by
Shillington et al. (2009), is obtained with magnetizations of 2.4-3.2 A/m over the Shatsky Ridge
and 0.6 A/m towards the Pontides magmatic arc (Fig. 3; Fig. DR7). In the central basin, the
observed anomaly is best fit by a ~ 125 km wide, negatively magnetized layer, with intensity
bands between 0.4 and 2.4 A/m (Fig. 3; Fig. DR7). Similar results are obtained along profile bs-
100 at the NW end of Domain 111, and profile bs-120 at the SE end of Domain III where the
velocity structure is clearly oceanic (Fig. 1, 2A; Fig. DR2-6). Although it is possible that
magnetic anomalies NW of the OPf are caused by syn-rift magmatic intrusions through thinned
continental crust (Starostenko et al., 2004), their intensity, overall continuity, and similarity to
anomalies in the oceanic domain to the SE, support their formation by seafloor spreading. Thus,
Domain III has a smooth and highly magnetized basement resembling that of oceanic crust,
extending the EBSB oceanic domain further NW than previously inferred from wide-angle data
(Fig. 2A). Gravity modeling also supports a more extended oceanic domain, with boundaries
comparable to our results (Graham et al., 2013) (Fig. DR1B).
Crustal thickness and velocity structure are usually reliable parameters to discriminate crustal
composition in extensional settings (e.g., Prada et al., 2014). However, observations from wide-
angle data and magnetic anomaly modeling suggest contradicting results on crustal distribution
in the EBSB. Below we explain this apparent contradiction based on the tectono-magmatic
evolution of the EBSB.

2.2. Tectono-Magmatic Evolution
The EBSB rotational opening resulted in a V-shaped basin with increased extension to the SE

(Okay et al., 1994; Shillington et al., 2008). Analytical and numerical models of V-shaped basins
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show that, as rifting propagates, stretching increases with distance from the pole of rotation and
breakup initiates away from the pole, propagating towards it and into stretched continental
lithosphere (e.g., Vink, 1982; Le Pourhiet et al., 2018). As spreading progresses, spatial and
temporal variations in magmatic crustal accretion driven by mantle temperature, strain
localization, and spreading rates, can influence the emplaced crustal structure and its geophysical
character (Franke, 2013). Changes in crustal structure within Domain III may reflect along-axis
changes in magmatism (e.g., Muller et al., 1999; Hooft et al., 2000), and/or variations in melt
supply over time (e.g., Tucholke et al., 1997; Cannat et al., 2003). Such changes would mainly
cause variations in oceanic Layer 3 thickness (e.g., Mutter and Mutter, 1993; Grevemeyer et al.,
2018). Oceanic Layer 2, characterized by lower seismic velocities (e.g., Mutter and Mutter,
1993) and considered to be the main source of oceanic magnetic anomalies (e.g., Talwani et al.,
1971), would not be much affected. An enhanced melt supply, driven by the advection of warm
asthenosphere during lithospheric thinning or by the presence of a hot mantle plume (e.g.,
Hopper et al., 2003), can form atypically thick oceanic crust with a well-developed, high-
velocity Layer 3. Lower melt supply, due to an initially cool lithosphere or conductive cooling at
slow extension rates suppressing partial melting (Bown and White, 1995), will result in a thinner
oceanic crust mostly characterized by Layer 2 velocities. Models of rotational basin opening
suggest that a decrease in extension rates toward the rotational pole results in an along-axis
reduction in the volumes of decompression melt (Franke, 2013), but do not explain the abrupt
change in crustal structure at the OPf (Fig. 2A, yellow line, Fig. 4).

Discontinuities and/or transform faults can control magma supply along spreading segments
(e.g., Fox and Gallo, 1984; Georgen and Lin, 2003), and thermal perturbation by transforms

often results in a reduction in crustal thickness near the transforms (e.g., Hooft et al., 2000),
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resulting in anomalous oceanic crustal structure (e.g., Dunn and Martinez, 2011). Numerical
models show that transfer/transform faults can act as rift propagation barriers delaying the
opening of consecutive rift segments (Koopmann et al., 2014). Rift delay can affect both mantle
and melt flow between segments, limiting the propagation of low-viscosity mantle across the
segment boundary, and favoring melt accumulation at the opening segment (Koopmann et al.,
2014). The model predicts rift-parallel flow and concomitant magmatic peaks near the
propagation barrier caused by the lateral pressure gradient between sequentially opening
segments. This flow may result in abrupt changes in crustal thickness at segment boundaries
matching observations from the EBSB. Thus, the OPf may have acted as a rift propagation
barrier between SE and NW segments, resulting in pooling of melt to the SE. Such a model
would explain the abrupt transition from a thick oceanic crust SE of the OPf, with a well-
developed Layer 3, and thin oceanic crust NW of the OPf, with a thin/absent Layer 3, velocities
similar to those of thinned continental crust, but still with a distinctive magnetic character (Fig.
4).

Based on these considerations, we propose that the observed variations in crustal thickness and
lower-crustal velocities in Domain III result from changes in oceanic crustal accretion rather than
a change in crustal type. Variations in magma supply driven by the geometry of the opening rift,
and the effect of segmentation, were major controls on the basin architecture and the crustal

structure at the newly emplaced EBSB crust.
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CONCLUSIONS

Based on basement morphology and magnetization, we have drawn new boundaries for the
oceanic crust in the EBSB. Changes in crustal thickness and velocity structure from wide-angle
seismic data within this oceanic domain, previously interpreted to show oceanic crust only to the
very SE, are interpreted instead as evidence for changes in magma supply during spreading. Rift
segmentation and transform faults may have played an important role in controlling the along-
axis flow of mantle and melt. Initial spreading focused in the wider SE rift segment, where
enhanced decompression melting and melt pooling caused the emplacement of thick oceanic
crust with a well-developed Layer 3. Melt propagation to the NW was limited by transform
faults, particularly the OPf, and/or by rift narrowing suppressing partial melting, resulting in the
emplacement of a thinner oceanic crust lacking a well-developed Layer 3.

This study highlights the ambiguity in the geophysical characterization of crustal type and
distribution in rifted margin settings. Although large amount of data are often available, different
and perhaps contradicting interpretations are possible, especially where geophysical evidence
deviates from what is “normally” expected for continental and oceanic crusts. In such cases, to

avoid contradicting interpretations, data comparison and integration is essential.
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FIGURE CAPTIONS

Figure 1. Reduced-to-pole magnetic anomaly map (EMAG2-v3) for the EBSB region. Black
lines mark GWL seismic profiles. Prominent positive anomalies correspond to the Shatsky Ridge
(SR), the Mid Black Sea High (MBSH), the Eastern Pontides (EP) magmatic arc, and contrast

with the negative anomaly of the central basin.

Figure 2. Summary of the basement morphology and distribution across the EBSB based on
seismic interpretation. (A) Map of the identified crustal domains (Domain I, IT and III). Overlain
on map, the location of the GWL profiles, of sections shown in (B)-(E), and of wide-angle
seismic profiles (Shillington et al., 2009). The color code for the wide-angle lines shows the
crustal distribution interpreted by Shillington et al. (2009). Volcanics (red stars) are identified
within Domain III (Nikishin et al., 2015). Transform faults interpreted in the SE of the basin are
named after Tari et al. (2018). To the SE, we have insufficient data to constrain the seismic
character in Domain III(?). (B) Domain I - tilted and faulted crustal blocks. (C) Domain II -
rough basement with no extensional faulting, nor syn-rift deposits. (D) Domain III - smooth
basement with no extensional faulting. (E) Domain III - smooth basement affected by high-angle
transform faults; the thick sub-vertical dashed line shows the location of the Ordu-Pitsuda fault

(OP).

Figure 3. Magnetic anomaly modeling along profile bs-110 (location shown in Figs.1 and 2A).
Top panel displays the comparison between calculated (red line) and observed (black line)
anomalies. The root-mean-squared (RMS) error, expressed in nT, between observed and

calculated anomaly is shown at the bottom left corner. The grey band represents the anomaly
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variations 15 km either side of the profile. Colored backgrounds show the lateral extent and
intensity (dark - high intensity; pale - low intensity) of the magnetized layers: pink - continental
domain; blue - oceanic crust. Bottom panel shows the model generating the calculated anomaly

and the magnetization for each layer.

Figure 4. Conceptual 3D and 2D models for oceanic crustal accretion in the EBSB. After back-
arc extension, breakup focused in the wider SE rift where higher amount of decompression melt
and melt focusing favored the emplacement of a thick oceanic crust with a well-developed Layer
3 (L3). Some volcanics are also visible in this area, probably extruded along fracture zones
separating different spreading segments. Transform faults, particularly the OPf, acted as barriers
limiting melt propagation towards the NW. In this area, a reduced supply of decompression melt
and a limited melt migration from the SE segment, caused the emplacement of a thinner oceanic
crust characterized mostly by the upper oceanic Layer 2 (L2). The main geophysical difference
between the SE and the NW oceanic domains is the change in oceanic crustal thickness and

velocity structure, related to the absence/near absence of L3 along the NW segment.

'GSA Data Repository item 2019xxx, additional information on seismic data (Table DR1),
magnetic anomaly data and methodology used in this study, together with a comparison between
our and previous results on crustal distribution in the basin (Figure DR1), and additional
magnetic anomaly modeling results (Figures DR2-8), is available online at
http://www.geosociety.org/datarepository/2019/, or on request from editing@geosociety.org or

Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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