
Topographical Control of the Source-Sink and Wind
Stress-Driven Planetary Geostrophic Circulation
in a Polar Basin
Estanislao Gavilan Pascual-Ahuir1,2 , Andrew J. Willmott3, Miguel Morales Maqueda4,
and Maria Luneva5

1College of Oceanography, Hohai University, Nanjing, China, 2Southern Marine Science and Engineering Guangdong
Laboratory (Zhuhai), Zhuhai, China, 3School of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne, UK, 4School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK,
5National Oceanography Centre, Liverpool, UK

Abstract The effects of topography on the barotropic circulation in a polar basin are examined
analytically and numerically. New approximate linear analytical solutions are presented for steady-state
wind and boundary forced barotropic planetary geostrophic circulation in a circular polar basin with a step
shelf. The solutions are obtained by retaining the full spherical geometry in the derivation of the forced
potential vorticity equation; thereafter the colatitude is fixed in the coefficients of this governing equation.
The accuracy of the analytical solutions is evaluated by comparing them with the equivalent numerical
solutions obtained using the NEMO modeling system. Subsequently, the impact of a nonuniform width
shelf on source-sink-driven circulation is investigated numerically. The equipartition of fluid entering the
source strait into cyclonic and anticyclonic shelf currents, exiting the basin at the sink strait, in a basin
with a uniform width shelf is shown to be modified when the shelf width varies. In general, the wider shelf
supports a current with larger transport, irrespective of the azimuthal extent of the wider shelf. The
study concludes with a numerical investigation of wind-driven circulation in a basin with a step shelf,
three straits, and a transpolar ridge, a prototype Arctic Ocean simulation. Topographic steering by the
ridge supports a transpolar drift current, the magnitude of which depends on the ridge height. Without the
ridge, the transpolar drift current is absent and the circulation is confined to gyres on the shelf and in the
deep basin.

Plain Language Summary The direction of the currents in the Arctic Ocean is strongly
influenced by the varying depth of the basin. Specifically, the currents attempt to follow paths where
the depth does not change. We refer to such currents as being “steered” by the underlying sea bed
features, such as the ridges, seamounts and continental shelves. In this study, we describe new
mathematical models for predicting the pathways of the Arctic Ocean currents and therefore the
importance of the “steering” effect. We demonstrate that the flow of water from the eastern Arctic Siberian
shelf across the pole to the western Arctic North American shelf is “steered” by an underwater ridge.
Our research suggests that the path of this transpolar current will not change as Arctic summer sea ice
disappears in response to global warming.

1. Introduction
Analytical solutions for wind- and boundary-forced barotropic ocean circulation in a polar cap are few and
far between in the refereed literature. One reason for this is that on the polar plane, the high-latitude equiv-
alent of the midlatitude 𝛽 plane, the Coriolis parameter, varies quadratically with meridional distance from
the pole (see LeBlond, 1964). In the context of linearized barotropic ocean dynamics on the polar plane,
the vorticity equation will therefore have nonconstant coefficients. Nevertheless, Luneva et al. (2012) and
Willmott and Luneva (2015) have developed analytical solutions for geostrophic adjustment and steady
wind-driven ocean circulation, respectively, in a polar cap using the polar plane approximation. The polar
plane approximation is also used by LeBlond (1964) to obtain an analytical dispersion relation for freely
propagating divergent planetary waves in a flat bottom ocean in a polar cap.
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Figure 1. Contours of the mean barotropic streamfunction (in Sv) in the Arctic Ocean for the period January 2003 to
December 2011. Shown in color is log10 (𝑓∕(dH)), where f is the Coriolis parameter, H is ocean depth and
d = 1.405 × 10−5 m−1 s−1 is a normalization constant. The streamfunction was calculated from monthly mean output
of the TOPAZ4 model (Sakov et al., 2012).

An alternative approach for developing analytical solutions for barotropic planetary geostrophic ocean cir-
culation in a polar cap was proposed by Imawaki and Takano (1974). In this study the exact vorticity equation
is derived in terms of spherical polar coordinates. Thereafter, the colatitudinal dependence of the coefficients
in this equation is suppressed by fixing the colatitude at a value midway between the pole and location of
the basin boundary. The resulting constant coefficient vorticity equation was then solved analytically using
a Fourier method for steady source-sink-driven circulation in a flat bottom polar cap. The ideas discussed
in Imawaki and Takano (1974) appear to have been neglected for over 40 years until Willmott and Gavilan
Pascual-Ahuir (2017) employ them to derive an approximate dispersion relation for divergent planetary
waves in a polar cap, a problem first addressed by LeBlond (1964). A third approach for developing accurate
approximations for planetary and gravity wave frequencies in a spherical polar cap is discussed in Bassom
and Willmott (2019). In this study the amplitude equation for these waves is analyzed by exploiting a small
parameter based on the limited latitudinal extent of the polar basin.

The purpose of this paper is to examine the topographical steering and the role of bottom friction on the
structure of barotropic planetary geostrophic circulation in the polar basin. For this purpose we derive new
analytical solutions for steady wind and boundary-driven barotropic ocean circulation in a polar basin with a
step shelf using the approximate method of Imawaki and Takano (1974). In this latter study topography and
wind forcing were not considered. The analytical solutions are also complemented with numerical solutions
calculated using the NEMO (Nucleus for European Modelling of the Ocean) general ocean circulation model
(Madec, 2008) that include more realistic topography and wind forcing. We then address the relevance of
these “reduced physics” barotropic models to the Arctic Ocean circulation.

A natural question to ask is how relevant are barotropic planetary geostrophic dynamics to understanding
the observed Arctic Ocean circulation? After all, sea ice and stratification are both neglected in this study.
Figure 1 shows a high degree of correlation between the contours of the barotropic streamfunction calculated
from the monthly mean output of the TOPAZ ocean circulation model (Sakov et al., 2012) and the isobaths.
Contours of the sea surface elevation field (not shown for brevity) averaged over the period 2003 to 2011
exhibit the signature of the Beaufort Gyre consistent with the barotropic streamfunction of Figure 1. This
stratified North Atlantic and Arctic Ocean numerical simulation includes sea ice. Although the upper water
column is stratified in the Arctic Ocean, the stratification is almost nonexistent below the halocline (Zhao
& Timmermans, 2018), which results in significant topographic steering of the barotropic transport.
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Table 1
Ocean Basin Parameters Used in the Numerical and Analytical Experiments, Unless
Otherwise Stated

Symbol Variable (Unit) Value
— Horizontal resolution (deg) 1/10 × 1/10
— Vertical resolution (m) 500
— Time step (s) 1200
AH Horizontal Laplacian eddy viscosity (m2 s−1) 500
𝜇 Bottom drag coefficient (ms−1) 1 × 10−4

H Depth of flat bottom basin (m) 1,000
H1 Depth of step shelf (m) 250
H2 Depth of deep basin (m) 1,000
𝜃f Fixed colatitude in (7) (deg) 10

𝜃S Colatitude on the shelf edge (deg) 10
𝜃B Colatitude of the boundary of the basin (deg) 20
2𝜖 Degrees of longitude spanned by the gaps (deg) 20
T0 Strength of the prescribed source/sink (Sv; sverdrups) 5

The plan of the paper is as follows. Section 2 summarizes the NEMO model implementation; Section 3
presents analytical solutions for steady source-sink-driven flows in a polar basin with a step shelf using the
method of Imawaki and Takano (1974), and these are compared with the equivalent numerical solutions
using the NEMO GCM; section 4 extends the solutions in the previous section to include idealized wind
stress driving; section 5 presents numerical simulations of wind-driven steady-state circulation in a basin
with a step shelf and three straits. These latter numerical simulations are a step closer to simulating the
observed Arctic Ocean circulation. In particular, the wind stress fields used in section 5 are representative of
the observed anticyclonic and cyclonic Arctic wind stress fields. Of course, direct comparison of the results
in this paper with observations in the Arctic Ocean must be carried out cautiously because stratification and
sea ice are omitted. These points are discussed in section 6.

2. NEMO Model Description
All the numerical simulations discussed in this paper employ the nonlinear three-dimensional ocean circu-
lation model NEMO (Madec, 2008). Following Luneva et al. (2012) we use a filtered nonlinear free surface
algorithm, which is stable with relatively large time steps but damps the fast gravity and inertia-gravity
waves. Planetary waves, are however, resolved using this algorithm.

The geographical domain is a circular basin where the North Pole is located in the center of the grid. How-
ever, the computational domain is defined by the rotation of geographical coordinates. This transformation
places the North Pole into the equatorial plane avoiding the coordinate singularity. Table 1 lists the parame-
ter values used in the control experiment, namely a flat bottom basin with two diametrically opposed gaps.
Across one gap a uniform inflow is prescribed (i.e., a source) and across the opposite gap, an equal but oppo-
site outflow (i.e., a sink) is prescribed. Unless otherwise stated, the same parameters are used in all NEMO
experiments.

3. Source-Sink-Driven Planetary Geostrophic Circulation in a Polar Basin With
a Step Shelf
3.1. Governing Equations
We consider an ocean of uniform density, 𝜌, on a polar cap. A spherical polar coordinate system is adopted
where 𝜃 and 𝜑 denote the colatitude and longitude (i.e., azimuthal) angle, respectively, and 𝜃B is the colati-
tude of the boundary of the polar cap. Therefore, 𝜃 ∈

[
0, 𝜃B

)
and 𝜑 ∈ [0, 2𝜋). The unit vectors k, �̂�, and �̂� in

the respective directions of r, 𝜃, and 𝜑 increasing form a right-handed triad where

k ∧ �̂� = �̂�.
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The steady-state linearized shallow water momentum equations take the form

𝑓k × u = −g∇𝜂 + Dissipation + 𝛕
𝜌H

, (1)

where u = u�̂� + v�̂�, 𝑓 = 2Ω cos 𝜃, 𝜏 is the wind stress, 𝜂 is the dynamic free surface elevation, and g is the
gravitational acceleration. We consider two forms of the dissipation term:

− 𝜇

H
u, (2a)

AH

R2 u𝜃𝜃. (2b)

Expression (2a) represents linear (Rayleigh) bottom friction, where 𝜇 is the constant bottom friction param-
eter and H is the undisturbed ocean depth. Alternatively, we introduce an approximate form for the eddy
diffusivity in equation (2b), where AH is the constant eddy diffusivity and R is the radius of the Earth.
Imawaki and Takano (1974) adopt the Laplacian eddy diffusivity AH∇2

Hu in their study of source-sink-driven
flow on a flat bottom spherical cap, where ∇2

H is the Laplacian operator. We extend the solutions of Imawaki
and Takano by introducing a step shelf, but in doing so, we retain the dominant terms in the Laplacian fric-
tional boundary layers that are present at the uniform width shelf edge, 𝜃 = 𝜃S, and adjacent to the polar cap
boundary 𝜃 = 𝜃B. Therefore, equation (2b) retains the term with the highest number of derivatives in the
�̂� direction which is a familiar approach in the analysis of boundary layer dynamics. We bear in mind that
this approach is less suitable near the straits, but we apply it everywhere for mathematical convenience. A
rigid-lid approximation is adopted allowing the introduction of a transport streamfunction 𝜓 (𝜑, 𝜃) where

Hu = 1
R
𝜓𝜃, Hv = −1

R sin 𝜃
𝜓𝜑. (3)

3.2. Circulation in a Step-Shelf Basin With Bottom Friction
In this subsection solutions for the steady-state circulation driven by prescribed inflow/outflow across two
open boundaries are derived in a basin with a step shelf. The basin topography is given by

H(𝜃) =
{

H1, 𝜃S ≤ 𝜃 ≤ 𝜃B,

H2, 0 ≤ 𝜃 ≤ 𝜃S,
(4)

where H1 < H2. Let 𝜓1 (𝜑, 𝜃) and 𝜓2 (𝜑, 𝜃) denote the streamfunction on the shelf 𝜃S ≤ 𝜃 ≤ 𝜃B and in the
deep basin 0 ≤ 𝜃 ≤ 𝜃S, respectively. Taking the curl of equation (1) we obtain the vorticity equations on
the shelf and in the deep basin:

𝜓1𝜑𝜑 + A𝜓1𝜃𝜃 + B𝜓1𝜃 + C1𝜓1𝜑 = 0, (5a)

𝜓2𝜑𝜑 + A𝜓2𝜃𝜃 + B𝜓2𝜃 + C2𝜓2𝜑 = 0, (5b)

upon setting 𝜏 = 0 and adopting bottom friction (2a). The coefficients A, B, and Cj(j = 1, 2) in equation (5)
are defined as

A ≡ sin2
𝜃, B ≡ sin 𝜃 cos 𝜃, C1 ≡ 𝛾sin2

𝜃, C2 ≡ 𝛾

(
H2

H1

)
sin2

𝜃, (6)

where 𝛾 = 2𝛺H1𝜇
−1.

We note that the relative effects of rotation, friction, and ocean depth are combined in a single dimension-
less parameter 𝛾 . As the ocean depth increases, or bottom friction decreases, we see that 𝛾 increases and
rotation has a greater influence on the circulation. Following Imawaki and Takano (1974), we fix 𝜃 = 𝜃f
in equation (6), the typical value being midway between the pole and 𝜃 = 𝜃B. Then equation (5) becomes
constant coefficient linear second-order partial differential equations, which can be solved using classical
analytical techniques.
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On the boundary of the basin we prescribe an inward volume transport of magnitude T0 through the strait
[−𝜖 ≤ 𝜑 ≤ 𝜖] balanced by an equal outflow through the strait [𝜋 − 𝜖 ≤ 𝜑 ≤ 𝜋 + 𝜖]. Mathematically, this
is achieved by the following boundary condition

𝜓1
(
𝜑, 𝜃B

) ≡ 𝜓1B = 𝜓0

⎧⎪⎪⎨⎪⎪⎩

𝜑∕𝜖 i𝑓 0 ≤ 𝜑 ≤ 𝜖,

1 i𝑓 𝜖 ≤ 𝜑 ≤ 𝜋 − 𝜖,

1 − [𝜑 − (𝜋 − 𝜖)] ∕𝜖 i𝑓 𝜋 − 𝜖 ≤ 𝜑 ≤ 𝜋 + 𝜖,

−1 i𝑓 𝜋 + 𝜖 ≤ 𝜑 ≤ 2𝜋 − 𝜖,

−1 + [𝜑 − (2𝜋 − 𝜖)] ∕𝜖 i𝑓 2𝜋 − 𝜖 ≤ 𝜑 ≤ 2𝜋.

(7)

At the pole equation (5b) requires that
𝜓2𝜑𝜑 = 0 at 𝜃 = 0, (8)

while at the shelf edge we demand continuity of the meridional transport and pressure. Continuity of
meridional transport is satisfied provided

𝜓1 = 𝜓2 at 𝜃 = 𝜃S. (9)

Using equations (1) and (2a), the latter matching condition requires that[
𝑓v + 𝜇

u
H

]
= 0, at 𝜃 = 𝜃S, (10)

where the square brackets in equation (10) denote the “jump condition” across the shelf edge. In terms of
the transport streamfunction equation (10) becomes[ −𝑓𝜓𝜑

HR sin 𝜃
+

𝜇𝜓𝜃

H2R

]
= 0, at 𝜃 = 𝜃S. (11)

We seek solutions of equation (5) of the form

𝜓1 (𝜑, 𝜃) = a0(𝜃) +
∞∑

n=1

[
an(𝜃) cos n𝜑 + bn(𝜃) sin n𝜑

]
, (12a)

𝜓2 (𝜑, 𝜃) = A0(𝜃) +
∞∑

n=1

[
An(𝜃) cos n𝜑 + Bn(𝜃) sin n𝜑

]
. (12b)

It is convenient to introduce the following complex functions

zn = an + ibn, Zn = An + iBn, n ≥ 1, (13)

to solve the above boundary value problem. In terms of these functions the shelf-edge matching conditions
(9) and (11) become

zn = Zn at 𝜃 = 𝜃S, (14a)

and
H1𝑓S

sin 𝜃S
inzn + 𝜇

.zn =
H1 ŝ𝑓S

sin 𝜃S
inZn + ŝ2𝜇

.
Zn, at 𝜃 = 𝜃S, (14b)

where ŝ =
(

H1∕H2
)
< 1 and 𝑓S = 2Ω cos 𝜃S.

The governing equations for Zn and zn are obtained by substituting equation (12) into equation (5):

AZ̈n + B
.
Zn −

(
n2 + inC2

)
Zn = 0, (15a)

Az̈n + B
.
Zn −

(
n2 + inC1

)
zn = 0, (15b)

where the superscript dot denotes a derivative with respect to 𝜃. At the pole equation (8) requires that

Zn = 0 at 𝜃 = 0, (16)

and on the boundary of the basin

zn = ẑn = ân + ib̂n at 𝜃 = 𝜃B, (17)

where
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ân = 1
𝜋
∫ 2𝜋

0 𝜑B cos (n𝜑) d𝜑,
b̂n = 1

𝜋
∫ 2𝜋

0 𝜑B sin (n𝜑) d𝜑,

}
n ≥ 1 (18a)

and

â0 = 1
2𝜋 ∫

2𝜋

0
𝜑Bd𝜑. (18b)

For a polar basin with zero net transport into the domain equations (7) and (18b) reveal that â0 = 0. Now
a0 and A0 are associated with an axisymmetric swirling flow in the �̂� direction over the shelf and in the
deep basin. Across the straits the imposed transport is meridional (i.e., in the �̂� direction) and so, following
Imawaki and Takano (1974), we demand a0 and A0 are identically zero.

The general solutions of equation (15) are

zn = 𝑓ne𝜆1𝜃 + gne𝜆2𝜃, (19a)

Zn = Fne𝜔1𝜃 + Gne𝜔2𝜃, (19b)

where 𝜆1, 𝜆2 are given by

𝜆1

𝜆2

{
= −B

2A
± 1

2A
{B2 + 4A

(
n2 + inC1

)
}1∕2, (20)

and 𝜔1, 𝜔2 are given by equation (20) with C1 replaced by C2. Coefficients fn, Fn, gn and Gn are constants to
be determined by applying the boundary and matching conditions. Application of equations (14), (16), and
(17) yields

Fn + Gn = 0, (21a)

𝑓ne𝜆1𝜃B + gne𝜆2𝜃B = ẑn, (21b)

𝑓ne𝜆1𝜃S + gne𝜆2𝜃S = Fne𝜔1𝜃S + Gne𝜔2𝜃S , (21c)

𝑓ne𝜆1𝜃S

(
inH1𝑓S

sin 𝜃S
+ 𝜇𝜆1

)
+ gne𝜆2𝜃S

(
inH1𝑓S

sin 𝜃S
+ 𝜇𝜆2

)
=

Fne𝜔1𝜃S

(
inŝH1𝑓S

sin 𝜃S
+ 𝜇ŝ2𝜔1

)
+ Gne𝜔2𝜃S

(
inŝH1𝑓S

sin 𝜃S
+ 𝜇ŝ2𝜔2

)
.

(21d)

It is straightforward to solve equation (21) for the coefficients fn, gn, Fn, and Gn and subsequently the
coefficients an, An, bn, and Bn in equation (12) using equation (19).

Figures 2a and 2b show contours of the streamfunction (12) in a polar basin with a step shelf for which
H1 = 250 m, H2 = 1,000 m, 𝜃S = 10◦, and the strength of the source/sink is 5 Sv representing the inflow
from the Nordic strait (Beszczynska-Müller et al., 2012). The “large” bottom friction case, 𝜇 = 10−2 ms−1,
corresponds to the time scale of the decay of the solution T ∼ H

(
𝜇−1) ∼ 105 s to 1 day, while “small” bottom

friction case with 𝜇 = 10−4 ms−1 corresponds to the decay time scale ∼100 days. When the bottom friction
is small the ocean basin is effectively an annulus of uniform depth. The shelf break acts as a rigid boundary.
Imagine turning on the source/sink and spinning-up the ocean to a steady state. The only subinertial waves
supported in this domain are the planetary waves which spin-up the ocean circulation as shown in Figure 2b.
Therefore, the structure of the circulation on the shelf is identical to that calculated by Imawaki and Takano
(1974) in a flat bottom polar basin. However, with much larger bottom friction (see Figure 2a) the interior
deep ocean basin is not dynamically isolated from the shelf and the basin now supports both planetary waves
and subinertial topographic Rossby wave (TRW) modes that decay in amplitude with increasing meridional
distance from the basin boundary and increasing meridional distance measured from either side of the shelf
break. Consider once again switching on the source-sink pair in an ocean basin at rest when bottom friction
is “large.” The TRW modes (there are an infinite countable number of TRW modes supported by a step shelf
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Figure 2. Plot of the streamfunction (12) corresponding to source-sink-driven planetary geostrophic flow in a polar
basin with a step shelf and linear bottom friction when (a) 𝜇 = 10−2 m s−1; (b) 𝜇 = 10−4 m s−1. Plot (c) is the
equivalent NEMO simulation to (a) where vectors represent the transport and the contours are sea surface elevation.
Note that the shelf edge 𝜃S is contoured with dashed line.

characterized by the azimuthal wave number; Willmott and Bassom, private communication, April 2020)
now contribute to the final spun-up state as seen by the deflection of the circulation in a clockwise direc-
tion at both straits (i.e., the azimuthal phase velocity of TRWs is counterclockwise). Transpolar irrotational
circulation (i.e., zero relative vorticity) is present in the deep basin supported by a frictional boundary layer
centered on the shelf break that supports a meridional transport of fluid between the shelf and the deep
basin. Figure 2c shows the equivalent numerical solution using the NEMO model to that shown in Figure 2a
revealing that the approximate analytical solution is in good agreement with the numerical solution.

Further insight about the dynamics of the steady-state circulation shown in Figure 2 can be obtained by
integrating the curl of the momentum equations (1) over the deep basin:

∫ ∫S
∇ × (𝑓k × u) · dS = − 𝜇

H2 ∫ ∫S
(∇ × u) · dS, (22)

where S is the surface area of the deep basin and dS = kdS. Linear bottom friction is employed in (22) and
the wind stress is neglected. Application of Stokes's Theorem to the left-hand side of equation (22) reveals
that

𝑓s∮
vdl = − 𝜇

H2 ∫ ∫S
𝜉dS, (23)

where 𝜉 = k · ∇ × u is the relative vorticity, and v is the meridional velocity component (i.e., normal to the
shelf break) and  is the shelf break (i.e., 𝜃 = 𝜃S). Clearly, in steady state
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∮
vdl = 0,

in which case the circulation in the deep basin must satisfy the integral constraint

∫ ∫S
𝜉dS = 0, (24)

which leads to three possibilities. First, the interior circulation is stagnant in which case 𝜉 ≡ 0 at all points
in S. Second, the circulation is nonzero and irrotational inside the deep basin. Third, the circulation in S has
regions in which 𝜉 is positive and regions in which it is negative and which satisfy the integral constraint
(24). Figure 2a, and the equivalent NEMO simulation of Figure 2c, is an example in which the (weak) deep
basin circulation is irrotational.

In reality the width of the continental shelf in the Arctic basin is far from uniform. The Eurasian-Russian
shelf is wider than the North American shelf on the western side of the Arctic basin. This motivates the fol-
lowing question: How will the source-sink circulation shown in Figure 2 be modified by a continental shelf
of nonuniform width? The NEMO model is used to address this question. Indeed, this question is also moti-
vated by the study of de Boer et al. (2018) who also consider the pathways of a transient pulse of water into
the Arctic basin through the Bering Strait. The pulse of water is preferentially evacuated through the Nordic
strait rather than the Canadian archipelago, which naturally leads to the question, “why?”. Numerical pro-
cess studies using NEMO suggest that the shelf geometry plays a crucial role in the transient adjustment of
the Arctic basin to change in the transports through the Bering Strait (de Boer et al., 2018). This idea merits
further attention here.

We consider three shelf configurations in the following numerical experiments. First, we consider a basin
with a wide shelf (i.e., 𝜃S = 15◦) on the “eastern side” of the domain (i.e., 0 ≤ 𝜑 ≤ 𝜋) and a narrow
shelf (i.e., 𝜃S = 19◦) in the other half of the domain. There is a smooth transition between the nar-
row and wide shelves which spans the extent of the straits where a uniform source/sink are prescribed.
Figure 3a shows contours of the surface elevation and the transport vectors associated with the steady-state
source-sink-driven circulation in this basin. The grid resolution and bottom friction used in this numerical
calculation are listed in Table 1. The basin used in Figure 3b is the reflection of that in Figure 3a about the
diameter, 𝜑 = 0 and 𝜑 = 𝜋, resulting in a wide shelf on the “western side” (𝜋 ≤ 𝜑 ≤ 2𝜋) of the domain. In
both cases the majority of the source fluid is transported along the wide shelf (4.3 Sv of the incoming 5 Sv).

To understand this behavior in the weak bottom friction regime we observe that the deep basin is dynam-
ically isolated from the shelf and the ocean domain is effectively a nonuniform width annulus. Where the
annulus width is narrow, spanning only 1◦ of colatitude, the frictional boundary layers adjacent to the basin
boundary and the shelf break, span the entire shelf. In a scenario where the source-sink are switched on and
maintained, the planetary wave spin-up is essentially confined to the wide shelf, spanning 5◦ of colatitude;
the waves are strongly damped on the narrow shelf. Therefore, the wide shelf supports the majority of the
transport in Figures 3a and 3b.

Increasing the magnitude of bottom friction in the ocean basin shown in Figure 3a leads to the steady cir-
culation plotted in Figure 3c. The deep ocean basin is no longer dynamically isolated from the shelf. On the
narrow shelf the near-absence of any circulation results from high dissipation across this entire subdomain.
On the wide “eastern” shelf TRWs are responsible for the subinertial spin-up of the circulation. Two distinc-
tive features about the structure of the steady circulation are (a) fluid on the shelf crosses the shelf break via
a frictional boundary layer to subsequently exit the basin at the sink-strait; (b) the majority of the fluid on
the eastern shelf “drains” into the deep basin, with almost no fluid on the eastern shelf exiting the sink strait.

To emphasize the role of vorticity waves on these source-sink-driven flows, Figure 3d shows the steady
circulation in a polar basin with a wide step shelf of limited azimuthal extent (i.e., spanning 90◦ of longitude)
in the “eastern half” of the domain with small bottom friction used in Figures 3a and 3b. Following our earlier
discussion, dynamically, the basin is effectively confined to a nonuniform width annulus. Now consider
the scenario where the source-sink-driven flow is spun-up from rest. The extensive narrow shelf is a highly
damped wave guide for planetary waves. On the confined wide shelf planetary waves are responsible for the
spin-up. Thus, the circulation in Figures 3a and 3d is qualitatively similar. The narrow shelf regions on the
“eastern half” of the basin connecting the wide shelf to the source and sink straits operate as damped wave
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Figure 3. NEMO model simulation of steady source-sink-driven circulation in a polar basin with a nonuniform width
shelf showing contours of the SSH and barotropic transport vectors. The box on the lower right-hand side of each panel
shows the shelf geometry and the location of the source and sink. Plot (a) wide shelf occupying the entire “eastern”
half of the basin with 𝜇 = 10−4 m s−1; (b) as in (a) but for wide shelf on the “western” half of the basin; (c) as in (a) but
for 𝜇 = 10−2 m s−1; (d) wide shelf of more limited extent on the “eastern” half of the basin and 𝜇 = 10−4 m s−1.

guides, effectively restricting the magnitude of the azimuthal cyclonic wide shelf transport to 3.3 Sv. The
narrow western shelf connecting the source and sink straits supports a 1.7 Sv anticyclonic current.

3.3. Source-Sink-Driven Solutions in a Basin With a Step-Shelf in the Presence of Lateral
Diffusion
In this section, we consider source-sink-driven flow in the presence of Laplacian friction in a circular polar
basin with a step shelf. Qualitatively, the form of the circulation can be determined using the approximate
form (2b) of the Laplacian diffusion operator. The diffusion terms retained in (2b) reflect the fact that the
structure of the diffusive boundary layer adjacent to 𝜃 = 𝜃B is controlled by the largest derivatives in the
�̂� direction. Use of equation (2b) greatly simplifies the analysis of the step shelf problem, in comparison with
retaining the full diffusion operator, which was the approach taken by Imawaki and Takano (1974) for a flat
bottom basin. Taking the curl of equation (1) we obtain the vorticity equation

𝜓𝑗𝜃𝜃𝜃𝜃 + P1𝜓𝑗𝜃𝜃𝜃 + P2𝜓𝑗𝜑𝜑 − P3𝜓𝑗𝜑𝜑𝜃 + P4𝜓𝑗𝜑𝜑𝜃𝜃 − P5𝜓𝑗𝜑 = 0, (25)

where

P1 ≡ cot 𝜃, P2 ≡ 1 + cos2𝜃

sin4𝜃
, P3 ≡ 2 cos 𝜃

sin3𝜃
, P4 ≡ csc2𝜃, P5 ≡ 2ΩR2A−1

H .

In equation (25), 𝜓 j(j = 1, 2) denote the streamfunction on the shelf and in the deep basin, respectively. We
note that Pk(k = 1, .., 5) are depth independent. On the boundary of the basin we require that equation (7)
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is satisfied, and in addition we impose the “no-slip” boundary condition

𝜓𝜃 = 0, at 𝜃 = 𝜃B. (26)

At the pole we impose

𝜓𝜑𝜑 = 0
𝜓𝜃 = 0

}
at 𝜃 = 0. (27)

The first of equation (27) follows immediately from the evaluation of equation (25) at the pole, while the
second of (27) ensures that the zonal velocity vanishes (following Imawaki & Takano, 1974).

To complete the specification of the problem we impose four matching conditions at the shelf edge

Matching condition (28a) ensures that the transports tangential and normal to the shelf edge are continuous,
and (28b) and (28c) ensure that the pressure, and its derivatives normal to the shelf edge, are continuous.
In terms of 𝜓 , equations (28b) and (28c) become

upon using (3). We seek solutions of (25) of the form (12) and follow the method of solution in section
3.2. For brevity, the derivation of the analytical solution is omitted and the reader is referred to Gavilan
Pascual-Ahuir (2019) for further details.

Figures 4a and 4b show the contours for the streamfunction in a polar cap with a step shelf H1 = 250 m,
H2 = 1,000 m, and 𝜃S = 10◦. In Figure 4a AH = 1,000 m2 s−1 and the circulation is confined to the shelf in a
relatively narrow diffusive boundary layer. When AH is increased to 10,000 m2 s−1 the flow is still confined
to the shelf, albeit in much wider boundary current. Note that the circulation in presence of bottom friction
(Figure 2) is qualitatively similar with the boundary layer approximation as expected. The equivalent NEMO
simulation to Figure 4a is shown in Figure 4c. Although the two solutions agree qualitatively, the NEMO
solution is somewhat more diffused across the shelf. The analytical solutions retaining the full Laplacian
diffusion operator, rather than the boundary layer approach adopted here, are indistinguishable from the
solutions derived in this section and are therefore not presented, for brevity.

4. Wind-Driven Solutions
4.1. Flat Bottom Basin
We consider wind-driven circulation in the presence of bottom friction. The analysis proceeds as in section
3 except that the vorticity equations now take the form

𝜓𝜑𝜑 + A𝜓𝜃𝜃 + B𝜓𝜃 + C𝜓𝜑 = 𝜇−1R2Hsin2𝜃{k · ∇ × 𝛕∕𝜌}, (30)

where the coefficients A, B, and C are defined in (6). Notice that in the absence of bottom friction (30) reduces
to the Sverdrup balance

2Ω
R2 𝜓𝜑 = k · ∇ × (𝛕∕𝜌) , (31)
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Figure 4. Plot of the streamfunction (23) corresponding to source-sink-driven planetary geostrophic flow in a polar
basin with a step shelf and Laplacian eddy diffusivity when (a) AH = 1,000 m2 s−1; (b) AH = 10,000 m2 s−1. Plot (c) is
the equivalent NEMO simulation to (b) where vectors represent the volume transport and the contours are sea surface
elevation. Note that the shelf edge 𝜃S is contoured with dash marker.

which is instrumental in understanding the interior structure of the wind-driven circulation solutions
derived below.

To make further progress in analytically solving (30) we consider a wind-stress curl distribution with two
opposite signed cells:

k · ∇ × (𝛕∕𝜌) = 1
𝜌R sin 𝜃

[
(sin 𝜃𝜏𝜑)𝜃 − 𝜏𝜃

𝜑

] ≡ sin
(
𝜋
𝜃

𝜃∗

)
W(𝜑). (32)

Clearly, this separable form of the wind stress curl vanishes at the pole and constant 𝜃* determines its
meridional structure across the polar basin. We consider the following form for W :

W(𝜑) ≡ W0

⎧⎪⎪⎨⎪⎪⎩

−1 if 0 ≤ 𝜑 ≤ �̂�1 − 𝛿,

−1 +
[
𝜑 −

(
�̂�1 − 𝛿

)]
∕𝛿 if �̂�1 − 𝛿 ≤ 𝜑 ≤ �̂�1 + 𝛿,

1 if �̂�1 + 𝛿 ≤ 𝜑 ≤ �̂�2 − 𝛿,

1 −
[
𝜑 −

(
�̂�2 − 𝛿

)]
∕𝛿 if �̂�2 − 𝛿 ≤ 𝜑 ≤ �̂�2 + 𝛿,

−1 if �̂�2 + 𝛿 ≤ 𝜑 ≤ 2𝜋,

(33)

where W0 = 𝜏0∕ (𝜌R) is the magnitude of the wind stress curl divided by density and 𝜏0 is a typical wind
stress magnitude. Figure 5 shows a contour plot of (32), scaled by W0, using the parameter values listed in
Table 2 when �̂�1 = 𝜋∕2 and �̂�2 = 3𝜋∕2.
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Figure 5. Contours of the wind stress curl (32) and (33) scaled by W0. The continuous/dashed lines denote positive
and negative values, respectively.

Before solving (30) we can deduce the qualitative behavior of the circulation with the aid of (31). The wind
stress curl vanishes along the diameter defined by �̂�1 = 𝜋∕2 and �̂�2 = 3𝜋∕2. On this diameter (31) requires
that v = 0, at least away from the basin wall where a frictional boundary layer will be present. Thus, in the
basin interior where the Sverdrup balance is valid, there will be two counterrotating circulation cells with
axis of symmetry coinciding with the diameter 𝜑 = 𝜋∕2 and 𝜑 = 3𝜋∕2. The circulation cells are closed
by frictional wall boundary layers. As the magnitude of bottom friction increases the counterrotating cells
rotate counterclockwise to eventually become aligned with the cells of the wind stress curl. This behavior
was also noted by Willmott and Luneva (2015), albeit in a study using a polar beta plane.

Returning to the analysis of (30) we consider a polar basin with two diametrically opposite straits defined
by 𝜃 = 𝜃B and −𝜖 ≤ 𝜑 ≤ 𝜖 and 𝜋 − 𝜖 ≤ 𝜑 ≤ 𝜋 + 𝜖. Across these straits we demand that the Sverdrup
balance sets the meridional transport. Thus, at the open boundary 𝜃 = 𝜃B, −𝜖 ≤ 𝜑 ≤ 𝜖 the streamfunction
takes the form

𝜓 = −𝜓0
𝜑

𝜖
, (34a)

where

𝜓0 =
𝜖R2W0

2Ω
sin

(
𝜋
𝜃B

𝜃∗

)
. (34b)

Table 2
Parameter Values in the Idealixed Wind Stress Curl Function (32)

Symbol Variable (unit) Value
𝜏0 Magnitude of the wind stress (N m−2) 0.1
R Radius of the Earth (m) 6.370 × 106

𝜌 Density (kg m−3) 1,025
Angle subtended at the

𝛿 center at the domain 𝜋∕18
of the wind stress curl
transition zone (radians)

𝜃* Angle that controls the meridional 4𝜋∕18
structure of the curl(radians)
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Similarly, on the open boundary 𝜃 = 𝜃B, 𝜋 − 𝜖 ≤ 𝜑 ≤ 𝜋 + 𝜖

𝜓 = 𝜓0

[
−1 + 𝜑 − (𝜋 − 𝜖)

𝜖

]
, (35)

where 𝜓0 is given by (34b). In summary, on the basin boundary the streamfunction must satisfy

𝜓
(
𝜑, 𝜃B

) ≡ 𝜓B(𝜑) = 𝜓0

⎧⎪⎪⎨⎪⎪⎩
−𝜑∕𝜖 if |𝜑| ≤ 𝜖,

−1 if 𝜖 ≤ 𝜑 ≤ 𝜋 − 𝜖,

−1 + [𝜑 − (𝜋 − 𝜖)] ∕𝜖 if 𝜋 − 𝜖 ≤ 𝜑 ≤ 𝜋 + 𝜖,

1 if 𝜋 + 𝜖 ≤ 𝜑 ≤ 2𝜋 − 𝜖.

(36)

Once again, we seek a solution of (30) in terms of a Fourier expansion of the form (12) and therefore we
decompose W(𝜑) into a Fourier series:

W(𝜑) = p0 +
∞∑

n=1

[
pn cos n𝜑 + qn sin n𝜑

]
. (37)

With W(𝜑) prescribed by (33) we find that qn = 0 (n = 1, 2, ..) and

p2n−1 =
4W0

𝜋𝛿

sin [(2n − 1) 𝛿]
(2n − 1)2 (−1)n n = 1, 2, .. (38)

and p0 = 0 = p2n (n = 1, 2, ..). Seeking a Fourier expansion solution for 𝜓 and substituting (37) into (30) we
obtain an inhomogeneous ordinary differential equation for Zn defined in section 3.1:

AZ̈n + B
.
Zn − Zn

(
n2 + Cin

)
= 𝜇−1R2Hsin2

𝜃 sin
(
𝜋
𝜃

𝜃∗

)
Wn, n = 1, 2, .. (39)

where

Wn = pn + iqn. (40)

The general solution of (39) takes the form

Zn = Rne𝜆1𝜃 + Sne𝜆1𝜃 + ZnPI , (41)

where 𝜆1,2 are given by (20), Rn, Sn are arbitrary constants, and ZnPI is a particular integral. Note that H1 in
(20) is replaced by H, the uniform depth of the basin. Determination of ZnPI is routine but involves some
lengthy algebra, and therefore the expression for this particular integral is given in Appendix A. To determine
Rn, Sn we first decompose (36) into a Fourier series:

𝜓B =
∞∑

n=1

[
ân cos n𝜑 + b̂n sin n𝜑

]
, (42)

noting that â0 = 0. Then

Zn
(
𝜃B
) ≡ Ẑn = ân + ib̂n, (43)

and at the pole Zn again satisfies (16). Application of (43) and (16) enables Rn and Sn to be determined.
Finally, 𝜓 is determined using (12) noting that the coefficients An, Bn are obtained from (41).

Figures 6a and 6b show contours of the analytical streamfunction when 𝜇 = 10−2 m s−1 and 𝜇 = 10−4 m s−1,
respectively. Figure 6c shows contours of the SSH calculated using NEMO, when 𝜇 = 10−4 m s−1 for com-
parison with Figure 6b. Model parameter values are listed in Tables 1 and 2. The circulation is characterized
by two counterrotating gyres separated by a cross-basin current connecting the source to the sink. In the
case of larger bottom friction the counterrotating gyres are displaced counterclockwise, the current is wider
in the domain interior and the wall boundary layer circulation adjacent to the source/sink is wider. When
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Figure 6. Plot of the streamfunction corresponding to wind stress-driven planetary geostrophic flow in a polar basin
with linear bottom friction when (a) 𝜇 = 10−2 ms−1; (b) 𝜇 = 10−4 ms−1. Plot (c) is the equivalent NEMO simulation to
(b) where vectors represent the volume transport and the contours are sea surface elevation.

𝜇 is small the major axis of each gyre is approximately orthogonal to the diameter defined by 𝜑 = 𝜋∕2
and 𝜑 = 3𝜋∕2. On this diameter, away from the narrow frictional wall boundary layers, the Sverdrup bal-
ance requires that v = 0 (recall v is the velocity component parallel to �̂�), which is clearly satisfied by the
wind-driven gyres in Figure 6b. As 𝜇 increases the gyres rotate counterclockwise to become increasingly
aligned with the wind-stress curl cells shown in Figure 5 because the Coriolis force becomes less important
and nowhere in the domain is the circulation inviscid. There is a good qualitative agreement between the
NEMO simulations of Figure 6c and the equivalent analytical solution in Figure 6b. Note that the NEMO
simulation includes a small, but nonzero (i.e., AH = 500 m2 s−1), Laplacian eddy diffusivity that leads to
somewhat more diffusive gyres.

4.2. Step Shelf Solution
The solution of section 4.1 is now extended to include the step shelf first introduced in section 3. Adopting
the notation of section 3.2, the wind-forced vorticity equations on the shelf (Region 1) and in the deep basin
(Region 2) are

𝜓𝑗𝜑𝜑 + A𝜓𝑗𝜃𝜃 + B𝜓𝑗𝜃 + C𝑗𝜓𝑗𝜑 = 𝜇−1R2H𝑗sin2𝜃{k · ∇ × 𝛕∕𝜌}, (44)

where C𝑗 = 2Ω𝜇−1H𝑗sin2
𝜃 and j = 1, 2.

We seek solutions of (44) of the form (12) for the two-cell wind stress curl (32) and (33). The reader is
reminded that the coefficient an, bn, An, and Bn are distinct to each subsection. Over the shelf and in the
deep basin zn = an + ibn and Zn = An + iBn, respectively, and they satisfy
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Figure 7. Plot of the azimuthal wind stress vectors given by (47).

Az̈n + B .zn − zn
(

n2 + inC1
)
= 𝜇−1R2H1sin2𝜃 sin

(
𝜋
𝜃

𝜃∗

)
Wn, (45a)

AZ̈n + B
.
Zn − Zn

(
n2 + inC2

)
= 𝜇−1R2H2sin2𝜃 sin

(
𝜋
𝜃

𝜃∗

)
Wn, (45b)

where the Fourier decomposition of the streamfunctions and the wind stress curl, discussed in section 4.1,
have been utilized. On the boundary of the domain zn satisfies (43), while at the pole Zn must satisfy (17).
To complete the streamfunction boundary value problem we must specify matching conditions at the shelf
edge 𝜃 = 𝜃S. Continuity of the meridional transport across 𝜃 = 𝜃S demands that

[
𝜓𝜑

]
= 0. Continuity of

pressure at the shelf edge requires that[
𝑓v + 𝜇

u
H

− 𝜏𝜑

𝜌H

]
= 0, at 𝜃 = 𝜃S. (46)

Notice that the introduction of the step shelf gives rise to the presence of the azimuthal wind stress com-
ponent 𝜏𝜑 (𝜑, 𝜃) in (46). We hypothesize that the wind stress curl (32) is associated with a purely azimuthal
wind stress, 𝜏𝜑, in which case

(sin 𝜃𝜏𝜑)𝜃
𝜌R sin 𝜃

= sin
(
𝜋𝜃

𝜃∗

)
W(𝜑).

Upon integrating with respect to 𝜃 we obtain

𝜏𝜑 (𝜑, 𝜃) = 𝜌RW(𝜑)
2 sin 𝜃

⎡⎢⎢⎢⎣
sin

(
𝜃 − 𝜋𝜃

𝜃∗

)
(1 − 𝜋∕𝜃∗)

−
sin

(
𝜃 + 𝜋𝜃

𝜃∗

)
(1 + 𝜋∕𝜃∗)

⎤⎥⎥⎥⎦ . (47)

Figure 7 shows a plot of the azimuthal wind stress field given by (47).

The shelf edge matching conditions can now be written in the form (13) and

H1𝑓S

sin 𝜃S
inzn + 𝜇

.zn −
H1R2WnΘ

(
𝜃S
)

2 sin 𝜃S
=

H1ŝ𝑓S

sin 𝜃S
inZn + ŝ2𝜇

.
Zn −

ŝH1R2WnΘ
(
𝜃S
)

2 sin 𝜃S
, at 𝜃 = 𝜃S, (48)
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where Wn is given by (40) and

Θ(𝜃) ≡
⎡⎢⎢⎢⎣

sin
(
𝜃 − 𝜋𝜃

𝜃∗

)
(1 − 𝜋∕𝜃∗)

−
sin

(
𝜃 + 𝜋𝜃

𝜃∗

)
(1 + 𝜋∕𝜃∗)

⎤⎥⎥⎥⎦ . (49)

The general solutions of (45) take the form of

zn = 𝑓ne𝜆1𝜃 + gne𝜆2𝜃 + znPI , (50a)

Zn = Fne𝜔1𝜃 + Gne𝜔2𝜃 + ZnPI , (50b)

where 𝜆1, 𝜆2, 𝜔1, and 𝜔2 are defined in section 3.2 and the constants fn, gn, Fn, and Gn are to be determined
by applying boundary conditions (16) and (43) and matching conditions (14) and (48). The particular inte-
grals znPI and ZnPI are given in Appendix A noting that over the shelf H and C are replaced by H1 and C1,
respectively; in the deep basin H and C are replaced by H2 and C2, respectively.

Application of equations (16), (43), (14), and (48) yields

Fn + Gn + ZnPI(0) = 0 (51a)

𝑓ne𝜆1𝜃B + gne𝜆2𝜃B + znPI
(
𝜃B
)
= ẑn (51b)

𝑓ne𝜆1𝜃S + gne𝜆2𝜃S + znPI
(
𝜃S
)
= Fne𝜔1𝜃S + Gne𝜔2𝜃S + ZnPI

(
𝜃S
)
, (51c)(

H1𝑓S

sin 𝜃S
in + 𝜇𝜆1

)
𝑓ne𝜆1𝜃S +

(
H1𝑓S

sin 𝜃S
in + 𝜇𝜆2

)
gne𝜆2𝜃S +

H1𝑓S

sin 𝜃S
inznPI

(
𝜃S
)
+ 𝜇

.znPI
(
𝜃S
)

=
(

H1 ŝ𝑓S

sin 𝜃S
in + 𝜇ŝ2𝜔1

)
Fne𝜔1𝜃S +

(
H1ŝ𝑓S

sin 𝜃S
in + 𝜇ŝ2𝜔2

)
Gne𝜔2𝜃S +

H1ŝ𝑓S

sin 𝜃S
inZnPI

(
𝜃S
)

+ 𝜇ŝ2 .
ZnPI

(
𝜃S
)
+

H1R2WnΘ
(
𝜃S
)

2 sin 𝜃S
(1 − ŝ) .

(51d)

Upon solving (51) for fn, gn, Fn, and Gn, the coefficients an, bn, An, and Bn are determined from (50), and
hence 𝜓1, 𝜓2 from (12).

Figures 8a–8c show contours of the analytic streamfunction when 𝜇 = 10−3, 𝜇 = 10−4 m s−1, and 𝜇 =
10−5 m s−1, respectively. Increasing bottom friction leads to the counterclockwise rotation of the wind-driven
gyres on the shelf and in the deep basin. The equivalent NEMO numerical solution to Figure 8b is shown in
Figure 8d and demonstrates that the approximate analytical solution captures the numerical solution well.
Table 1 lists the NEMO model parameter values employed in Figure 8d.

Topographic steering has a profound impact on the path of the transpolar drift current (TDC) connecting
the source strait to the sink strait. Fluid entering the source strait bifurcates on reaching the shelf edge to
form “rim currents” that coalesce on the shelf diametrically opposite the divergence point. After the rim
currents merge they exit the sink strait as an identifiable TDC. In more realistic numerical simulations of the
Arctic Ocean circulation, Aksenov et al. (2016) also identify the presence of shelf break (i.e., rim) currents.
In reality, it is likely that upper ocean stratification shields the TDC in the Arctic from topographic steering
(Spall, 2016).

In the presence of wind stress (23) generalizes to

𝑓s∮
vdl = − 𝜇

H2 ∫ ∫S
𝜉dS + 1

𝜌H2 ∫ ∫S
∇ × 𝛕 · dS. (52)

For the wind stress curl (32) the second term on the right-hand side of (52) vanishes because there are equal
and opposite signed curl cells over the deep basin. Since the circulation in Figure 8 is steady the left-hand side
of (52) vanishes, otherwise the deep-basin would fill or empty. Thus, (52) reduces to (24) must be satisfied
by the dipole structure of the relative vorticity field in the deep basin.
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Figure 8. Plot of the streamfunction (22) corresponding to wind stress-driven planetary geostrophic flow in a polar
basin with a step shelf and linear bottom friction when (a) 𝜇 = 10−3 m s−1; (b) 𝜇 = 10−4 m s−1; (c) 𝜇 = 10−5 m s−1. Plot
(d) is the equivalent NEMO simulation to (b) where vectors represent the volume transport and the contours are sea
surface elevation. Note that the shelf edge 𝜃S is contoured with dash marker.

5. Numerical Simulations in a Basin with a Step Shelf, Transpolar Ridge
and Straits
We now consider the wind-driven barotropic circulation in a prototype Arctic Ocean basin, building upon
the examples in the previous sections. Figure 9 shows a schematic of the step-shelf basin with three straits
representative of the Bering, Davis and Nordic Seas straits that is used in this section. The longitudinal extent
of the three straits are defined by

Nordic: −11𝜋
90

≤ 𝜑 ≤ 𝜋

10
Bering: 𝜋 ≤ 𝜑 ≤ 13𝜋

12
Davis: 293𝜋

180
≤ 𝜑 ≤ 61𝜋

36

The location of the three straits relative to the ridge (idealized Lomonosov Ridge) is representative of the
Arctic Ocean basin geometry. In terms of kilometers the width of the Bering, Davis, and Nordic Seas are
620, 650, and 1,670 km, respectively. The shelf edge is defined by 𝜃 = 11◦ corresponding to a shelf width of
approximately 900 km.

Proshutinsky and Johnson (1997) demonstrate that the atmospheric circulation over the Arctic frequently
oscillates between two contrasting regimes characterized by the intensity of the anticyclonic high-pressure
cell over the Beaufort Sea on a quasi-decadal time scale. A mathematical representation of these two wind
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Figure 9. Schematic of a basin has three straits, a step shelf, and a ridge. The depths H1 and H2 are given in Table 1.

stress regimes is proposed, consisting of the linear superposition of two “building block” wind stress fields:

𝜏x = 𝛼𝜏x1 + (1 − 𝛼) 𝜏x2 (53a)

𝜏𝑦 = 𝛼𝜏𝑦1 + (1 − 𝛼) 𝜏𝑦2 (53b)

where the constant 𝛼 satisfies 0 ≤ 𝛼 ≤ 1.

The wind stress components 𝜏x1 , 𝜏𝑦1 are referred to a Cartesian frame O1x1y1 where O1 is located at
[−500 km,900 km] and O1x1 is parallel to Ox and O1y1 is parallel to Oy. The stress components are

𝜏x1 = 𝜏
𝑦1

r
sin

(
r
rb
𝜋

)
, (54a)

Figure 10. Plot of the wind stress vectors for (a) anticyclonic and (b) cyclonic regimes.
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Figure 11. Contours of the sea surface elevation and barotropic ocean velocity vectors in a step-shelf basin with three straits and a top-hat transpolar ridge. Plot
(a) is driven by an anticyclonic wind stress; (b) driven by cyclonic wind stress. Note that the shelf edge 𝜃S and the ridge are contoured with dash marker.

𝜏𝑦1 = −𝜏
x1

r
sin

(
r
rb
𝜋

)
, (54b)

where r is distance from the origin O1, rb is the radius of the basin and 𝜏 = 0.07 N m−2. The wind stress
(𝜏x2 , 𝜏𝑦2 ) is a unidirectional wind stress field and is given by

𝜏x2 = − 𝜏√
2

sin
(|𝑦2km − 2, 000 km

5, 000 km
|𝜋) , (55a)

𝜏𝑦2 = 0, (55b)

In (55a) the Cartesian frame Ox2y2 is obtained by a 45◦ counterclockwise rotation of frame Oxy leading to
the following coordinate relationships:

x2 = 1√
2
(x + 𝑦) (56a)

𝑦2 = 1√
2
(−x + 𝑦) . (56b)

The coefficient, 𝛼, for the anticyclonic and cyclonic wind stress regime was set to 0.7 and 0.2, respectively.

Figures 10a and 10b show plots of (53a) for an anticyclonic (e.g., 2007) and cyclonic (e.g., 1989) regime,
respectively. There is also a seasonal signal in the structure of the Arctic wind stress field that favors an
anticyclonic wind stress during the winter (Proshutinsky & Johnson, 1997).

The following numerical procedure is used to spin-up the circulation plotted in Figure 11. The Bering Strait
inflow is prescribed and held constant throughout the numerical integration; its value is given in Table 3.
Initially the volume transports across the Davis and Nordic straits are also prescribed as given in Table 3. As
the numerical spin-up proceeds the values of Davis and Nordic straits transports are dynamically adjusted
using the Flather (1994) open boundary condition which allows gravity waves to leave the domain correcting
the boundary flows at each time step. Therefore, the spun-up transports across these two straits is different
from their prescribed initial values. Table 3 presents the spun-up transport across these two straits.
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Table 3
The Transport Boundary Conditions Initially Imposed Across the Straits in the NEMO Simulations Described in Section 5

Gap Initial prescribed Spun-up strait transport for Spun-up strait transport for Spun-up strait transport for
transport the control simulation the anticyclonic wind regime the cyclonic wind regime

without wind stress
Bering inflow 1 1 1 1
Davis outflow −2.1 −3.393 −3.314 −3.623
Nordic inflow 6.5 4.839 4.868 5.068
Nordic outflow −5.4 −2.446 −2.554 -2.445

Note. The Bering Strait transport is prescribed and held constant through the numerical integration. The transports across the Davis and Nordic Straits are
allowed to adjust using a Flather open boundary condition. Note that the sign convection used to denote outflow from the basin is negative.

The circulation plotted in Figure 11a is driven by the anticyclonic wind stress. The key feature of the
circulation in Figure 11a are as follows:

1. The transpolar ridge supports a topographically steered TDC in contrast to Figure 8, where the source
and sink are connected by rim currents at the edge of the shelf.

2. Bering Strait inflow bifurcates into two branches; one feeds an intense anticyclonic gyre on the shelf while
the second feeds the TDC. There is also a second deep-basin anticyclonic gyre in what would be termed
“the western Arctic.” In reality, the most conspicuous feature of the circulation in the western Arctic is
the Beaufort Gyre (see Armitage et al., 2018). The fact that there is a single anticyclonic Beaufort Gyre
points the importance of stratification shielding the upper ocean from topographic steering (Spall, 2016).

3. The Nordic Sea inflow bifurcates into three branches. One recirculates and exits through this strait and
is qualitatively in agreement with the observed cyclonic GIN Sea gyre (Armitage et al., 2018). The second
branch flows clockwise on the shelf and merges with the TDC to exit through the Davis Strait. In reality,
the TDC exits the Arctic basin as the East Greenland Current. Furthermore, the real Canada shelf is
much narrower than this idealized circular polar basin with a step-shelf Inclusion of more realistic basin
topography would potentially address this deficiency in the process model. Finally, the third branch flows
anticlockwise on the shelf merging with the TDC.

4. Topographic steering also leads to two cyclonic gyres in the eastern Arctic basin, whereas Armitage et al.
(2018) show that a single cyclonic gyre is present in this region, indicating the importance of stratification.

The steady circulation driven by the cyclonic wind stress is plotted in Figure 11b. Qualitatively, all the fea-
tures discussed in Figure 11a are still present with a notable reduction in the strength of the anticyclonic
gyres on the shelf and in the deep basin. Kelly et al. (2018) plot the schematic surface circulation of the Arctic
Ocean showing that water entering the Bering Strait bifurcates into three branches. Two of the branches feed
the Transpolar Drift Current. The third branch, called the Alaskan Shelf-break Jet flows counterclockwise
around the basin, north of the Canadian Archipelago. The modeled Arctic Ocean circulation in Figure 11
does not capture this latter current. Instead, water entering the basin through the Bering Strait is either
entrained into the Beaufort Gyre or it follows a “central basin route” steered by the transpolar ridge to feed
the Transpolar Drift Current. The Alaskan Shelf-break Current flows in the direction of coastally trapped
topographic Rossby waves and its absence in Figure 11 reflects the dominance of the wind-driven circulation
in this part of the domain.

6. Discussion
The approximate analytical approach for studying barotropic planetary geostrophic circulation in a circular
polar basin, proposed by Imawaki and Takano (1974), is extended in this paper to include a step shelf and
wind stress driving. The new analytical solutions presented in this paper are of interest to both the phys-
ical oceanographic and geophysical fluid dynamics communities. The analytical methods adopted in this
study, and indeed the perturbation method discussed by Bassom and Willmott (2019), could be employed
to develop solutions in a polar basin with somewhat more realistic topography.

Clearly, the neglect of stratification and sea ice limits the application of the solutions discussed in this paper.
Turning to the latter point, the absence of summer sea ice may well occur by the middle of the 21st cen-
tury (Jahn et al., 2016; Overland & Wang, 2013). Therefore, studies of wind, buoyancy, and boundary-forced
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ocean circulation in a polar basin in the absence of sea ice takes on greater significance. In the Arctic, strat-
ification shields the upper ocean from topographic steering (Boyd et al., 2002; Steele & Boyd, 1998). The
topographical control is predominantly exerted on the part of the circulation that is not wind driven. Given
the strong surface stratification, flows driven directly by the wind are confined to the upper ocean, the
barotropic circulation being mostly a reflection of the thermohaline flows deeper down. In this paper the
TDC relies on the existence of a transpolar ridge. When the top of the transpolar ridge is below the level of
the shelf, an example not discussed in section 5 for brevity sake, the TDC is still present, albeit reduced in
magnitude compared to that in Figure 11. Frictional boundary layers at the transpolar ridge shelf intersec-
tions support transport of fluid above the ridge in this case. The absence of stratification also leads to the two
wind-driven anticylonic gyres “west” of the transpolar ridge in Figure 11, rather than the observed single
Beaufort Gyre.

The impact of a variable width continental shelf on the pathways of the water connecting the source/sink
straits deserves further analysis that is beyond the scope of this paper. Figure 3 suggests that the vorticity
wave spin-up that establishes the steady-state circulation is extremely sensitive to the shelf width. This point
was also noted in de Boer et al. (2018) and is not surprising. Wave scattering in the regions where the shelf
width varies will lead to energy transfer between the vorticity wave modes (Wilkin & Chapman, 1987; Web-
ster, 1987). Abrupt changes in the shelf width are more effective wave scatters (Webster, 1987). It appears
that the refereed literature is restricted to barotropic shelf wave scattering by a single region in which the
shelf width changes. However, in a circular basin of the type considered in this paper, two such scattering
regions are present and this deserves further analysis.

Appendix A: The Particular Integral, ZnPI , of Equation (41)
To obtain a particular integral of (41) the right-hand side of this equation is rewritten as

HR2

2𝜇
Wn

{
sin

(
𝜋𝜃

𝜃∗

)
− 1

2
sin

(
2𝜃 + 𝜋𝜃

𝜃∗

)
+ 1

2
sin

(
2𝜃 − 𝜋𝜃

𝜃∗

)}
(A1)

and it is now clear that ZnPI will be a linear combination of three families of sin and cos functions with
arguments appearing on the right-hand side of equation (A1). It is then straightforward to show that

ZnPI =
HR2

𝜇
Wn

{
E1n cos

(
𝜋
𝜃

𝜃∗

)
+ E2n sin

(
𝜋
𝜃

𝜃∗

)
+ E3n cos

[(
2 + 𝜋

𝜃∗

)
𝜃

]
+ E4n sin

[(
2 + 𝜋

𝜃∗

)
𝜃

]
+E5n cos

[(
2 − 𝜋

𝜃∗

)
𝜃

]
+ E6n sin

[(
2 − 𝜋

𝜃∗

)
𝜃

]} (A2)

where

E1n =
(
−1

2
𝜋

𝜃∗

)
B(DEN1)−1

E2n = −1
2

TERM1
DEN1

E3n = 1
4
(2 + 𝜋∕𝜃∗)B(DEN2)−1

E4n = TERM2
4(DEN2)

E5n = −1
4
(2 − 𝜋∕𝜃∗)B(DEN3)−1

E6n = − TERM3
4(DEN3)

and

TERM1 ≡ (𝜋∕𝜃∗)2A + n2 + inC
DEN1 ≡ (TERM1)2 + (𝜋∕𝜃∗)2B2

TERM2 ≡ (2 + 𝜋∕𝜃∗)2A + n2 + inC
DEN2 ≡ (TERM2)2 + (2 + 𝜋∕𝜃∗)2B2

TERM3 ≡ (2 − 𝜋∕𝜃∗)2A + n2 + inC
DEN3 ≡ (TERM3)2 + (2 − 𝜋∕𝜃∗)2B2
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    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
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