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1. Introduction	

	

This	 project	 aims	 to	 improve	 understanding	 of	 hydro-climate	 services	 in	 India	 in	 order	 to	

inform	 food	 and	 water	 security.	 It	 involves	 collaboration	 between	 UCL	 and	 the	 Centre	 for	

Ecology	 and	 Hydrology	 (CEH)	 in	 the	 UK	 and	 the	 National	 Institute	 of	 Hydrology	 (NIH),	

Roorkee	and	Indian	Institute	of	Technology	(IIT),	Bombay	in	India.	This	report	is	structured	

around	the	three	main	themes	of	the	project:	catchment	hydrological	modelling,	assessment	

of	environmental	flows	under	climate	change,	and	a	feasibility	study	to	assess	the	potential	of	

developing	guidance	for	India	similar	to	that	of	the	Flood	Estimation	Handbook	for	the	UK.	

	

The	 Upper	 Narmada	 in	 Central	 India	 provides	 the	 focus	 of	 the	 hydrological	 modelling	

(Chapter	 2)	 and	 environmental	 flow	 assessments	 (Chapter	 3).	 Two	 initial	 models	 of	 the	

Narmada	were	previously	developed	as	part	of	the	NERC	funded	project	“Building	joint	India-

UK	capacity,	capability,	 research	and	 innovation	 in	 the	environment”.	A	MIKE	SHE	model	of	

the	 Upper	 Narmada	 was	 developed	 at	 UCL	 in	 collaboration	 with	 CEH	 and	 NIH.	 An	 earlier	

GWAVA	model	was	also	enhanced	and	then	applied	to	the	Narmada	by	CEH	and	NIH.	Both	of	

these	models	 have	 undergone	 significant	 improvements	 as	 part	 of	 the	 current	 project.	 The	

two	calibrated	/	validated	models	are	forced	with	a	consistent	set	of	climate	change	scenarios	

developed	as	part	of	the	project	and	adopting	a	newly	established	bias	correction	approach.	

Subsequent	results	from	the	two	models	are	compared	before	they	are	employed	to	assess	the	

potential	for	ecological	risk	of	change	using	the	Ecological	Risk	due	to	Flow	Alteration	(ERFA)	

screening	method.	

	

The	foci	of	the	flood	frequency	estimation	research	(Chapter	4)	are	the	Godavari	and	Krishna	

river	basins.	A	pilot	study	investigates	the	feasibility	of	developing	spatially	consistent	flood	

frequency	estimates	using	an	index	flood	approach.	The	work	includes	development	of	a	web	

application	designed	to	demonstrate	how	stakeholders	and	practitioners	in	the	region	could	

make	use	of	the	results	of	this	part	of	the	project.	
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2. Catchment	hydrological	modelling	

A.J.	Green,	J.R.	Thompson,	M.M.	Rahman,	N.J.	Rickards,	T.	Thomas,	M.	Nema,	P.	Mishra,	S.	Gaur,	P.	

Agarwal,	Y.	Singh,	S.	Jain	

	

2.1. Hydrological	modelling	of	the	Upper	Narmada	Basin	

	

The	Narmada	River	is	located	in	central	and	western	India	and	is	the	largest	western	flowing	

river	of	peninsula	India	(Government	of	India	Ministry	of	Water	Resources,	2014).	The	basin	

largely	falls	within	the	State	of	Madhya	Pradesh,	but	also	covers	parts	of	Gujarat,	Maharashtra	

and	 Chhattisgarh	 (Figure	 2.1).	With	 a	 population	 of	 over	 16	million	 (Government	 of	 India	

Ministry	of	Water	Resources,	2014)	and	a	drainage	area	of	98,796	km2	(India-WRIS,	2015),	

the	 Narmada	 is	 an	 example	 of	 a	 river	 basin	 facing	 numerous	 management	 challenges.	 In	

particular,	there	are	multiple	on-going	and	planned	dam	and	irrigation	development	projects	

for	the	basin	(Government	of	India	Ministry	of	Water	Resources,	2014).	At	the	same	time,	it	is	

vital	that	environmental	flow	requirements	(the	flow	needs	of	the	river	ecosystem;	Richter	et	

al.,	 1997;	 Acreman	 and	 Dunbar,	 2004)	 continue	 to	 be	 met,	 in	 order	 to	 sustain	 the	

economically,	socially	and	ecologically	important	ecosystem	services	provided	by	the	river.		

	
Figure	2.1.	The	Narmada	Basin	(left)	and	the	Upper	Narmada	Basin	(right).	

This	project	improved	upon	an	existing	MIKE	SHE	hydrological	model	of	the	Upper	Narmada	

Basin	 that	 was	 developed	 for	 a	 previous	 NERC	 funded	 project	 (“Building	 joint	 India-UK	

capacity,	capability,	research	and	innovation	in	the	environment”).	The	Upper	Narmada	Basin	

down	to	Hoshangabad	 lies	within	 the	states	of	Madhya	Pradesh	and	Chhattisgarh	and	has	a	

catchment	 area	 of	 44,725	 km2.	 Section	 2.2	 describes	 the	 development/improvement	 of	 a	
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MIKE	 SHE	 model	 of	 the	 Upper	 Narmada.	 The	 development	 of	 climate	 scenario	 data	 is	

described	in	Section	2.3.	Results,	including	projected	changes	in	climate	and	river	discharge,	

are	 presented	 in	 Section	 2.4.	 Sections	 2.5–2.9	 replicate	 this	 approach	 for	 a	 second	

hydrological	 model	 developed	 for	 the	 same	 area.	 Section	 2.5	 describes	 the	 GWAVA	 water	

resources	model	whilst	Section	2.6	outlines	the	enhancement	of	a	GWAVA	model	of	the	Upper	

Narmada	that,	like	the	MIKE	SHE	model,	was	originally	configured	and	applied	as	part	of	the	

earlier	NERC	project.	Calibration	of	the	GWAVA	model	is	described	in	Section	2.7	with	Section	

2.8	 outlining	 the	 approach	 used	 to	 simulate	 the	 same	 climate	 change	 scenarios	 as	 those	

investigated	using	MIKE	SHE.	Finally	Section	2.9	describes	the	calibration	/	validation	results	

from	the	GWAVA	model	and	the	impact	on	river	flow	and	water	resources	associated	with	the	

climate	change	scenarios.	Section	2.10	briefly	compares	the	results	of	the	two	models.	

	

2.2. Development/improvement	of	a	MIKE	SHE	model	of	the	Upper	Narmada	Basin	

	

MIKE	 SHE	 is	 a	 comprehensive,	 deterministic,	 distributed	 modelling	 system,	 capable	 of	

simulating	the	major	processes	of	the	land	phase	of	the	hydrological	cycle	(Graham	and	Butts,	

2005).	It	has	a	modular	structure	and	although	it	was	originally	designed	as	physically-based	

model	 code,	 many	 modules	 now	 offer	 a	 range	 of	 process	 descriptions,	 some	 of	 which	 are	

conceptual	and	semi-distributed.	These	are	particularly	applicable	for	large	basins	such	as	the	

Narmada	where	the	focus	is	the	simulation	of	river	flow	and	where	detailed	data	required	for	

more	 physically-based	 approaches,	 such	 as	 spatially	 and	 vertically	 discretized	

hydrogeological	characterisation,	are	not	available	(Andersen	et	al.,	2001;	Stisen	et	al.,	2008;	

Refsgaard	et	al.,	2010).	

	

Table	2.1	 summarises	 the	 set-up	of	 the	 initial	MIKE	SHE	model	of	 the	Narmada.	The	model	

grid	 size	 was	 set	 to	 2000	m	 ×	 2000	m	 in	 order	 to	 retain	 a	 balance	 between	 representing	

catchment	characteristics	and	efficient	computation	time	(Vázquez	et	al.,	2002;	Thompson	et	

al.,	 2013).	 The	 model	 time-step	 is	 24	 hours.	 Overland	 flow	 is	 calculated	 using	 a	 finite-

difference	approach	to	solve	the	two-dimensional	Saint–Venant	equations	(Graham	and	Butts,	

2005).	 The	 two-layer	 water	 balance	 method	 was	 employed	 for	 the	 unsaturated	 zone.	 For	

modelling	the	saturated	zone,	the	conceptual,	semi-distributed,	 linear	reservoir	method	was	

selected.	 Advantages	 of	 this	 method	 include	 lower	 data	 requirements	 and	 reduced	

computation	time	compared	to	physically	based	solutions	(Andersen	et	al.,	2001;	Stisen	et	al.,	

2008;	Thompson	et	al.,	2013;	2014a;	2014b).	This	method	requires	the	model	domain	to	be	
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divided	into	groundwater	sub-catchments.	This	was	based	on	topography	and	the	locations	of	

gauging	stations.	

	

Table	2.1.	Summary	of	set-up	of	pre-existing	MIKE	SHE	model	of	the	Upper	Narmada.	

Model	component	 Key	inputs	 Data	sources/	derivation	
Model	domain	 Catchment	extent	–	the	

basin	area	upstream	of	
Hoshangabad	

ESRI	polygon	shapefile	provided	by	NIH.	
	
	

Topography	 Topography	 Extracted	from	SRTM	(Shuttle	Radar	Topography	
Mission)	DEM	(digital	elevation	model).	

Land	use/	vegetation	 Land	use	distribution	 Raster	provided	by	NIH.	
There	are	five	land	cover	classes:	Forest,	Shrub,	
Water	bodies,	Bare	soil	and	Agriculture.	

Leaf	Area	Indexes	 Based	on	Kite	(2001)	and	Jain	et	al.	(1992).	
Root	depths	 Based	on	DHI	(2009)	vegetation	properties	file,	

previous	modelling	experience	(e.g.	Thompson	et	
al.,	2013)	and	the	literature.	

Overland	flow:	modelled	
using	the	2D	finite-
difference	method	

Manning’s	M	for	overland	
flow	resistance	
	

Spatially	distributed	according	to	land	cover.	Values	
based	on	Vieux	(2004).	

Unsaturated	zone:	modelled	
using	the	two-layer	water	
balance	method	

Soil	classes		 The	spatial	distribution	of	six	soil	classes	was	
specified	using	a	1	km	×	1	km	grid	based	on	a	
georectified	and	digitised	version	of	a	Government	
of	India	Survey	of	India	soil	map,	provided	by	NIH.	

Soil	hydraulic	properties	 Values	for	the	different	soil	classes	derived	from	the	
literature	(Clapp	and	Hornberger,	1978;	Norman	
and	Dixon,	1995).	

Saturated	zone:	modelled	
using	the	conceptual,	linear	
reservoir	method	

Spatial	distribution	of	
groundwater	sub-
catchments	

The	basin	was	divided	into	groundwater	sub-
catchments	based	on	topography	and	the	locations	
of	the	five	calibration	gauging	stations.	

Catchment	meteorology:	
Precipitation	and	evapo-
transpiration	modules.	

Precipitation	 0.25°	×	0.25°		gridded	daily	precipitation	obtained	
from	the	IMD	(India	Meteorological	Department)	/	
NCC	(National	Climate	Centre)	High	Spatial	
Resolution	(0.25°	×	0.25°)	Long	Period	(1901–
2013)	Daily	Gridded	Rainfall	Data	Set	Over	India	
(Pai	et	al.,	2014).	

Potential	
evapotranspiration	(PET)	

Calculated	using	the	Hargreaves	method	using	
IMD/NCC	high	resolution	(1°	×	1°)	gridded	daily	
temperature	data	(Srivastava	et	al.,	2009).	

MIKE	11	one-dimensional	
hydraulic	model	for	
simulating	channel	flow	

Plan	of	the	main	river	
channels	

ESRI	polygon	shapefile	provided	by	NIH.	

Synthetic	cross-sections	 Based	on	channel	width	measurements	taken	from	
satellite	imagery	in	Google	Earth	and	the	literature	
(Rajaguru	et	al.,	1995;	Payasi,	2015).	

Manning’s	n	for	bed	
resistance	

Representative	value	based	on	the	literature	
(Chow,	1959)	and	previous	modelling	experience.	

	

Within	 each	 sub-catchment,	 the	 saturated	 zone	 is	 represented	 by	 a	 shallow	 interflow	

reservoir,	 and	 two	 baseflow	 reservoirs	 to	 simulate	 faster	 and	 slower	 baseflow	 storage.	

Exchanges	between	reservoirs,	and	ultimately	the	MIKE	11	hydraulic	model,	are	controlled	by	

time	constants	(DHI-WE,	2009).	The	two	time	constants	(interflow	and	percolation)	for	each	
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interflow	reservoir	and	the	baseflow	time	constant	 for	each	baseflow	reservoir	were	varied	

during	model	calibration.	In	the	earlier	MIKE	SHE	model	of	the	Upper	Narmada,	the	domain	

was	divided	into	five	groundwater	sub-catchments,	whereas	the	current	model	was	improved	

by	dividing	the	basin	into	seven	groundwater	sub-catchments,	as	shown	in	Figure	2.2.	

	

Daily	 gridded	precipitation	 data	 for	 the	Upper	Narmada	were	 derived	 from	 the	 IMD	 (India	

Meteorological	Department)	/	NCC	(National	Climate	Centre)	High	Spatial	Resolution	(0.25°	×	

0.25°)	Long	Period	(1901–2013)	Daily	Gridded	Rainfall	Data	Set	Over	India	(Pai	et	al.,	2014).		

	

	
Figure	2.2.	Sub-catchment	distribution	and	river	discharge	gauging	station	locations.	

	

A	precipitation	 lapse	rate	was	applied	over	 the	spatial	extent	of	 sub-catchments	1,	2	and	4,	

which	are	upstream	sub-catchments	located	at	higher	elevations.	The	lapse	rates	were	subject	

to	calibration.	For	calculation	of	daily	gridded	potential	evapotranspiration	(PET),	 IMD/NCC	

high	resolution	(1°	×	1°)	gridded	daily	temperature	data	(Srivastava	et	al.,	2009)	were	used.	

The	 spatial	 distribution	 of	 precipitation	 and	 PET	 inputs	 are	 show	 in	 Figure	 2.3.	 PET	 was	

calculated	using	the	Hargreaves	method,	the	approach	recommended	by	the	FAO	where	there	

are	 insufficient	 data	 to	 calculate	 Penman-Monetith	 (Allen	 et	 al.,	 1998).	 Parameters	 for	 the	

#
#

#

#
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equation	were	obtained	from	ECALTOOL,	a	computer	program	that	provides	location	specific	

calibrated	 values	 for	 the	 CH	 and	 EH	 parameters	 of	 the	 Hargreaves	 equation	 (Patel	 et	 al.,	

2014).	 These	 values	 vary	 through	 the	 year	 on	 a	 seasonal	 basis.	 For	 the	 earlier	 MIKE	 SHE	

model,	 the	 CH	 and	 EH	 parameters	 were	 subject	 to	 further	 calibration	 to	 improve	 model	

performance.	However,	within	 the	 improved	model,	 the	CH	and	EH	parameters	were	 taken	

directly	from	the	ECALTOOL,	as	this	was	deemed	a	more	robust	approach.		

	

For	the	simulation	of	channel	flow,	MIKE	SHE	is	dynamically	coupled	to	MIKE	11	(Havnø	et	al.,	

1995),	a	one-dimensional	hydraulic	model.	A	plan	of	the	main	river	network	was	digitised	in	

MIKE	11.	For	 the	generation	of	synthetic	cross-sections,	channel	width	measurements	were	

taken	 from	 satellite	 imagery	 in	 Google	 Earth.	 A	 generalised	 cross-section	 profile	 and	 a	

relationship	between	channel	width	and	maximum	channel	depth	were	based	on	limited	data	

available	 from	 NIH	 (a	 single	 cross-section	 for	 the	 river	 channel	 at	 Hoshangabad)	 and	 the	

literature	 (Rajaguru	 et	 al.,	 1995;	 Payasi,	 2015).	 Cross-sections	 were	 specified	 as	 depths	

relative	to	the	bank,	with	bank	elevations	taken	from	the	SRTM	DEM	(digital	elevation	model).	

	

	
Figure	2.3.	Spatial	distribution	of	a)	precipitation	inputs	and	b)	PET	inputs.	

	

Irrigation	was	 included	within	 the	model	 over	 two	 command	 areas:	 Bargi	 (1570	 km2)	 and	

Barna	(579	km2).	The	locations	of	the	command	areas	(see	Figure	2.2)	were	based	on	a	figure	

from	 Government	 of	 India	 Ministry	 of	 Water	 Resources	 (2014)	 that	 was	 georectified	 and	

digitised	 in	 ArcGIS.	 Data	 on	 the	 location	 of	 the	 cultivated	 command	 area	 (land	 actually	

irrigated)	within	the	gross	command	area	(the	overall	region	containing	irrigated	land)	were	

not	available.	However,	the	acreages	of	the	command	areas	included	in	the	MIKE	SHE	model	

were	 made	 to	 match	 those	 reported	 on	 the	 India-WRIS	 (Water	 Resources	 Information	

System)	 website	 (India-WRIS,	 2013a,	 b)	 and	 in	 Government	 of	 India	 Ministry	 of	 Water	

Resources	(2014).	Irrigation	water	for	the	Bargi	and	Barna	command	areas	was	specified	as	

¯ 0 10050 kma)	 b)	
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being	 abstracted	 from	 the	 river	 sections	 at	 the	 locations	 of	 Bargi	 reservoir	 and	 Barna	

reservoir,	respectively.	During	model	calibration,	an	evapotranspiration	crop	coefficient	(Kc)	

of	1.2	was	added	over	the	command	areas	for	the	months	of	May–September.	This	means	that	

the	PET	over	these	areas	is	multiplied	by	1.2	in	these	months.	Crop	coefficients	are	commonly	

employed	to	adjust	potential	evapotranspiration	estimates	specifically	for	cropland,	and	a	Kc	

of	1.2	is	within	the	range	of	normal	Kc	values	according	to	Allen	et	al.	(1998).	

	

A	key	 improvement	 that	was	made	to	 the	model	 for	 the	current	study	 is	 that	 that	 the	 three	

largest	 dams	 (with	 the	 largest	 reservoirs)	 in	 the	 Upper	 Narmada	 Basin,	 (Bargi,	 Barna	 and	

Tawa,	see	Figure	2.2)	were	incorporated	within	the	model.	Figure	2.4	demonstrates	that	there	

are	multiple	dams	in	the	upper	basin.	However,	the	reservoir	area	and	capacity	of	the	Bargi,	

Tawa	and	Barna	Dams	is	considerably	greater	than	that	of	the	other	dams,	with	Bargi	having	

the	largest	reservoir.	Table	2.2	summarises	some	key	characteristics	of	the	three	dams.	

	

	
Figure	2.4.	Dams	and	other	water	resource	assets	in	the	Upper	Narmada	Basin.	Source:	

Government	of	India	Ministry	of	Water	Resources	(2014).	
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Dam	implementation	within	 the	model	required	representation	of	 the	reservoir	dimensions	

within	 the	 MIKE	 11	 model.	 Cross-sections	 were	 established	 using	 a	 combination	 of	 width	

measurements	 acquired	 using	 Google	 Earth	 and	 information	 from	 the	 literature.	 Limited	

availability	of	 information	on	dam	regulation,	 as	well	 as	 the	highly	variable	 regulation	on	a	

day-to-day	 basis,	 necessitated	 that	 the	 dam	 operation	 rules	 within	 the	 model	 are	 highly	

simplified	compared	 to	 the	actual	dam	operation.	Model	 testing	 investigated	 the	number	of	

spillway	gates	to	be	included	within	each	dam,	since	for	all	three	dams,	only	a	small	number	of	

the	gates	are	open	the	majority	of	the	time.	The	optimal	gate	level	for	each	dam	through	the	

year	was	also	tested.	Table	2.3	summarises	the	implementation	of	the	dams	within	the	model,	

including	the	sources	of	information	used	for	guidance.		

	

Table	2.2.	Characteristics	of	the	three	largest	dams	in	the	Upper	Narmada	Basin.	Source	of	
information:	Government	of	India	Ministry	of	Water	Resources	(2014).	

Dam	 River	 Year	of	
completion	

Gross	storage	
capacity	
(MCM)	

Bargi	 Narmada	 1988	 3924.8	
Barna	 Bargi	 1977	 539	
Tawa	 Tawa	 1978	 2312	

	

Table	2.3.	Summary	of	dam	implementation	within	the	MIKE	11	model	

Dam	 Summary	of	dam	operation	within	MIKE	11	 Sources	used	in	
dam	and	reservoir	
implementation	

Bargi	 Modelled	as	a	control	structure	with	5	radial	gates.	The	actual	dam	has	21	
radial	gates,	but	many	of	these	are	closed	for	much	of	the	year.	
Gate	width:	13.71	m.	Gate	sill	level:	407.5	m.	Gate	opening	temporally	
constant,	with	a	vertical	opening	of	20	cm.	Overflow/spill	level:	425.7	m.	

Goel	et	al.	(2000)	

Barna	 Modelled	as	a	control	structure	with	3	radial	gates.	The	actual	dam	has	8	
radial	gates,	but	many	of	these	are	closed	for	much	of	the	year.	
Gate	width:	12.2	m.	Gate	sill	level:	341.7	m.	Gate	closed	September–July,	with	
a	vertical	opening	of	30	cm	in	August.	Overflow/spill	level:	348.55	m.	

National	Institute	of	
Hydrology	(1997)	

Tawa	 Modelled	as	an	overflow	structure	with	10	gates,	where	spill	over	the	dam	
only	occurs	when	the	reservoir	water	level	reaches	the	gate	level	(i.e.	top	of	
the	overflow	gate).	The	gate	level	varies	on	a	monthly	basis	according	to	the	
recommended	upper	rule	curve	for	the	dam	from	National	Institute	of	
Hydrology	(1997).	The	actual	dam	has	13	radial	gates,	but	all	of	these	are	
closed	for	much	of	the	year.		

National	Institute	of	
Hydrology	(1997)	

	

Irrigation	 associated	 with	 Tawa	 Dam	 is	 not	 simulated	 explicitly	 within	 the	model	 because	

much	 of	 the	 command	 area	 served	 by	 the	 dam	 is	 outside	 of	 the	 model	 domain,	 further	

downstream.	 Irrigation	 abstractions	 from	 Tawa	 Reservoir	 were	 instead	 accounted	 for	 by	

applying	two	hydrodynamic	boundaries	with	negative	flows,	one	representing	the	Right	Bank	
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Canal	 and	 one	 representing	 the	 Left	 Bank	Canal.	 Abstractions	 vary	 on	 a	monthly	 basis	 and	

were	 based	 on	 abstraction	 values	 in	 a	 report	 on	 the	 operation	 policy	 of	 the	 dam	 (National	

Institute	of	Hydrology,	1997).	The	values	used	are	summarised	in	Table	2.4	

	

Table	2.4.	Target	monthly	demands	from	Tawa	Reservoir	based	on	National	Institute	of	
Hydrology	(1997).	

Month	 Irrigation	demand		
Left	Bank	Canal	
(106	m3)	

Irrigation	demand	
Left	Bank	Canal	–	
rate	(m3	s-1)	

Irrigation	demand	
Right	Bank	Canal		
(106	m3)	

Irrigation	demand	
Right	Bank	Canal	–	
rate	(m3	s-1)	

Jan	 224.658	 83.88	 60.825	 22.71	
Feb	 153.528	 62.90	 39.419	 16.15	
Mar	 143.669	 53.64	 33.485	 12.50	
Apr	 57.045	 22.01	 0.000	 0.00	
May	 79.581	 29.71	 0.000	 0.00	
Jun	 205.643	 79.34	 38.148	 14.72	
Jul	 88.737	 33.13	 26.704	 9.97	
Aug	 84.511	 31.55	 25.432	 9.50	
Sep	 219.024	 84.50	 59.129	 22.81	
Oct	 252.829	 94.40	 45.566	 17.01	
Nov	 216.912	 83.69	 58.493	 22.57	
Dec	 169.726	 63.37	 44.294	 16.54	

	

To	summarise,	the	following	improvements	were	made	to	the	MIKE	SHE	model	of	the	Upper	

Narmada	as	part	of	the	current	project:	

• Division	of	the	model	domain	into	eight	groundwater	sub-catchments,	instead	of	five.	

• For	 the	calculation	of	PET,	 the	CH	and	EH	parameters	of	 the	Hargreaves	equation	were	

obtained	directly	from	ECALTOOL	(Patel	et	al.,	2014).	

• The	representation	of	irrigation	within	the	model	was	adjusted.	

• Abstractions	from	Tawa	Reservoir	for	irrigation	are	now	represented.	

• The	 three	 largest	 dams	 in	 the	 Upper	 Narmada	 Basin	 (Bargi,	 Barna	 and	 Tawa)	 were	

incorporated	within	the	model,	albeit	with	simplified	operation	strategies.	

	

Whilst	 incorporating	the	above	improvements,	the	model	was	iteratively	re-calibrated	using	

the	period	2002–2008	(the	same	period	employed	 in	 the	calibration	of	 the	original	model).	

Calibration	 was	 undertaken	 against	 discharge	 records	 from	 five	 gauging	 stations	 and	 the	

calibration	 parameters	 were	 the	 time	 constants	 of	 the	 saturated	 zone’s	 interflow	 and	

baseflow	linear	reservoirs	and	the	precipitation	lapse	rates	over	selected	sub-catchments	(see	

below).	 The	 implementation	 of	 dams	 and	 their	 associated	 reservoirs	 (e.g.	 number	 of	 gates	

included	 and	 gate	 levels)	 were	 also	 subject	 to	 sensitivity	 analysis/calibration.	 Model	
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performance	 at	 each	 discharge	 station	 was	 evaluated	 both	 qualitatively,	 through	 visual	

comparison	 of	 observed	 and	 simulated	 discharge,	 and	 quantitatively,	 using	 model	

performance	 statistics.	 The	 indicators	 used	 were	 the	 Nash–Sutcliffe	 coefficient	 (NSE;	 Nash	

and	 Sutcliffe,	 1970),	 the	Pearson	 correlation	 coefficient	 (r)	 and	 the	percentage	deviation	 in	

simulated	mean	flow	from	the	observed	mean	flow	(Dv;	Henriksen	et	al.,	2003).	NSE	can	vary	

between	-1	and	1,	whilst	r	can	vary	between	0	and	1;	in	both	cases,	the	closer	the	value	to	1,	

the	better	the	model	performance	according	to	that	criteria.	In	the	case	of	Dv,	the	closer	the	

value	to	0,	the	better.	Model	performance	according	to	the	NSE	and	Dv	values	was	classified	

using	the	scheme	of	Henriksen	et	al.	(2008).	Model	validation	was	subsequently	undertaken	

for	 the	period	2009	to	May	2013	(again	repeating	the	approach	used	 for	 the	earlier	model)	

using	the	same	stations	and	performance	criteria.	

	

To	provide	baseline	simulated	discharge	for	a	30	year	period,	the	MIKE	SHE	model	was	driven	

with	 IMD	 /	 NCC	 based	 precipitation	 and	 PET	 for	 the	 period	 1971–2000.	 A	 secondary	

validation	 was	 undertaken	 using	 observed	 and	 simulated	 river	 discharge	 records	 for	 the	

Hoshangabad	station	for	the	period	September	1972	–	December	2000.	Data	were	unavailable	

for	the	other	gauing	stations	used	in	model	calibration.	

	

2.3. Simulation	of	climate	change	

	

Daily	 climate	 scenarios	 for	 precipitation	 and	 temperature	 (minimum	 and	maximum)	 were	

generated	 for	 the	RCP4.5	scenario	 for	17	GCMs	for	 the	 time	slice	2031–2060.	The	GCMs	for	

which	scenario	data	were	generated	are	summarised	 in	Table	2.5.	The	derivation	of	climate	

change	 scenarios	 followed	 the	 approach	 described	 by	 Rahman	 (2016).	 Data	 were	 first	

obtained	from	the	NASA	Earth	Exchange	(NEX)	Global	Daily	Downscaled	Projections	(GDDP)	

dataset1,	which	provides	GCM	projections	from	Coupled	Model	Intercomparison	Project	Phase	

5	(CMIP5)	(Taylor	et	al.,	2012)	that	have	been	downscaled	to	a	spatial	resolution	of	0.25°	×	

0.25°	using	the	Bias-Correction	Spatial	Disaggregation	(BCSD)	method	(Thrasher	et	al.,	2012).	

	

BCSD	 uses	 a	 statistical,	 quantile	 mapping	 bias	 correction	 approach.	 Using	 cumulative	

distribution	 functions	 (CDFs),	 it	 compares	 historical	 GCM	 outputs	 to	 climate	 observations	

over	 a	 common	period.	 It	 then	 uses	 this	 information	 to	 adjust	 (bias	 correct)	 historical	 and	

future	GCM	outputs,	whilst	preserving	climate	 trends	(Thrasher	 et	al.,	2012).	The	algorithm	

																																																								
1	Acknowledgment:	Climate	scenarios	used	were	derived	from	the	NEX-GDDP	dataset,	prepared	by	the	Climate	
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also	uses	spatial	detail	from	the	observational	data	to	inform	the	interpolation	of	GCM	outputs	

to	 a	higher	 spatial	 resolution	 (Thrasher	 et	 al.,	 2013).	 For	 application	 to	 the	Narmada	MIKE	

SHE	model,	the	NEX-GDDP	data	were	spatially	averaged	to	match	the	grid	of	the	IMD	/	NCC	

precipitation	and	temperature	data.	An	additional	stage	of	bias	correction	was	subsequently	

undertaken	using	a	similar	quantile	mapping	technique	to	that	used	by	the	BCSD	method.	This	

time,	the	GCM	bias	for	the	historical	period	of	1971–2000	was	assessed	in	relation	to	the	IMD	

/	NCC	data	 and	 this	 information	was	used	 to	 correct	 the	 future	GCM	projections.	The	daily	

temperature	 data	 were	 employed	 to	 calculate	 Hargreaves	 PET,	 with	 daily	 minimum	

temperature	and	daily	maximum	temperature	being	averaged	to	provide	mean	temperature.	

	

Table	2.5.	GCMs	used	in	this	investigation.	

Model	
no.	

Model	name	 Institution	 Group	
name	

Group	
no.	

No.	of	
models	

1	 ACCESS1-0	 Commonwealth	 Scientific	 and	 Industrial	
Research	 Organisation	 (CSIRO)	 and	 Bureau	 of	
Meteorology	(BOM),	Australia	

ACCESS1-0	 1	 1	

2	 CanESM2	 Canadian	 Centre	 for	 Climate	 Modelling	 and	
Analysis	

CanESM2	 2	 1	

3	 CSIRO-Mk3.6.0	 Commonwealth	 Scientific	&	 Industrial	 Research	
Organisation	 in	 collaboration	 with	 Queensland	
Climate	Change	Centre	of	Excellence	

CSIRO-
Mk3.6.0	

3	 1	

4	 CNRM-CM5	 Centre	 National	 de	 Recherches	 Météorol-
ogiques/	 Centre	 Européen	 de	 Recherche	 et	 de	
Formation	Avancée	en	Calcul	Scientifique	

European	 4	 3	

5	 MPI-ESM-LR	 Max-Planck-Institut	 für	 Meteorologie	 (Max	
Planck	Institute	for	Meteorology)	

	 	 	

6	 MPI-ESM-MR	 	 	 	

7	 GFDL-CM3	 NOAA	Geophysical	Fluid	Dynamics	Laboratory	 GFDL	 5	 2	

8	 GFDL-ESM2M	 	 	 	

9	 IPSL-CM5A-LR	 Institut	Pierre-Simon	Laplace	 IPSL	 6	 2	

10	 IPSL-CM5A-MR	 	 	 	 	

11	 MIROC5	 Atmosphere	 and	 Ocean	 Research	 Institute	 (The	
University	 of	 Tokyo),	 National	 Institute	 for	
Environmental	 Studies,	 and	 Japan	 Agency	 for	
Marine-Earth	Science	and	Technology	

MIROC	 7	 3	

12	 MIROC-ESM	 	 	 	

13	 MIROC-ESM-
CHEM	

	 	 	

14	 bcc-csm1-1	 Beijing	 Climate	 Center,	 China	 Meteorological	
Administration	

NCAR	 8	 4	

15	 BNU-ESM	 College	 of	 Global	 Change	 and	 Earth	 System	
Science,	Beijing	Normal	University	

	 	 	

16	 CCSM4	 National	Center	for	Atmospheric	Research	 	 	 	

17	 CESM1-BGC	 Community	Earth	System	Model	Contributors	 	 	 	
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To	provide	baseline	simulated	discharge	for	a	30	year	period,	the	MIKE	SHE	model	was	driven	

with	IMD	/	NCC	based	precipitation	and	PET	for	1971–2000.	The	model	was	then	driven	with	

the	NEX-GDDP	based	RCP4.5	scenario	data	for	17	GCMs	for	the	period	2031–2060.	

	

2.4. Results	

	

2.4.1. Model	calibration	and	validation	

	

Table	2.6	summarises	the	optimised	values	of	the	calibration	parameters.	Precipitation	lapse	

rates	 were	 employed	 over	 sub-catchments	 1,	 2	 and	 4,	 following	 initial	 model	 runs	 that	

displayed	consistent	underestimation	of	discharge	at	 gauging	 stations	downstream	of	 these	

sub-catchments	(Dindori,	Manot	and	Gadarwara,	respectively).	Furthermore,	these	are	three	

upstream	 sub-catchments	 that	 are	 located	 at	 higher	 elevations	 and	 exhibit	 relatively	 large	

ranges	in	elevation.	Rain	gauge	networks	in	mountainous	regions	often	display	a	bias	towards	

stations	being	 located	at	 lower	elevations,	which	 can	 lead	 to	 systematic	underestimation	of	

precipitation	 (e.g.	 Frei	 and	 Schär,	 1998;	 Frei	 et	 al.,	 2003).	 Precipitation	 lapse	 rates	 can	 be	

employed	to	try	and	address	this	issue	(e.g.	Immerzeel	et	al.,	2012b;	Wijesekara	et	al.,	2012;	Li	

et	al.,	2016).	The	final	lapse	rate	values	are	within	the	range	of	those	previously	reported	in	

mountainous	regions	(e.g.	Immerzeel	et	al.,	2012a;	2012b).	

	

Table	2.6.	Final	calibration	parameter	values.	

Sub-catchment	number	 1	 2	 3	 4	 5	 6	 7	
Sub-catchment	name	 Din	 Man	 Hiran	 Barm	 Gad	 Tawa	 Hosh	
Precipitation	lapse	rate		
(%/100	m)	 5	 5	 	 	 6	 	 	

Interflow	time	constant	for	
interflow	reservoir	 4	 6	 6	 6	 4	 14	 6	

Percolation	time	constant	for	
interflow	reservoir	 4	 14	 14	 14	 4	 14	 14	

Time	constant	for	baseflow	
reservoir	1	(days)	 35	 35	 35	 35	 65	 65	 65	

Time	constant	for	baseflow	
reservoir	2	(days)	 300	 200	 300	 1500	 120	 350	 350	

	

Model	 performance	 statistics	 for	 the	 calibration	 period	 are	 provided	 in	 Table	 2.7.	 As	

indicated,	 a	 shorter	 period	 of	 2001–2006	was	 employed	 at	Manot,	 due	 to	 data	 availability.	

Observed	 and	 simulated	 mean	 monthly,	 monthly	 and	 daily	 discharges	 are	 presented	 in	

Figures	2.5,	2.6	and	2.7,	respectively.	The	annual	river	regime	is	represented	fairly	well	by	the	

model,	as	are	monthly	discharges,	with	good	sequencing	of	 the	annual	monsoon	flood	pulse	
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achieved	at	all	gauging	stations.	Mean	discharges	are	also	well	represented	by	the	model	for	

the	calibration	period,	with	Dv	classed	as	“very	good”	to	“excellent”	at	all	stations.	

	

Table	2.7.	Model	performance	statistics	for	the	calibration	and	validation	periods	(validation	
shaded).	Model	performance	indicators	are	taken	from	Henriksen	et	al.	(2008).	

Station	 Period	 Dv	 Daily		
NSE	

Daily		
r	

Monthly	
NSE	

Monthly		
r	

Dindori	(a)	 Cal:	01/02–12/08	 -3.06	 *****	 0.40	 **	 0.64	 0.84	 ****	 0.92	

	 Val:	01/09–05/13	 7.54	 ****	 0.56	 ***	 0.79	 0.81	 ****	 0.93	

Manot	(b)	 Cal:	01/02–12/06	 -4.42	 *****	 0.53	 ***	 0.73	 0.94	 *****	 0.97	

Barmanghat	
(c)	

Cal:	01/02–12/08	
-2.29	 *****	 0.72	 ****	 0.85	 0.94	 *****	 0.97	

	 Val:	01/09–05/10,		
								06/11–05/13	 7.57	 ****	 0.70	 ****	 0.84	 0.89	 *****	 0.95	

Gadarwara	(d)	 Cal:	01/02–12/08	 -1.61	 *****	 0.35	 **	 0.59	 0.64	 ***	 0.80	

	 Val:	01/09–05/10,		
								06/12–05/13	 -19.54	 ***	 0.75	 ****	 0.88	 0.86	 *****	 0.97	

Hoshangabad	 Cal:	01/02–12/08	 -3.77	 *****	 0.76	 ****	 0.87	 0.93	 *****	 0.97	

(e)	 Val:	01/09–05/13	 14.20	 ***	 0.77	 ****	 0.88	 0.89	 *****	 0.96	

	 Val:	09/72–12/00	 2.72	 *****	 0.77	 ****	 0.90	 0.93	 *****	 0.97	

Performance	
indicator	

Excellent	
*****	

Very	good	
****	

Fair	
***	

Poor	
**	

Very	poor	
*	

Dv	 <	5%	 5–10%	 10–20%	 20–40%	 >40%	

NSE	 >0.85	 0.65–0.85	 0.50–0.65	 0.20–0.50	 <0.20	

	

Model	 performance	 at	 a	 daily	 resolution	 is	 notably	 weaker	 compared	 to	 at	 a	 monthly	

resolution,	as	demonstrated	in	Figure	2.7	and	Table	2.7.	Using	monthly	discharges,	NSE	values	

for	the	calibration	period	are	classed	as	“fair”	to	“excellent”	and	r	values	of	0.80	and	above	are	

achieved.	In	comparison,	at	a	daily	resolution,	NSE	is	classed	as	“poor”	(two	stations)	to	“very	

good”	(two	stations)	and	r	values	range	between	0.59	and	0.87.		

	

This	weaker	performance	at	a	daily	resolution	may	partly	be	related	to	the	quality	and	spatial	

resolution	of	 the	 gridded	precipitation	 and	PET	data.	 It	may	 also	 relate	 to	 the	 operation	of	

dams	within	 the	Upper	Narmada	Basin.	Only	 the	 three	 largest	dams	are	represented	within	

the	 MIKE	 SHE/MIKE	 11	 model,	 whereas	 there	 are	 numerous	 smaller	 dams	 that	 are	 not	

included	within	the	model	(see	Figure	2.4)	and	for	which	detailed	information	regarding	their	

design	 and	 operation	 are	 lacking.	 These	 dams	 are	 likely	 to	 have	 impacted	 flows	 at	 a	 daily	

resolution.	Furthermore,	 the	operation	of	 the	three	dams	that	are	 included	within	the	MIKE	

SHE/MIKE	11	model	(Bargi,	Tawa	and	Barna)	is	highly	simplified,	with	dam	gate	levels	within	
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the	 model	 being	 either	 temporally	 consistent,	 or	 varying	 on	 a	 monthly	 basis.	 In	 contrast,	

operation	of	the	dam	gates	can,	in	reality,	vary	on	a	daily	basis.	

	

	
Figure	2.5.	Observed	and	simulated	river	regimes	for	the	calibration	period	(2002–2008).	

	

The	 primary/main	 model	 validation	 was	 undertaken	 using	 the	 period	 2009	 to	 May	 2013.	

However,	observed	discharge	records	were	unavailable	for	the	gauging	station	at	Manot,	and	

data	were	only	available	for	three	and	a	half	years	for	the	Barmanghat	station	and	two	and	a	

half	years	at	Gadarwara,	as	indicated	in	Table	2.7	and	demonstrated	visually	in	Figure	2.7.	As	

for	the	calibration	period,	good	sequencing	of	the	annual	monsoon	flood	pulse	is	achieved	at	

all	fours	stations	for	the	validation	period	(Figure	2.7).	Furthermore,	daily	r	is	close	to	0.8	or	

higher	and	monthly	r	is	over	0.9	at	all	of	the	gauging	stations,	representing	a	strong	positive	

correlation	 between	 observed	 discharges	 and	 those	 simulated	 by	 the	 MIKE	 SHE/MIKE	 11	

model.	
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Figure	2.6.	Observed	and	simulated	monthly	mean	discharge	for	the	calibration	and	validation	

periods	(separated	by	dashed	line).	
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Figure	2.7.	Observed	and	simulated	daily	discharge	for	the	calibration	and	validation	periods	

(separated	by	dashed	line).	
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At	 Dindori	 and	 Barmanghat,	 overestimation	 of	 mean	 discharge	 for	 the	 validation	 period	

results	 in	Dv	being	 classed	as	 “very	 good”	 rather	 than	 “excellent”.	However,	 at	Dindori,	 the	

daily	NSE	value	indicates	an	improvement	in	model	performance	compared	to	the	calibration	

period,	whilst	monthly	NSE	continues	to	be	classed	as	“very	good”	and	“excellent”	at	Dindori	

and	 Barmanghat,	 respectively,	 despite	 a	 small	 reduction.	 At	 Gadarwara,	 although	 mean	

discharge	shows	greater	underestimation	for	the	validation	period	(a	more	negative	Dv),	NSE	

and	r	 indicate	an	overall	 improvement	 in	model	performance	at	 this	station,	at	both	a	daily	

and	 monthly	 resolution.	 Finally,	 at	 Hoshangabad,	 Dv	 displays	 an	 increase,	 leading	 to	 its	

classification	falling	from	“very	good”	to	“fair”.		Despite	this,	performance	at	a	daily	resolution	

according	to	NSE	remains	“very	good”,	and	the	monthly	NSE	value	remains	“excellent”.	Figure	

2.8	demonstrates	 that	 although	 river	 regimes	 for	 the	 validation	period	match	 the	observed	

less	closely	than	during	the	calibration	period,	there	is	still	a	reasonable	fit.	

	

	
Figure	2.8.	Observed	and	simulated	river	regimes	for	the	validation	period	(2009–May	2013,	but	

shorter	for	some	stations).	

	

For	the	secondary	validation	at	Hoshangabad	for	the	period	1972–2000,	model	performance	

is	 “very	 good”	 at	 a	 daily	 resolution	 according	 to	 NSE	 and	 “excellent”	 according	 to	 Dv	 and	

monthly	 NSE.	 Figure	 2.9	 presents	 observed	 and	 simulated	 river	 regimes,	 monthly	 mean	

discharge	 and	 daily	 discharge	 over	 this	 period.	 It	 demonstrates	 that	model	 performance	 is	

generally	good	over	 this	period,	although	performance	 is	again	weaker	at	a	daily	resolution	

compared	to	a	monthly	resolution,	with	underestimation	of	peak	daily	discharges.	Figure	2.9b	

illustrates	the	impact	of	Bargi	Dam	on	flows	at	Hoshangabad.	In	the	model,	the	three	dams	are	

included	throughout	the	simulation.	However,	Bargi	Dam	was	not	completed	until	1988,	with	

the	reservoir	being	filled	to	capacity	in	1990.	Consequently,	prior	to	1990,	simulated	baseline	
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flows	 are	 higher	 than	 those	 observed,	 and	 there	 is	 a	 greater	 tendency	 towards	

underestimation	of	peak	monthly	discharges.	

	

	

	
Figure	2.9.	Observed	and	simulated:	a)	river	regimes,	b)	monthly	mean	discharge	and	c)	daily	

discharge	at	Hoshangabad,	for	the	secondary	validation	period	(1972–2000).		

	

Overall,	 performance	 of	 the	model	 is	 considered	 appropriate	 to	 allow	 use	 of	 the	model	 in	

further	 investigations,	 including	 climate	 change	 scenario	 simulation	 (e.g.	 Thompson	 et	 al.,	

2013)	 and	 the	 assessment	of	 the	 impacts	of	 climate	 change	upon	environmental	 flows	 (e.g.	

Thompson	 et	 al.,	 2014b),	 particularly	 as	 comparisons	 between	 baseline	 and	 scenario	

discharges	will	be	made	at	a	temporal	resolution	lower	than	daily,	such	as	monthly	or	annual.	

	

2.4.2. Scenario	climate	

	

Projected	changes	 in	climate	are	assessed	relative	 to	 the	observed	baseline	datasets	 for	 the	

period	1971–2000.	The	spatial	distribution	of	baseline	mean	annual	precipitation	values	and	

a)	

b)	

c)	
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changes	in	mean	annual	precipitation	under	the	RCP4.5	scenario	(2031–2060	time	slice)	are	

presented	in	Figure	2.10.	For	each	GCM,	the	boxplots	in	Figure	2.11	summarise	the	variability	

in	projected	change	in	mean	annual	precipitation	across	the	98	grid	cells.		

	

	
Figure	2.10.	Baseline	mean	annual	precipitation	(top)	and	changes	(%)	in	mean	annual	

precipitation.	(Gn	represents	the	GCM	group	number.)	
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Figure	2.11.	Boxplots	(one	per	GCM)	summarising	change	in	mean	annual	precipitation	across	
the	98	grid	cells	in	the	Upper	Narmada	Basin.	The	boxplots	show	the	median,	25th	and	75th	

quartiles,	and	range	of	the	data.	Any	value	that	lies	more	than	1.5	times	the	interquartile	range	
below	the	25th	quartile	or	above	the	75th	quartile	is	plotted	as	an	outlier	(+).		

	

These	 figures	 demonstrate	 that	 the	 majority	 of	 GCMs	 project	 increases	 in	 mean	 annual	

precipitation	 across	 most	 of	 the	 basin.	 12	 GCMs	 project	 increases	 for	 all	 grid	 cells,	 three	

project	increases	for	>75%	of	grid	cells	and	only	two	GCMs	(GCM	8:	GFDL-ESM2M	and	GCM	

11:	 MIROC5)	 project	 reductions	 for	 >75%	 of	 grid	 cells.	 Amongst	 the	 GCMs	 that	 project	

increases	for	most	of	the	basin,	the	magnitude	of	change	varies	considerably	between	GCMs.	

For	example,	whilst	some	GCMs	project	increases	of	no	more	than	10%,	with	the	middle	50%	

of	change	values	falling	between	0–5%,	others	project	increases	of	>10%	for	the	majority	of	

grid	cells,	with	the	middle	50%	of	change	values	falling	between	15–25%.	GCM	9	(IPSL-CM5A-

LR)	displays	the	largest	increases,	with	the	middle	50%	falling	between	+25	and	+35%.	The	

GCMs	tend	not	to	show	a	clear	or	consistent	spatial	pattern	of	change	across	the	catchment.	

	

For	each	GCM,	Figure	2.12	summarises	the	variability	in	projected	change	in	mean	annual	PET	

across	the	14	grid	cells	used	to	distribute	PET.	Projected	changes	in	annual	PET	display	much	

less	variability	between	GCMs	compared	to	precipitation.	With	the	exception	of	a	single	GCM	

(GCM	13:	MIROC-ESM-CHEM),	all	GCMs	project	increases	in	annual	PET	for	all	grid	cells,	with	

changes	varying	between	+1%	and	+6%	and	 individual	GCMs	showing	a	 range	of	up	 to	1%	

across	the	grid	cells.	The	remaining	GCM,	MIROC-ESM-CHEM,	projects	only	minor	reductions	

of	up	to	-0.3%	for	six	grid	cells,	and	small	increases	of	up	to	1.6%	for	the	remaining	eight	grid	

cells.	
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Figure	2.12.	Boxplots	(one	per	GCM)	summarising	change	in	mean	annual	PET	across	the	14	grid	

cells	in	the	Upper	Narmada	Basin.	

	
2.4.3. Scenario	discharge	

	

Projected	changes	in	discharge	under	the	RCP4.5	scenario,	2031–2060	time	slice,	are	assessed	

relative	to	simulated	discharges	for	the	baseline	period	of	1971–2000.	The	boxplots	in	Figure	

2.13	 summarise	 the	 variability	 in	 absolute	 and	 percentage	 changes	 in	mean,	 Q10	 and	 Q90	

discharges	 across	 the	 17	 GCMs	 for	 each	 gauging	 station.	 Percentage	 changes	 in	 mean	

discharge	are	broadly	similar	at	each	of	the	five	stations,	with	the	majority	of	GCMs	projecting	

increases	 in	mean	 discharge	 and	 the	median	 change	 ranging	 between	 +19.5%	 (Station	 a	 -	

Dindori)	and	+24.7%	(Station	c	 -	Barmanghat).	For	stations	a	and	b	(Manot),	 the	 inter-GCM	

range	 in	percentage	 change	 is	 around	60–70%,	with	 changes	varying	 from	around	 -15%	 to	

+50%.	 For	 stations	 c–e,	 the	 inter-GCM	 range	 in	 percentage	 change	 is	 slightly	 higher	 at	 75–

80%,	with	changes	ranging	from	around	-10%	to	+70%.	The	interquartile	range	in	percentage	

change	 is	 fairly	 consistent	 across	 all	 stations,	 varying	 between	 27.2%	 and	 30.7%,	with	 the	

middle	 50%	 of	 changes	 falling	 between	 +3.6%	 and	 +38.7%.	 Although	 the	 distribution	 of	

percentage	changes	in	mean	discharge	show	similarities	across	the	stations,	it	is	worth	noting	

that	projected	changes	in	absolute	terms	are	much	smaller	at	the	upstream	stations,	a,	b	and	d	

(Dindori,	Manot	and	Gadarwara,	respectively)	(maximum	change	of	+54	m3s-1),	compared	to	

stations	c	(Barmanghat)	and	e	(Hoshangabad)	(maximum	changes	of	295	m3s-1	and	544	m3s-1,	

respectively).		
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Figure	2.13.	Boxplots	of	absolute	(left)	and	percentage	(right)	changes	in	mean,	Q10	and	Q90	

discharges	across	the	17	GCMs	for	each	gauging	station.	The	boxplots	show	the	median,	25th	and	
75th	quartiles,	and	range	of	the	data.	Any	value	that	lies	more	than	1.5	times	the	interquartile	
range	below	the	25th	quartile	or	above	the	75th	quartile	is	plotted	as	an	outlier	(+).	See	Table	

2.7	for	gauging	station	names.	

Changes	in	high	flows	(Q10)	show	a	similar	pattern	of	variability	across	the	GCMs	to	changes	

in	mean	discharge,	with	increases	projected	by	the	majority	(>75%)	of	GCMs	and	the	middle	
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50%	 of	 percentage	 changes	 at	 each	 station	 falling	 somewhere	 between	 0%	 and	 40%.	 Low	

flows	(Q90)	show	only	negligible	(<±2	m3s-1)	absolute	changes	at	station	a,	b	and	d.	Projected	

changes	are	also	very	minor	at	stations	c	(Barmanghat)	and	e	(Hoshangabad),	with	15	of	the	

GCMs	projecting	changes	of	between	-6	m3s-1	and	+16	m3s-1,	and	two	outlier	GCMs	displaying	

small	 increases	 of	 around	 20	 m3s-1	 and	 30	 m3s-1	 at	 stations	 c	 and	 e,	 respectively.	 Unlike	

changes	 in	mean	 discharge	 and	 Q10,	 changes	 in	 Q90	 show	more	 of	 an	 even	 split	 between	

GCMs	that	project	increases	or	decreases	at	each	station.	

	

Although	Figure	2.13	provides	a	useful	summary	of	the	variability	in	projected	discharges,	it	

does	not	allow	 the	 results	of	 individual	GCMs	 to	be	discerned.	Percentage	 changes	 in	mean	

discharge	for	each	station	and	each	GCM	are	therefore	shown	in	Figure	2.14,	with	a	separate	

subplot	for	each	GCM	group.		

	

In	 terms	of	 the	 spatial	 pattern	 in	 the	magnitude	 of	 changes	 in	mean	discharge,	most	GCMs	

show	a	relatively	consistent	magnitude	of	change	across	the	five	stations.	Differences	between	

GCMs	 can	 predominantly	 be	 explained	 by	 projected	 changes	 in	 precipitation.	 For	 example,	

Figure	2.14	demonstrates	 that	only	 two	GCMs,	GCM	8:	GFDL-ESM2M	and	GCM	11:	MIROC5,	

project	reductions	in	mean	discharge.	In	the	case	of	the	former,	changes	are	consistently	very	

small	(no	more	that	-3.5%).	MIROC5	displays	larger	reductions	of	between	-8.5%	and	-15.5%.	

These	 are	 the	 only	 two	 GCMs	 that	 project	 reductions	 in	 annual	 precipitation	 across	 the	

majority	 of	 grid	 cells	 within	 the	 catchment	 (Figure	 2.10),	 with	 MIROC5	 showing	 larger	

reductions	for	a	greater	number	of	grid	cells.	The	GCM	that	produces	the	largest	increases	in	

discharge	 (~+50%	 to	 ~+70%)	 is	 IPSL-CM5A-LR,	 which	 displayed	 the	 largest	 increases	 in	

annual	precipitation	(between	+20%	and	+46%,	Figure	2.10).	

	

Within	some	of	the	groups	that	contain	multiple	GCMs,	there	are	sometimes	clear	similarities	

between	models	 in	 terms	 of	 the	 magnitude	 and	 spatial	 pattern	 of	 changes.	 In	 many	 cases	

however,	there	are	often	relatively	notable	differences	between	GCMs	within	the	same	group.	

For	example,	in	Group	7,	whilst	MIROC5	and	MIROC5-ESM-CHEM	display	very	similar	results	

at	 all	 stations,	 with	 increases	 in	 mean	 discharge	 of	 >27%	 at	 all	 stations	 and	 the	 largest	

increase	 at	 Station	 a	 (Dindori),	 MIROC-ESM	 in	 the	 same	 group	 projects	 reductions	 at	 all	

stations	(maximum	change:	-15.5%,	Station	a).	
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Figure	2.14.	Projected	percentage	change	in	mean	discharge	across	the	5	gauging	stations	(a–e).	

Individual	subplots	for	each	GCM	group.	See	Table	7	for	gauging	station	names.	

	

Figure	 2.15	 displays	 simulated	 river	 regimes	 (mean	 monthly	 discharges)	 for	 the	 scenario	

period	for	each	GCM	and	the	ensemble	mean,	as	well	as	the	baseline.	As	previously	indicated	

by	changes	in	Q90	(Figure	2.13),	all	GCMs	project	very	little	change,	in	absolute	terms,	in	dry	

season	flows	throughout	November–May	(<20	m3s-1	at	stations	a	(Dindori),	b	(Manot)	and	d	

(Gadarwara),	<55	m3s-1	 at	 stations	 c	 (Barmanghat)	 and	e	 (Hoshangabad)).	 In	 June–July,	 the	

majority	 of	 GCMs	 project	 increases	 in	 discharge,	 with	 only	 four	 to	 seven	 GCMs	 projecting	

reductions	 in	 discharge,	 depending	 on	 the	 station	 and	 month.	 In	 August	 to	 October,	 the	

number	of	GCMs	projecting	a	reduction	decreases	to	between	four	and	zero.	This	is	when	the	
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ensemble	mean	 shows	 the	 largest	 absolute	 changes	 in	discharge,	with	 the	 largest	 increases	

occurring	in	August	at	all	stations	(e.g.	station	a:	+43	m3s-1,	station	e:	+987	m3s-1).	Dependent	

on	 station,	 either	 August	 or	 September	 displays	 the	 largest	 spread	 in	 simulated	 discharges	

from	the	different	GCMs,	meaning	that	these	are	the	months	with	the	greatest	uncertainty	in	

the	magnitude	of	change.	

	

	
Figure	2.15.	Simulated	river	regimes	for	the	five	gauging	stations	for	the	baseline,	each	GCM	and	

the	ensemble	mean.	(Note	different	y-axis	scales.)		
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2.5. The	GWAVA	water	resources	model	

	

The	Global	Water	AVailability	Assessment	model	(GWAVA)	was	developed	by	the	Centre	for	

Ecology	&	Hydrology	 (CEH)	and	 the	British	Geological	 Survey	 (BGS)	 in	order	 to	provide	an	

improved	methodology	for	the	assessment	of	water	resources	at	the	regional	to	global	scale	

(Meigh	et	al.,	1999).	 It	 is	a	gridded,	semi-distributed	model,	 incorporating	 the	PDM	rainfall-

runoff	model	 structure	 (Moore,	 2007),	 along	with	 key	 elements	 of	 river	 infrastructure	 and	

water	demands	relevant	for	the	assessment	of	water	resources.	These	include	artificial	water	

transfers	and	the	routing	of	flows	through	lakes,	reservoirs	and	wetlands.	The	model	allows	

for	water	 use	 from	 various	 sectors,	 including	 that	 of	 domestic	 consumption,	 industrial	 and	

agricultural	demands	and	water	use	for	energy.	GWAVA	is	run	at	a	daily	time-step,	and	both	

daily	 and	monthly	 outputs	produced	 to	 give	 a	 comprehensive	 assessment	 of	water	 scarcity	

across	 the	study	domain.	Runoff	and	recharge	are	generated	via	 inputs	of	precipitation	and	

evapotranspiration	through	the	PDM	rainfall-runoff	model.	An	additional	model	accounts	for	

rainfall	 that	 is	 intercepted	 by	 a	 forest	 canopy.	 Runoff	 is	 then	 generated	 from	 the	 input	 of	

effective	precipitation	and	routed	through	each	model	cell	via	surface	and	subsurface	storages	

(Moore,	2007).	

	

The	model	provides	a	comparison	of	surface	water	availability	and	demand	at	the	scale	of	the	

grid	 cell	 for	 a	 comprehensive	 assessment	 of	 spatial	 and	 temporal	 variability	 of	 water	

resources	 across	 a	 user-defined	 basin	 or	 region.	 Model	 outputs	 include	 simulated	 daily	 to	

monthly	flows,	water	scarcity	indices	and	environmental	flow	risk	maps,	all	on	a	model	cell-

by-cell	basis.	

	

2.6. Development/Improvement	of	the	GWAVA	model	of	the	Upper	Narmada	Basin	
	

The	model	was	 developed	 for	 the	 assessment	 of	water	 scarcity	 over	 large	 domains,	 and	 as	

such	has	been	previously	applied	at	spatial	resolutions	of	between	0.5o	×	0.5o		to	7km	×	9km	

(Meigh	et	al.,	1999;	Dumont	et	al.,	2012).	The	choice	of	grid	size	is	a	compromise	between	the	

need	 to	 represent	 spatial	 variability,	 and	 critically,	 the	 availability	 of	 suitable	 data.	 For	 the	

application	of	GWAVA	to	 the	Upper	Narmada	Basin,	a	spatial	 resolution	of	0.125o	 latitude	×	

0.125o	longitude	was	selected.	This	resolution	enables	a	detailed	analysis	and	understanding	

of	the	spatial	variability	of	the	water	availability	in	the	Upper	Narmada	at	a	scale	that	allows	

for	the	meaningful	use	of	available	data	(Fung	et	al.,	2006).	
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One	of	the	largest	water	consumers	within	the	Narmada	is	the	agricultural	sector,	with	crop	

irrigation	 a	 vital	 influence	 on	 the	 hydrological	 regime	 within	 the	 basin.	 GWAVA	 has	 been	

developed	to	represent	the	individual	water	needs	of	up	to	eight	crops	in	any	one	cell	via	the	

use	of	FAO	cropping	coefficient	values	(Kc),	varying	 the	demand	by	month	according	 to	 the	

stage	 of	 the	 growing	 cycle	 (Allen	 et	 al.,	 1998).	 Irrigation	 demands	were	 updated	 from	 the	

original	 GWAVA	 application,	 encompassing	 the	 two	 main	 command	 areas	 in	 the	 Upper	

Narmada	 from	 the	 Bargi	 and	 Barna	 dams.	 The	 Rabi	 and	 Kharif	 growing	 seasons	 were	

represented	 on	 an	 annual	 basis,	with	 crop	 rotation	 based	 on	 information	 gathered	 by	NIH.	

Detailed	water	transfers	out	of	the	basin	were	also	added	to	the	original	application,	including	

that	transfers	from	the	Tawa	Dam	to	the	adjacent	Ganges	Basin,	which	is	undertaken	to	help	

meet	the	water	requirements	of	the	city	of	Bhopal,	state	capital	of	Madhya	Pradesh.	

	

The	data	used	for	GWAVA	model	configuration	are	listed	in	Table	2.8.	These	include	data	that	

were	used	as	part	of	the	MIKE	SHE	model,	along	with	information	on	the	artificial	influences	

datasets	used	to	configure	the	water	demands	component	of	 the	GWAVA	model.	 IMD	(India	

Meteorological	Department)	/	NCC	(National	Climate	Centre)	gridded	climate	data	were	used	

to	drive	the	GWAVA	model,	as	with	the	MIKE	SHE	model	(see	Section	2.2).	PET	was	calculated	

for	 each	 grid	 cell	 using	 the	 Hargreaves	 method.	 Note	 that	 no	 lapse	 rates	 were	 applied	 to	

precipitation	for	the	GWAVA	application	to	the	Upper	Narmada.	

	

2.7. GWAVA	model	calibration	and	validation	

	

Using	 the	 PDM	 structure,	 GWAVA	 calibrates	 four	 parameters	 for	 each	 sub-catchment	

specified,	 allowing	 the	 user	 to	 manually	 set	 a	 further	 three	 parameters.	 The	 calibrated	

parameters	 include	 the	 PDM	 parameter	 of	 the	 power	 law	 probability	 distribution	 (b),	

describing	the	spatial	variations	in	soil	moisture	storage	capacity;	the	surface	runoff	routing	

parameter	 (Srout)	 and	 the	 groundwater	 routing	 parameter	 (Grout),	 representing	 the	 lag	 in	

water	being	transported	via	overland	flow	and	baseflow	respectively;	and	a	multiplying	factor	

(fact)	to	adjust	vegetation	rooting	depths,	wilting	points	and	soil	column	depths.		

	

The	previous	application	of	the	GWAVA	model	to	the	Upper	Narmada	Basin	did	not	facilitate	

the	use	of	 the	 inbuilt	automatic	calibration	routine,	and	was	configured	using	global	default	

settings.	The	calibration	of	the	GWAVA	model	for	the	updated	application	was	conducted	via	
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an	automated	iterative	process,	based	on	observed	discharge	data	for	the	period	1990–2000.	

This	time	period	was	selected	as	the	construction	of	the	Bargi	was	not	completed	until	1988,	

with	 the	model	 configured	 to	 include	 all	 three	 of	 the	major	 dams	 in	 the	 upper	 part	 of	 the	

basin.	This	 time	period	also	allowed	 for	a	 sufficient	validation	period,	which	was	chosen	as	

2002–2010.	 Again,	 this	 period	 includes	 the	 major	 anthropogenic	 influences	 known	 to	 be	

affecting	flows	within	the	basin.	The	year	2001	was	excluded	from	the	validation	period	due	

to	 a	 number	 of	 outlier	 values	 in	 the	 observed	 flow	 records	 at	 two	 of	 the	 gauging	 stations	

selected	 for	calibration	/	validation	(Mohgaon	and	Belkheri).	After	statistical	analysis	of	 the	

data	at	these	stations,	it	was	decided	that	in	the	interests	of	consistency	the	validation	period	

for	all	stations	should	commence	in	2002.		

	
Table	2.8.	Summary	of	set-up	of	updated	GWAVA	model	of	the	Upper	Narmada	Model	

Model	component	 Key	inputs	 Data	sources/	derivation	
Model	domain	 Catchment	extent	–	the	

basin	area	upstream	of	
Hoshangabad	

ESRI	polygon	shapefile	provided	by	NIH	

Topography	
	

Topography	 Extracted	from	SRTM	(Shuttle	Radar	Topography	
Mission)	DEM	(digital	elevation	model).	

Land	use/	vegetation	
	

Land	use	distribution	 USGS	LULC	map	(USGS,	2015)	-	Reclassified	to	six	
land	cover	types:	Forest,	Shrub,	Water	bodies,	
Wetlands,	Bare	soil	and	Grass/cropland.	

Unsaturated	zone:	modelled	
via	PDM	rainfall-runoff	
model	

Root	depths	 Implicit	to	model,	taken	from	Vorosmarty	et	al.	
(1989)	

	 Soil	classes		 The	spatial	distribution	of	six	soil	classes	was	
specified	using	a	1	km	×	1	km	grid	based	on	a	
georectified	and	digitised	version	of	a	Government	
of	India	Survey	of	India	soil	map,	provided	by	NIH.	

	 Soil	hydraulic	properties	 Values	for	the	different	soil	classes	derived	from	
the	literature	(Vorosmarty	et	al.,	1989;	Saxton	&	
Rawls,	2006)	

Catchment	meteorology:	
Precipitation	and	evapo-
transpiration	modules.	

Precipitation	 0.25°	×	0.25°		gridded	daily	precipitation	obtained	
from	the	IMD	(India	Meteorological	Department)	/	
NCC	(National	Climate	Centre)	High	Spatial	
Resolution	(0.25°	×	0.25°)	Long	Period	(1901–
2013)	Daily	Gridded	Rainfall	Data	Set	Over	India	
(Pai	et	al.,	2014).	

	 Potential	
evapotranspiration	
(PET)	

Calculated	using	Hargreaves	method	and	IMD	
gridded	daily	temperature	(Srivastava	et	al.,	2009).	

Artificial	influences	 Reservoir	&	lake	
abstraction,	water	body	
dimensions	

National	Institute	of	Hydrology	(1997);	Goel	et	al.	
(2009)	

	 Population	&	Domestic	
consumption	

Indian	Population	Census	(GOI,	2011),	provided	by	
NIH;	AQUASTAT	(FAO,	2016)	

	 Irrigated	crops	 Portmann	(2011);	additional	information	from	NIH	
	 Water	transfers	 Goel	et	al.	(2009);	additional	information	from	NIH	
	 Cattle,	sheep	and	goat	

populations	
Indian	Livestock	Census	(GOI,	2007),	from	NIH	
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In	 total,	 discharge	 records	 for	 five	 sub-catchment	 gauging	 stations	 in	 the	 Upper	 Narmada	

were	 selected	 for	 calibration	 /	 validation.	 This	 selection	was	based	on	 the	 completeness	 of	

their	records	and	the	stations	location	in	the	basin	(see	Figure	2.16	for	station	locations,	note	

that	some	stations	differed	from	those	used	in	the	MIKE	SHE	model	which	were	dictated	by	

the	 distribution	 of	 the	 linear	 reservoir-based	 saturated	 zone	 model).	 GWAVA	 calibration	

includes	 basic	 dam	 operations,	 along	 with	 all	 known	 abstractions	 and	 demands	 from	 the	

agricultural	and	domestic	sectors.	As	with	the	MIKE	SHE	model,	model	performance	at	each	

station	was	assessed	 for	both	 the	calibration	and	validation	periods	via	a	number	of	model	

performance	 statistics.	 The	 indicators	 used	 were	 the	 Nash–Sutcliffe	 coefficient	 (NSE;	 Nash	

and	 Sutcliffe,	 1970),	 the	Pearson	 correlation	 coefficient	 (r)	 and	 the	percentage	deviation	 in	

simulated	mean	flow	from	the	observed	mean	flow	(Dv;	Henriksen	et	al.,	2003;	see	Section	2.2	

for	details	of	each	criterion).	

	
Figure	2.16.	River	discharge	gauging	station	locations	for	the	GWAVA	Upper	Narmada	model	

	

In	 summary,	 the	 following	 improvements	 were	 made	 to	 the	 GWAVA	 model	 to	 the	 Upper	

Narmada	as	part	of	the	current	project:	

• Updated	land	use	data	via	USGS.	

• Improved	flow	direction	via	the	SRTM	DEM.	

• Incorporation	of	two	cropping	seasons,	additional	crop	types	and	irrigation	practices,	as	

directed	by	NIH.	

• The	 use	 of	 the	 Hargreaves	 equation	 for	 PET	 input,	 replacing	 the	 Thornthwaite	

methodology.	
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• The	inclusion	of	the	Bargi,	Barna	and	Tawa	reservoirs	with	basic	operations,	to	allow	for	a	

more	realistic	routing	of	water	through	the	upper	basin.	

• Monthly	abstractions	from	the	Tawa	Reservoir	

• The	 division	 of	 the	 basin	 in	 to	 5	 sub-catchments,	 enabling	 a	 more	 representative	 and	

heterogeneous	parameter	set	

• Automatically	derived	PDM	parameters	via	the	GWAVA	model	calibration	routine	

	

2.8. Simulation	of	climate	change	

	

The	 baseline	 period	 used	 to	 drive	 the	 GWAVA	model	 was	 the	 same	 as	 for	 the	 calibration	

period	(i.e.	1990–2010).	The	decision	to	select	this	period	was	made	as	any	validation	prior	to	

1988	would	need	to	take	in	to	account	alterations	in	anthropogenic	influences	throughout	the	

Upper	Narmada,	 including	 the	 absence	 of	 the	Bargi	 reservoir.	 It	was	 therefore	 felt	 that	 the	

time	slice	used	for	calibration	would	provide	a	more	realistic	baseline	from	which	to	assess	

any	changes	as	a	result	of	future	climate	alone.	Data	for	the	climate	change	simulations	were	

taken	 from	the	bias-corrected	CMIP5	ensemble	described	 in	Section	2.3,	and	 listed	 in	Table	

2.5.	These	were	run	for	the	period	2028-2060,	and	the	output	metrics	standardised	to	enable	

comparison	with	the	baseline	period.	

	
2.9. Results	

	
2.9.1. Model	calibration	and	validation	

	
Table	2.9	summarises	the	optimised	values	of	the	GWAVA	calibration.	All	manual	parameters	

were	kept	at	their	default	global	values.	Model	performance	statistics	for	the	calibration	and	

validation	periods	are	shown	in	Table	2.10.	These	include	performance	metrics	for	both	daily	

and	 monthly	 flow	 regimes.	 The	 model	 performs	 well	 during	 the	 calibration	 period	 at	 a	

monthly	 temporal	 resolution,	displaying	 ‘very	good’	 to	 ‘excellent’	NSE	metrics,	 along	with	 r	

values	ranging	from	0.85–0.97.	It	can	be	seen	from	Figure	2.17	and	Figure	2.18	that	the	timing	

of	the	annual	monsoon	is	captured	reasonably	well	at	all	sites.	Dv	is	classed	as	‘very	good’	to	

‘excellent’	at	 three	sites,	but	 is	weaker	at	Mohgaon	and	Belkheri,	 the	 latter	being	classed	as	

‘very	 poor’.	 This	 can	 be	 seen	 in	 Figure	 2.17,	 where	 flow	 is	 significantly	 overestimated	

throughout	the	annual	regime.	
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Model	performance	at	a	daily	resolution	(Figure	2.19)	is	weaker	than	at	the	monthly	time	step	

for	all	sites.	The	NSE	metrics	for	the	calibration	period	range	from	‘fair’	to	 ‘excellent’,	with	r	

values	 from	 0.75-0.93	 (Table	 2.10).	 Flows	 during	 the	 dry	 season	 at	 Hoshangabad	 are	 also	

underestimated	throughout,	as	reflected	by	a	Dv	metric	of	-7.7.	

	

Table	2.9.	Final	calibration	parameters	for	GWAVA’s	application	to	the	Upper	Narmada		

Sub-catchment	number	 1	 2	 3	 4	 5	
Sub-catchment	name	 Manot	 Mohgaon	 Patan	 Belkheri	 Hoshangabad	
b	 0.69	 0.54	 0.69	 0.39	 0.29	
fact	 0.66	 0.38	 2.84	 0.43	 2.31	
Srout	 0.84	 0.76	 0.43	 0.97	 0.35	
Grout	 7.45	 0.90	 2.49	 0.40	 10.38	

	

Table	2.10.	Model	performance	statistics	for	the	calibration	and	validation	periods	(validation	

shaded).	Calibration	period:	1990–2000	Validation	period:	2002–2010	for	all	stations.	

Performance	indicators	from	Henriksen	et	al.	(2008).		

Station	 Dv	 Daily		
NSE	

Daily		
r	

Monthly	
NSE	

Monthly		
r	

Manot	(1)	 -0.6	 *****	 0.74	 ****	 0.86	 0.94	 *****	 0.97	

	 -3.2	 *****	 0.68	 ****	 0.82	 0.95	 ****	 0.97	

Mohgaon	(2)	 13.5	 ***	 0.55	 ***	 0.75	 0.70	 ****	 0.85	

	 -10.4	 ***	 0.58	 ***	 0.79	 0.81	 ****	 0.92	

Patan	(3)	 0.00	 *****	 0.87	 *****	 0.93	 0.95	 *****	 0.98	

	 -0.8	 *****	 0.81	 ****	 0.9	 0.93	 *****	 0.97	

Belkheri	(4)	 40.5	 *	 0.65	 ****	 0.81	 0.84	 ****	 0.95	

	 54.4	 *	 0.69	 ****	 0.84	 0.79	 ****	 0.94	
Hoshangabad	(5)	 -7.7	 ****	 0.77	 ****	 0.88	 0.93	 *****	 0.97	

	 -14.2	 ***	 0.64	 ***	 0.8	 0.89	 *****	 0.96	

Performance	
indicator	

Excellent	
*****	

Very	good	
****	

Fair	
***	

Poor	
**	

Very	poor	
*	

Dv	 <	5%	 5–10%	 10–20%	 20–40%	 >40%	

NSE	 >0.85	 0.65–0.85	 0.50–0.65	 0.20–0.50	 <0.20	

	
Monthly	NSE	metrics	for	the	validation	period	range	from	0.92-0.97,	again	indicating	a	good	

model	 fit	 to	 the	 observed	 data.	 Dv	metrics	 are	 classed	 as	 ‘excellent’	 through	 to	 ‘very	 poor’	

across	 the	 five	 gauging	 station.	 As	 demonstrated	 in	 Figure	 2.20,	 the	 model	 tends	 to	

underestimate	 discharge	 in	 the	 monsoon	 season	 at	 Mohgaon,	 and	 overestimate	 discharge	

throughout	 the	 year	 at	 Belkheri.	 As	 was	 the	 case	 for	 the	 calibration	 period,	 model	

performance	 during	 the	 validation	 period	 at	 a	 daily	 time	 step	 is	 weaker	 than	 it	 is	 for	 the	
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monthly	 resolution.	 NSE	 values	 decrease	 from	 the	 calibration	 period	 at	 three	 of	 the	 five	

gauging	 stations.	 It	 can	 be	 seen	 in	 Figure	 2.19	 and	Figure	 2.20	 that	 the	model	 struggles	 to	

simulate	 flows	at	Hoshangabad	during	 the	dry	 season.	The	underestimation	of	discharge	at	

Hoshangabad	 is	 highlighted	 by	 the	 Dv	 of	 -14.2.	 However,	 the	 timing	 and	magnitude	 of	 the	

annual	peak	are	more	aligned	with	the	observations,	especially	at	a	monthly	resolution.	

Figure	2.17.	Observed	and	simulated	flow	regimes	for	the	calibration	period	(1990–2000)	

	

The	relatively	poorer	model	performance	at	all	gauging	stations	at	the	daily	time	step	is	likely	

the	 result	 of	 a	 combination	 of	 factors,	 both	 within	 the	 model	 and	 the	 input	 data.	 The	

overestimation	of	 flows	at	Belkheri	 is	 a	 trend	 that	was	also	noted	by	Thomas	 (2017)	when	

using	 SWAT	 for	 hydrological	modelling	 of	 the	Upper	Narmada.	 It	may	 be	 the	 case	 that	 the	

routing	of	water	through	this	catchment	is	subject	to	processes	not	currently	being	captured	

by	the	model,	along	with	possible	inaccuracies	in	the	climate	data	and	observed	flow	data.	
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Figure	2.18.	Observed	and	simulated	monthly	mean	discharge	for	the	calibration	and	validation	

periods	(separated	by	dashed	line).	
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Figure	2.19.	Observed	and	simulated	daily	discharge	for	the	calibration	and	validation	periods	
(separated	by	dashed	line).	
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Figure	2.20.	Observed	and	simulated	flow	regimes	for	the	validation	period	(2002–2010)	

	

The	 simulated	 low	 flows	 during	 the	 dry	 season	 at	Hoshangabad	 tend	 to	 be	 lower	 than	 the	

observed	flow,	with	the	model	struggling	to	maintain	sufficient	flows	from	around	Q70.	One	

possible	 reason	 for	 this	 may	 be	 the	 operational	 rules	 of	 the	 three	major	 reservoirs	 in	 the	

basin.	 	 Detailed	 information	 regarding	 operational	 rules	 and	 release	 thresholds	 were	 not	

available	 for	 this	 study,	 and	 so	 it	may	 be	 the	 case	 that	 GWAVA	 is	 storing	 too	much	water	

during	 the	 dry	 season.	 Future	 improvements	 for	 the	 GWAVA	 application	 to	 the	 Upper	

Narmada	 should	 include	 a	 sensitivity	 analysis	 around	 the	 release	 of	 water	 from	 all	 three	

reservoirs,	to	help	better	represent	low	flows	at	the	most	downstream	point	of	the	basin.	

	
Despite	the	areas	of	less-satisfactory	performance	described	above,	the	model	overall	can	be	

seen	to	do	well	 in	capturing	and	representing	 the	key	events	of	 the	hydrological	regime.	As	

such,	 the	model	 is	 considered	 to	 be	 appropriate	 for	 use	 when	 assessing	 future	 impacts	 of	

climate	change	within	the	Upper	Narmada	on	river	flow	and	water	resources.	
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2.9.2. Scenario	discharge	

	
As	with	 the	MIKE	SHE	model,	all	projected	changes	 in	discharge	under	 the	RCP4.5	scenario	

are	 assessed	 relative	 to	 the	 baseline	 period,	 in	 this	 case	 1990–2010.	 Figure	 2.21	 displays	

boxplots	summarising	the	variability	 in	absolute	and	percentage	changes	 for	 the	mean,	Q10	

and	 Q90	 flows	 across	 the	 17	 GCMs	 for	 each	 of	 the	 five	 guaging	 stations.	 The	 percentage	

change	 in	mean	discharge	 increases	 in	 the	majority	of	GCMs,	 reflected	 in	 the	median	of	 the	

mean	flow	at	all	sites,	ranging	from	21%	at	Manot	(Site	1)	through	to	31.5%	at	Belkheri	(Site	

4).	The	largest	range	in	predicted	mean	flows	is	at	Patan	(Site	3),	where	the	inter-GCM	range	

is	-19%-	to	+	79%.	The	interquartile	range	across	all	sites	 is	between	21%	and	29.4%,	with	

the	middle	50%	between	6.5%	and	45.4%.	

	

As	would	be	expected,	the	absolute	changes	in	discharge	are	less	pronounced	at	the	upstream	

gauging	stations,	with	a	maximum	of	62.0	m3s-1	at	Manot,	a	65.21%	increase	from	the	baseline	

mean.	 The	 interquartile	 ranges	 at	 Manot,	 Mohgaon,	 Patan	 and	 Belkheri	 are	 also	 relatively	

small.	 The	downstream	site	 of	Hoshangabad	displays	 a	maximum	absolute	 change	of	 353.8	

m3s-1,	which	represents	a	53%	increase	from	the	mean	baseline	discharge.	

	

Changes	 in	 Q10	 at	 each	 of	 the	 gauging	 stations	 again	 show	 a	 general	 trend	 of	 predicted	

increases	in	flow,	as	highlighted	by	the	median	values.	At	stations	1-4,	>75%	of	the	17	GCMs	

show	 an	 increase	 from	 the	 baseline,	 with	 Belkheri	 displaying	 an	 outlier	 value	 of	 >80%.	

Decreases	in	Q10	are	predicted	by	5	of	the	17	GCMs	at	Hoshangabad,	ranging	from	-5.7%	to	-

45.8%.	 Interquartile	metrics	 for	 percentage	 changes	 are	 relatively	 similar	 between	 the	 five	

gauging	stations,	ranging	from	15.5%	at	Hoshangabad	up	to	25.9%	at	Manot.	

	
The	 boxplot	 displaying	 percentage	 changes	 in	 Q90	 indicates	 an	 increase	 in	 mean	 Q90	

discharges	at	Manot,	Mohgaon	and	Belkheri.	The	variability	in	the	range	between	stations	is	

more	noticeable	at	 low	flows	than	for	mean	and	Q10	discharges,	with	the	median	change	at	

stations	 1,2	 and	4	 being	43.8%,	 19.6%	and	2.32%	 respectively.	 Percentage	 changes	 in	Q90	

discharges	for	Patan	and	Hoshangabad	are	not	displayed,	as	flow	values	were	simulated	at	0	

m3s-1	in	the	baseline	and	across	all	17	GCM	scenarios.	This	is	likely	the	result	of	in	accuracies	

in	 the	 reservoir	 operations	 within	 the	 model,	 and	 highlights	 the	 underestimation	 of	 flows	

during	the	dry	season	noted	in	Section	2.9.1.	
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Figure	2.21.	Boxplots	of	absolute	(left)	and	percentage	(right)	changes	in	mean,	Q10	and	Q90	

discharges	across	the	17	GCMs	for	each	gauging	station.	The	boxplots	show	the	median,	25th	and	
75th	quartiles,	and	range	of	the	data.	Any	value	that	lies	more	than	1.5	times	the	interquartile	
range	below	the	25th	quartile	or	above	the	75th	quartile	is	plotted	as	an	outlier	(+).	See	Table	

2.10	for	gauging	station	names	
	
Figure	 2.22	 displays	 projected	 percentage	 change	 in	 mean	 discharge	 at	 the	 five	 gauging	

stations	 for	 each	 of	 the	 17	 GCMs.	 In	 a	 similar	 way	 to	 the	 results	 of	 the	 MIKE	 SHE	model,	

differences	between	the	GCMs	can	be	largely	explained	by	predicted	changes	in	precipitation.	
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GFDL-ESM2M	 indicates	 reductions	 in	mean	discharge	at	 stations	3,	4	and	5,	whilst	MIROC5	

suggests	decreases	in	flows	at	all	stations,	ranging	from	-1.9%	at	Manot	to	-19.3%	at	Patan.	As	

noted	 previously	 (Section	 2.4.2),	 these	 GCMs	 are	 the	 only	 two	 within	 the	 ensemble	 that	

display	 reductions	 in	 precipitation	 across	 the	majority	 of	 grid	 cells.	 The	 largest	 percentage	

increases	in	mean	flow	across	gauging	stations	1-4	are	produced	by	the	IPSL-CM5A-LR	GCM,	

with	 increases	 of	 65.2%,	 58.9%,	 79.2%	 and	 63.1%	 respectively.	 The	 largest	 percentage	

increase	at	Hoshangabad	is	56%	and	is	associated	with	MPI-ESM-MR	GCM	in	Group	4.	

	
	
Figure	2.22.	Projected	percentage	change	in	mean	discharge	across	the	5	gauging	stations	(1–5).	

Individual	subplots	for	each	GCM	group.	(+).	See	Table	2.10	for	gauging	station	names.	



	 41	

	
The	relative	direction	and	magnitude	of	change	is	in	general	very	consistent	within	the	groups	

containing	multiple	GCMs,	with	the	exception	of	Group	7.	This	was	also	noted	in	the	results	for	

the	MIKE	SHE	model	when	driven	by	the	same	set	of	climate	change	scenarios	(Section	2.4.3).	

Within	Group	7,	the	MIROC5	GCM	projects	much	lower	percentage	changes	in	discharge	than	

either	of	the	other	two	GCMs	in	the	same	group,	these	being	MIROC-ESM	and	MIROC-CHEM.	

The	 relative	direction	of	 change	between	 the	gauging	 stations	 is	 also	different	 for	MIROC5,	

displaying	opposite	trends	at	Belkheri	and	Hoshangabad	when	compared	to	the	other	GCMs	

in	Group	7.		

	
Figure	2.23	shows	the	mean	monthly	discharge	at	the	five	gauging	stations	for	each	of	the	17	

GCMs,	 along	 with	 those	 for	 the	 baseline	 period.	 Ensemble	 means	 at	 each	 of	 the	 stations	

predict	 higher	 flows	 during	 the	 rainy	 season	 (June–October)	 when	 compared	 with	 the	

baseline,	with	peak	flows	in	August	at	Manot	and	Patan	more	than	doubling	for	some	GCMs,	

increasing	by	maximums	of	435.16	m3s-1and	245.52	m3s-1	respectively.	The	 largest	absolute	

changes	in	discharge	across	all	five	stations	are	projected	in	August.	The	magnitude	of	these	

changes	 varies	 from	 56.84	m3s-1	 at	 Belkheri,	 up	 to	 1460.46	m3s-1	 at	 Hoshangabad.	 The	 dry	

season	of	November–May	sees	 less	change	across	the	17	GCMs.	Manot,	Mohgaon,	Patan	and	

Belkheri	display	differences	within	the	range	of	<15	m3s-1and	>	-3	m3s-1,	whilst	changes	in	dry	

season	flows	at	Hoshangabad	are	in	the	range	of	<33.46	m3s-1	and	>	-24.01	m3s-1.	

	
2.9.3. GWAVA	water	resources	output	

	
As	 part	 of	 GWAVA’s	 functionality,	 one	 of	 its	 key	 outputs	 is	 that	 of	 indices	 for	 water	

resources/scarcity	across	 the	 region	of	 interest.	This	 index	 is	 found	by	 calculating	 the	90%	

reliable	flow	for	the	driest	month	of	the	year	and	then	abstracting	from	this	the	demands	for	

this	month	until	they	are	met,	or	until	cell	runoff	is	no	longer	able	to	sustainably	meet	these	

demands.	This	 is	 then	 converted	 to	 a	 ratio	 ranging	 from	 -1	 (negligible	water	 availability	 to	

meet	 demand)	 through	 to	 1	 (available	 water	 greater	 than	 demand).	 This	 index	 therefore	

reflects	the	critical	point	in	the	year	with	regards	to	water	availability,	and	distinguishes	areas	

where	there	may	be	a	shortfall	of	water	relative	to	demand	on	a	cell-by-cell	basis.	(Meigh	et	

al.,	1999).	
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Figure	2.23.	Projected	Simulated	river	regimes	for	the	five	gauging	stations	for	the	baseline,	each	

GCM	and	the	ensemble	mean.	(Note	different	y-axis	scales).	

	
Figure	2.24	and	Figure	2.25	display	examples	of	water	availability	across	the	Upper	Narmada	

Basin	for	the	baseline	climate	and	the	ACCESS1-0	GCM	climate	change	scenario,	respectively.	

It	 can	 be	 seen	 that	 the	 main	 regions	 of	 water	 scarcity	 within	 the	 baslin	 for	 both	 climate	

periods	are	that	of	the	command	areas	for	the	Bargi	and	Barna	reservoirs.	The	future	climate	

scenario	 appears	 to	 reduce	 the	water	 stress	 placed	 upon	 these	 areas	 in	 comparison	 to	 the	

baseline	period,	possibly	due	to	an	increase	in	precipitation	throughout	the	year,	allowing	the	
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reservoirs	 supplying	 the	 command	areas	 to	 fill,	 ready	 for	 irrigation	 in	 the	dry	 season.	 Such	

outputs,	with	the	inclusion	of	the	full	CMIP5	ensemble,	will	allow	for	a	future	comprehensive	

analysis	of	 the	key	drivers	of	 the	potential	 future	state	of	water	resources	within	the	Upper	

Narmada	Basin.	

	

	
Figure	2.24.	GWAVA	water	resources	output	for	the	Upper	Narmada	Basin	for	the	baseline	

period	(1990–2010)	

	
Figure	2.25.	GWAVA	water	resources	output	for	the	Upper	Narmada	Basin	for	the	ACCESS1-0	

GCM	climate	change	scenario	(2028–2060)	
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2.10. MIKE	SHE	/	GWAVA	comparison	

	
This	 project	 has	 further	 enhanced	 two	 existing	 hydrological	models	 of	 the	Upper	Narmada	

each	developed	using	a	different	modelling	system;	MIKE	SHE/MIKE	11	and	GWAVA.	This	in	

principle	 enables	 a	 comparison	 of	 the	 each	 model’s	 ability	 to	 simulate	 historical	 river	

discharges	as	well	as	an	assessment	of	any	hydrological-model	related	uncertainty	 in	future	

projections	 due	 to	 climate	 change.	 However,	 any	 such	 comparison	 should,	 in	 this	 case,	 be	

undertaken	with	a	number	of	caveats.	

	

In	 the	 case	 of	 the	models’	 performance	 in	 simulating	 observed	 discharges,	 the	 approaches	

used	 to	spatially	distribute	processes	and	 the	historical	development	of	 the	existing	models	

restricts	common	gauging	stations	 to	 two;	Manot	 in	 the	upstream,	eastern	part	of	 the	basin	

and	Hoshangabad,	the	lowest	point	on	the	Upper	Narmada.	Additionally,	the	use	of	alternative	

calibration	and	validation	periods	(which	was	largely	related	to	overall	data	availability	and	

in	the	case	MIKE	SHE	meant	that	simulated	discharges	at	Manot	were	not	validated)	prevents	

a	 direct	 side-by-side	 comparison	 of	 observed	 and	 simulated	 river	 discharges	 for	 the	 same	

period.	Notwithstanding	 these	 issues,	 it	 is	 still	 possible	 to	 review	 the	 relative	 values	 of	 the	

common	statistical	measures	of	model	performance	used	in	the	calibration	and	validation	of	

the	 two	models	 (Table	 2.11)	 and	 to	 identify	 any	 commonalities	 /	 differences	 in	 simulated	

discharges	using,	in	this	case,	the	river	regime	(Figure	2.26).	

	
Table	2.11.	Model	performance	statistics	for	the	calibration	and	validation	for	the	two	common	
gauging	stations	simulated	by	MIKE	SHE	and	GWAVA	
	
Station	 Model	 Period*	 Dv	 Daily		

NSE	
Daily		
r	

Monthly	
NSE	

Monthly		
r	

Manot		 SHE	 Cal	 -4.4	 *****	 0.53	 ***	 0.73	 0.94	 *****	 0.97	

	 GWAVA	 Cal	 -0.6	 *****	 0.74	 ****	 0.86	 0.94	 *****	 0.97	

	 	 Val	 -3.2	 *****	 0.68	 ****	 0.82	 0.95	 ****	 0.97	

Hoshangabad	 SHE	 Cal	 -3.8	 *****	 0.76	 ****	 0.87	 0.93	 *****	 0.97	

	 	 Val	 14.2	 ***	 0.77	 ****	 0.88	 0.89	 *****	 0.96	

	 GWAVA	 Cal	 -7.7	 ****	 0.77	 ****	 0.88	 0.93	 *****	 0.97	

	 	 Val	 -14.2	 ***	 0.64	 ***	 0.80	 0.89	 *****	 0.96	

Performance	
indicator	

Excellent	
*****	

Very	good	
****	

Fair	
***	

Poor	
**	

Very	poor	
*	

Dv	 <	5%	 5–10%	 10–20%	 20–40%	 >40%	
NSE	 >0.85	 0.65–0.85	 0.50–0.65	 0.20–0.50	 <0.20	

*		Calibration:	MIKE	SHE	2002-2008	/	GWAVA	1990-2000;	Validation:	MIKE	SHE	2009-2013	/	GWAVA	2000-2010	



	 45	

The	 statistics	 in	 Table	 2.11	 point	 to	 similar	 performance	 for	 the	 two	 models	 albeit.	 as	

discussed,	for	different	periods.	At	Manot,	the	DV	for	the	calibration	periods	used	by	the	two	

models	 are	 both	 classified	 as	 excellent	 although	 MIKE	 SHE	 does	 tend	 to	 underestimate	

discharges	 by	 a	 larger	 amount	 than	 GWAVA.	 Figure	 2.26	 shows	 that	 the	 August	 peak	 is	

underestimated	by	8.8%	for	MIKE	SHE	compared	to	4.4%	for	GWAVA.	The	largest	percentage	

differences	between	observed	and	simulated	discharges	occur,	however,	at	the	very	end	of	the	

dry	season	although,	of	course,	absolute	differences	are	very	low	at	this	time.		

	
Figure	2.26.	Observed	and	simulated	river	regimes	for	Manot	and	Hoshangabad	for	the	
calibration	and	validation	periods	employed	by	the	MIKE	SHE	and	GWAVA	models.	



	 46	

Results	 for	GWAVA	 tend	 to	 suggest	 an	 earlier	 rise	 in	 the	 annual	 flood	 at	Manot	 during	 the	

calibration	 period	 compared	 to	 both	 the	 observations	 and	 results	 for	 MIKE	 SHE.	 GWAVA	

simulated	discharges	also	lead	the	observed	for	this	model’s	validation	period.	At	a	monthly	

resolution,	MIKE	SHE	and	GWAVA	produce	identical	NSE	and	r	values	with	the	former	being	

classified	as	excellent.	This	statistic	 is	on	the	boundary	between	excellent	and	very	good	for	

the	validation	period	 for	GWAVA.	At	 a	daily	 resolution	 the	NSE	and	 r	 values	 suggest	better	

performance	 by	 GWAVA	 compared	 to	 MIKE	 SHE.	 It	 is,	 however,	 worth	 noting	 that	 at	 this	

shorter	temporal	resolution	inter-model	differences	in	the	values	of	these	model	performance	

statistics	 will	 be	 more	 influenced	 by	 the	 different	 meteorological	 conditions	 experienced	

during	the	different	calibration	periods	and,	in	turn,	their	impact	upon	river	flows.	

	

The	values	of	Dv	for	Hoshangabad	in	the	calibration	periods	point	to	better	performance	by	

MIKE	SHE	(excellent)	 compared	 to	GWAVA	(very	good).	Figure	2.26	 shows	 that	whilst	both	

models	 overestimate	 the	 calibration	 periods’	 peak	 of	 the	 river	 regime	 (in	 August	 by	 on	

average	8.2%	and	12.5%,	respectively),	discharges	are	underestimated	during	the	longer	dry	

period	 leading	 to	 the	 overall	 negative	 Dv	 values.	 This	 underestimation	 is	 more	 evident	 in	

results	from	GWAVA.	Overestimation	of	peaks	and	underestimation	of	dry	season	flows	could	

result	from	incomplete	representation	of	the	impacts	of	the	dams	on	the	Upper	Narmada	that,	

in	particular,	 impact	discharges	at	Hoshangabad.	 Indeed	prior	 to	 the	 incorporation	of	dams	

within	 the	 MIKE	 SHE	 model,	 this	 differential	 model	 performance	 was	 more	 extreme	

(Robinson	 et	 al.,	 2016).	 As	 discussed	 above,	 (Section	 2.2)	 detailed	 information	 on	 the	

operation	of	 the	dams	was	 limited	necessitating	 the	 representation	of	dam	operation	using	

the	limited	data	that	were	available.	Notwithstanding	this	issue,	the	statistical	performance	of	

the	two	models	for	their	respective	calibration	periods	as	indicated	by	NSE	and	r	are	almost	

identical.	In	both	cases	NSE	is	classified	as	very	good	at	a	daily	resolution	and	excellent	at	a	

monthly	 resolution.	 Results	 for	 the	 two	 models’	 validation	 period	 are	 similar.	 Again,	 the	

annual	 peak	 at	 Hoshangabad	 is	 overestimated	 (by	 9.1%	 in	 September	 for	 MIKE	 SHE	 and	

whilst	 the	discharge	 simulated	 for	GWAVA	 in	 this	month	 is	within	1%	of	 the	observed,	 the	

model	 simulates	a	mean	peak	one	month	earlier	and	15.4%	higher	 than	 the	observed).	Dry	

season	discharges	again	tend	to	be	underestimated,	and	again	most	clearly	for	GWAVA	which	

simulates	 very	 low	 flows	 between	 November	 and	 May.	 In	 contrast,	 whilst	 MIKE	 SHE	

underestimates	 the	 lowest	 discharges	 (March–May),	 flows	 at	 the	 start–middle	 of	 the	 dry	

season	 are	 overestimated.	 These	 differences	 result	 in	 bias	 (Dv	 values)	 of	 equal	 value	 but	

opposite	sign	with	the	performance	being	classified	in	both	cases	as	fair.	Again,	the	different	
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calibration	periods	should	be	noted	and	these	values	are	not,	therefore,	directly	comparable.	

Whilst	performance	as	indicated	by	NSE	and	r	at	a	daily	time	step	for	the	validation	periods	is	

better	 for	 MIKE	 SHE,	 the	 former	 statistic	 is	 still	 classified	 as	 very	 good.	 At	 a	 monthly	

resolution	the	values	of	these	two	statistics	are	identical	for	MIKE	SHE	and	GWAVA	with	NSE	

being,	as	for	the	calibration	periods,	classified	as	excellent.	

	

Comparing	 results	 for	 the	 climate	 change	 scenarios	 between	 the	 two	 hydrological	 models	

should	be	done	with	even	more	caution.	Whilst	approximately	the	same	scenario	period	was	

employed	(MIKE	SHE:	2031–2060;	GWAVA	2028–2060),	 the	baseline	period	differed	(MIKE	

SHE:	 1971–2000;	 GWAVA:	 1990–2010).	 This	 was	 linked	 in	 the	 case	 of	 GWAVA	 to	 the	

restriction	 of	 the	 period	 to	 after	 the	 construction	 of	 the	 Bargi	 Dam	 whilst	 all	 dams	 were	

simulated	as	being	 in	operation	 for	MIKE	SHE	 (to	 isolate	 the	 impacts	of	 the	 climate	 change	

scenarios).	Figure	2.27	shows	that	at	both	Manot	and	Hoshangabad,	the	scenario	river	regimes	

are,	in	most	cases,	associated	with	increased	discharges,	especially	during	the	wet	season	(as	

discussed	for	each	model	in	Sections	2.4.3	and	2.9.2).	As	a	result,	the	ensemble	mean	scenario	

as	 simulated	 by	 both	 hydrological	 models	 is	 associated	 with	 increases	 in	 mean	 monthly	

discharge	for	all	12	months	at	Manot	and	every	month	except	December	at	Hoshangabad.	The	

magnitude	of	the	increase	in	the	seasonal	peak	for	the	ensemble	mean	scenarios	tends	to	be	

larger	for	GWAVA	compared	to	MIKE	SHE	(e.g.	at	Manot	it	is	46.6%	for	GWAVA	compared	to	

19.7%	 for	 MIKE	 SHE	 with	 the	 corresponding	 figures	 for	 Hoshangabad	 being	 53.7%	 and	

31.6%,	respectively).	

	

A	notable	difference	between	the	results	of	the	two	models	is	in	the	projected	changes	in	dry	

season	discharges,	especially	at	the	beginning	of	the	year	and	in	particular	at	Hoshangabad.	In	

percentage	 terms	 the	 changes	 for	 an	 individual	 scenario	 tend	 to	 be	 relatively	 constant	 for	

MIKE	SHE	although	whilst	they	are	all	relatively	small	at	Hoshangabad,	they	are	more	variable	

at	 Manot.	 Given	 the	 low	 baseline	 discharges,	 in	 absolute	 terms	 the	 differences	 between	

scenario	 discharges	 are	 low.	 This	 is	 also	 the	 case	 for	 GWAVA,	 but	 in	 percentage	 terms	

scenario	changes	show	 large	month-on-month	variations,	especially	at	Hoshangabad	where,	

as	 discussed	 above,	 the	model	 tends	 to	 underestimate	 dry	 season	 discharges	 compared	 to	

observations.	Therefore	whilst,	Figure	2.27	demonstrates	near	zero	baseline	discharges	at	this	

station	during	 the	dry	 season,	 relatively	 small	 absolute	 changes	 in	 flow	at	 this	 time	of	year	

translate	 into	 large	percentage	changes	and	the	wider	 inter-GCM	spread	of	changes	 in	river	

flow.	
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Figure	2.27.	River	regimes	at	Manot	and	Hoshangabad	simulated	by	MIKE	SHE	and	GWAVA	for	
the	baseline,	each	GCM	and	the	ensemble	mean	
	
An	 initial	assessment	of	 the	consistency	or	otherwise	 in	changes	simulated	 for	 the	different	

scenarios	 by	 the	 two	 hydrological	 models	 is	 presented	 in	 Figure	 2.28.	 It	 demonstrates	 a	

general	 lack	 of	 consistency	 in	 the	 magnitude	 of	 change	 in	 mean	 discharges	 for	 the	 same	
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scenario	when	simulated	by	the	different	models.	However,	at	this	stage	this	is	considered	the	

limit	 to	which	 such	 an	 inter-model	 comparison	 could	 be	 taken	 given	 the	 different	 baseline	

periods.	 An	 extension	 of	 this	 work	 is	 intended	 through	 the	 modification	 of	 the	 GWAVA	

model’s	baseline	period	 to	map	on	 to	 the	earlier	and	 longer	period	used	 in	MIKE	SHE.	This	

will,	 necessitate	 the	 inclusion	 of	 the	 Bargi	Dam	 throughout	 the	GWAVA	model’s	 simulation	

period.	

	

	
Figure	2.28.	Comparison	of	changes	in	mean	discharge	at	Manot	and	Hoshangabad	as	simulated	

for	each	scenario	by	MIKE	SHE	and	GWAVA	
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3. Environmental	flow	assessments	for	climate	change	scenarios	of	the	Narmada	

J.R.	Thompson,	C.L.R.	Laizé,	M.C.	Acreman	

	

3.1. Environmental	flows	

	
The	hydrological	characteristics	of	a	river	exert	critical	controls	on	aquatic	ecosystems.	This	is	

implicit	 within	 the	 natural	 flow	 paradigm	 (Poff	 et	 al.,	 1997)	 that	 recognises	 that	 a	 river’s	

regime,	 comprising	 components	 that	 characterise	 the	 variability,	 magnitude,	 frequency,	

duration,	timing	and	rate	of	change	of	discharge,	is	central	to	sustaining	aquatic	biodiversity	

and	 ecosystem	 integrity.	 All	 elements	 of	 the	 flow	 regime	 influence	 some	 aspect	 of	 riverine	

ecosystems.	For	example,	the	variability	in	discharge	drives	the	structure	of	fish	communities	

both	 directly,	 by	 influencing	 life	 history	 processes	 including	 migration,	 spawning	 and	

recruitment,	 and	 indirectly	 by	 impacting	 habitat	 availability	 and	 diversity	 (Nestler	 et	 al.,	

2012).	The	 latter	 includes	connections	between	a	river,	 its	 floodplain	and	riparian	wetlands	

that	in	turn	support	numerous	wetland	ecosystem	services.	Modifications	to	river	regimes	can	

produce	 modified,	 hybrid	 and	 novel	 riverine	 ecosystems	 and	 impact	 ecosystem	 service	

delivery	(Acreman	et	al.,	2014).	

	

The	science	of	environmental	flows	has	developed	as	a	result	of	the	requirement	to	determine	

flow	 regimes	 necessary	 to	 maintain	 economically,	 socially	 and	 ecologically	 important	

ecosystem	services	(e.g.	Dyson	et	al.,	2003;	Horne	et	al.,	2017).	There	are	a	range	of	methods	

that	 can	 be	 employed	 to	 assess	 environmental	 flow	 requirements	 and	 potential	 impacts	 of	

hydrological	 change	 (e.g.	 Acreman	 and	Dunbar	 2004).	Many	 are	 based	 on	 the	 natural	 flow	

paradigm	 and	 are	 designed	 to	 define	 the	 responses	 of	 freshwater	 ecosystems	 to	 change,	

including	defining	 thresholds	where	ecological	change	may	be	significant	 (Poff	et	al.,	2010).	

Examples	 include	 the	 Range	 of	 Variability	 Approach	 (RVA)	 that	 uses	 Indicators	 of	

Hydrological	Alteration	(IHA),	a	statistical	technique	for	comparing	natural	and	altered	flow	

regimes	 (e.g.	 Richter	 et	 al.,	 1996).	 The	 RVA	 method	 assumes	 that	 some	 organism	 or	

community	will	have	exploited	all	niches	 created	by	 the	complexity	of	 a	 river’s	hydrograph	

and	 its	 interaction	 with	 the	 landscape.	 If	 a	 river	 ecosystem	 is	 adapted	 to	 the	 baseline	

hydrological	 regime,	 departures	 from	 these	 conditions	 are	 likely	 to	 lead	 to	 ecosystem	

modifications.	The	 likelihood	of	 such	modifications	will	 increase	as	 the	hydrological	 regime	

departs	 further	 from	 the	 baseline.	 In	 turn,	 the	 risk	 of	 ecological	 change	will	 progress	 from	

none	through	low	and	medium	to	high	as	more	flow	alteration	thresholds	are	exceeded.	These	
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thresholds	are	associated	with	important	flow	regime	characteristics	that	can	be	indexed	by	

IHAs	that	describe	key	flow	regime	properties.	

	

3.2. Application	of	ERFA	to	the	Narmada	

	

The	 potential	 environmental	 flow	 impacts	 of	 each	 of	 the	 17	 climate	 change	 scenarios	

simulated	 using	 the	 MIKE	 SHE	 and	 GWAVA	 models	 of	 the	 Narmada	 (see	 Section	 2)	 were	

assessed	 using	 a	 modified	 version	 of	 the	 Ecological	 Risk	 due	 to	 Flow	 Alteration	 (ERFA)	

screening	 method	 (Laizé	 et	 al.,	 2014).	 ERFA	 is	 itself	 based	 upon	 the	 RVA/IHA	 technique	

(Richter	et	al.,	1996).	Modification	of	ERFA	follows	the	approach	employed	by	Thompson	et	

al.	 (2014b)	 in	a	 climate	 change	assessment	 for	 the	Mekong	River	Basin,	 southeast	Asia	and	

Thompson	 et	 al.	 (2017b)	who	 applied	 the	 same	 approach	 to	 projections	 of	 climate	 change	

impacts	on	 river	 flow	 in	West	Africa’s	Upper	Niger	Basin	as	well	 as	 flood	extent	within	 the	

extensive	 floodplains	 of	 the	 Inner	 Niger	 Delta.	 The	 latter	 application	 of	 ERFA	 included	 the	

development	 of	 approaches	 for	 summarising	 environmental	 flow	 assessments	 for	 large	

numbers	of	different	scenarios.	

	

In	common	with	RVA/IHA,	ERFA	uses	a	number	of	indicators	that	together	describe	the	river	

flow	 regime	 under	 baseline	 and	 scenario	 conditions.	 However,	 unlike	 RVA/IHA,	 which	

employs	 daily	 flow	 variables,	 the	 modified	 ERFA	 method	 uses	 monthly	 variables	 (termed	

Monthly	 Flow	 Regime	 Indicators;	 MFRIs).	 There	 are	 many	 potential	 indices	 that	 can	

characterise	a	river’s	hydrological	regime.	For	example,	Olden	and	Poff	(2003)	identified	171	

hydrological	 indices	 although	 they	 subsequently	 categorised	 them	 into	 nine	 distinct	

components	of	the	flow	regime.	They	further	suggested	that	the	most	appropriate	indices	for	

a	 given	 situation	 depends	 upon	 the	 type	 of	 flow	 regime.	 Here	we	 used	 the	 same	MFRIs	 as	

those	employed	by	Thompson	et	al.	(2014b;	2017b).	This	is	consistent	with	Olden	and	Poff’s	

(2003)	strategy	given	the	dominant	influence	of	highly	seasonal	rains	upon	river	regimes	in	

the	Narmada	and	both	the	Mekong	and	Upper	Niger	that	were	the	focus	of	these	earlier	ERFA	

studies.	 ERFA	 first	 calculates	 hydrological	 variables	 for	 each	 year	 of	 the	 period	 under	

consideration.	These	are	then	used	to	derive	MFRIs	that	capture	the	magnitude	and	variability	

of	 each	 variable	 as	 a	 single	 value	 for	 the	 complete	 period.	 Magnitude	 is	 described	 by	 the	

median	 (50th	 percentile)	 and	 variability	 by	 the	 interquartile	 range	 (IQR,	 i.e.	 the	 difference	

between	 25th	 and	 75th	 percentiles)	 of	 the	 annual	 variables.	 Indicators	 associated	 with	 the	

timing	of	peak	and	low	flows	differ	since	they	are	defined	by	the	month	in	which	the	largest	
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and	 lowest	 flows	 are	 simulated	 (i.e.	 they	 have	 integer	 values	 of	 between	 1	 and	 12).	

Consequently,	 they	 are	 more	 appropriately	 summarised	 by	 their	 mode.	 Eight	 MFRIs	 were	

derived	based	on	five	hydrological	variables	(Table	3.1):	three	medians,	three	IQRs,	and	two	

modes.	The	first	three	indicators	(MFRI	1–3)	are	associated	with	high	flows	and	the	remaining	

five	(MFRI	4–8)	with	low	flows.	

	

Table	3.1.	Monthly	Flow	Regime	Indicators	(MFRIs).	

Hydrological	variables	
(one	per	year)	

MFRIc		
(one	per	
period)	

Flow	
type	

	
Regime	characteristics	

Number	of	months	above	thresholda	 Median	(1)	
IQRd	(2)	

High		 Magnitude;	Frequency	

Month	of	maximum	flow	/	flooding	(1-12)	 Mode	(3)	 High		 Timing	

Number	of	months	below	thresholdb	 Median	(4)	
IQR	(5)	

Low		 Magnitude;	Frequency	

Month	of	minimum	flow	/	flooding	(1-12)	 Mode	(6)	 Low		 Timing	

Number	 of	 periods	 of	 at	 least	 two	 months	
duration	with	flow	/	flooding	below	thresholdb	

Median	(7)	
IQR	(8)	

Low		 Magnitude;	Frequency;	Duration	

a.	Threshold:	Q5	(95th	percentile)	from	the	1971-2000	baseline	period.	
b.	Threshold:	Q95	(5th	percentile)	from	the	1971-2000	baseline	period.	
c.	Indicator	identification	number	between	brackets.	
d.	Inter-Quartile	Range.	
  

MFRIs	 are	 first	 calculated	 for	 a	 baseline	 and	 each	 scenario.	 Absolute	 differences	 between	

MFRIs	 for	 each	 scenario	 and	 the	 baseline	 are	 subsequently	 calculated.	MFRIs	 based	 on	 the	

median	and	the	IQR	are	considered	to	depart	significantly	from	the	baseline	if	the	difference	is	

more	than	30%.		Substantial	changes	in	the	mode-based	MFRIs	are	assumed	when	differences	

are	 larger	 than	 one	 month.	 These	 thresholds	 are	 the	 default	 values	 employed	 in	 the	

application	of	ERFA	to	the	Mekong	and	Upper	Niger	(Thompson	et	al.,	2014b;	2017b).	They	

can,	 in	 principle,	 be	 varied	 and	 on-going	 NERC	 funded	 research2	 is	 developing	 approaches	

through	which	 local	ecological	expert	knowledge	can	be	used	 to	 fine-tune	ERFA	 for	specific	

situations.	 ERFA	 results	 are	 then	 aggregated	 for	 each	 scenario	 using	 a	 risk	 of	 ecological	

change	classification	based	on	how	many	of	the	MFRIs	differ	from	the	baseline	by	more	than	

																																																								
2	 Translation	 of	 Environmental	 Flow	 Research	 in	 Cambodia	 (TEFRIC)	 is	 funded	 under	 the	 NERC	 Innovation	
Follow-on	call	with	a	project	lifetime	of	2017–2019.	It	is	led	by	UCL	(J.R.	Thompson)	in	collaboration	with	CEH	
(C.L.R.	Laizé),	Institute	of	Technology	of	Cambodia	and	the	Tonle	Sap	Authority.	The	project	is	developing	a	user-
friendly	interface	for	ERFA	as	well	as	trialing	ERFA	using	a	series	of	Cambodia-specific	scenarios	and	fine-tuning	
the	ERFA	thresholds	for	the	Cambodian	situation	using	local	expert	ecological	knowledge.	
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the	defined	thresholds	(Laizé	et	al.	2014).	Risks	of	ecological	change	are	evaluated	in	this	way	

for	 both	 high	 and	 low	 flows	 using	 the	 coding	 scheme	 of	 Thompson	 et	 al.	 (2014b;	 2017b)	

which	reflects	 the	different	number	of	MFRIs	 for	high	and	 low	 flows.	For	high	 flows	 the	no	

risk,	 low	risk,	medium	risk	and	high	risk	classes	are	defined	when	the	number	of	 indicators	

differing	 from	 the	 baseline	 is	 0,	 1,	 2,	 or	 3,	 respectively.	 In	 contrast,	 for	 low	 flows	 the	

corresponding	number	of	differences	in	MFRIs	is	0	(no	risk),	1	(low),	2–3	(medium)	and	4–5	

(high).	The	 low	risk	 category	 is	 intentionally	 set	 to	one	MFRI	differing	 from	 the	baseline	 in	

both	cases.	

	

In	the	case	of	the	ERFA	application	to	the	Upper	Narmada,	assessments	were	made	for	the	five	

gauging	stations	used	in	the	calibration	and	validation	of	the	MIKE	SHE	model	and	for	which	

baseline	and	scenario	discharges	were	simulated.	The	selection	of	these	gauging	stations	was	

largely	 dictated	 by	 the	 division	 of	 the	Upper	Narmada	 into	 a	 reasonable	 number	 of	 evenly	

distributed	 sub-catchments	 for	 use	within	 the	 linear	 reservoir	 saturated	 zone	module	 (see	

Section	 2.2).	 Whilst,	 the	 GWAVA	 model	 employs	 some	 alternative	 gauging	 stations	 for	

calibration	 and	 validation	 (and	 subsequently	 for	 the	 assessment	 of	 climate	 change),	 two	

(Manot	 and	 Hoshangabad)	 are	 common.	 In	 order	 expand	 the	 potential	 for	 comparing	 the	

environmental	 flow	 results	 from	 the	 two	 alternative	 hydrological	 models,	 simulated	

discharges	 for	 the	 baseline	 and	 each	 climate	 change	 scenario	 were	 abstracted	 from	 the	

GWAVA	cells	in	which	the	other	three	gauging	stations	(Dindori,	Barmanghat	and	Gadarwara)	

are	 located.	 However,	 it	 is	 appropriate	 to	 provide	 some	 important	 caveats	 to	 the	 resulting	

comparison.	Firstly,	the	GWAVA	model	was	not	explicitly	calibrated	for	these	three	stations.	

Secondly,	and	as	discussed	in	Section	2.10,	alternative	baseline	periods	were	employed	for	the	

two	 hydrological	 models	 (MIKE	 SHE:	 1971–2000;	 GWAVA:	 1990–2010)	 with	 some	 minor	

differences	 in	 the	 scenario	 period	 (MIKE	 SHE:	 2031–2060;	 GWAVA:	 2028-2060).	 For	 this	

reason,	ERFA	results	from	the	two	hydrological	models	are	initially	treated	separately	before	

being	only	briefly	compared.	

	

3.3. ERFA	results	

	

ERFA	 results	 based	 on	 the	MIKE	 SHE	model	 simulated	 discharges	 are	 presented	 using	 the	

approach	developed	by	Thompson	et	al.	(2017b).	Figure	3.1	shows	individual	subplots	for	the	

five	gauging	stations	within	the	Upper	Narmada	Basin	that	indicate	whether	each	of	the	eight	

MFRIs	 exceed	 the	 thresholds	 associated	with	 assumed	 significant	 change.	MFRIs	 associated	
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with	high	and	low	flows	are	grouped	together	and	results	are	shown	for	each	of	the	17	GCMs.	

The	 risk	 of	 ecological	 change	 for	 high	 and	 low	 flows	 is	 also	 shown	 using	 a	 “traffic-light”	

colour-coded	 classification	 that	 replicates	 the	 earlier	 approach	 employed	 by	 Laizé	 et	 al.	

(2014)	and	Thompson	et	al.	(2014b).	

	

	
Figure	3.1.	ERFA	results	for	five	gauging	stations	in	the	Upper	Narmada	for	each	of	the	17	

climate	change	scenarios	as	simulated	by	MIKE	SHE.	The	lower	part	of	each	subplot	identifies	
whether	individual	high	(H)	and	low	(L)	flow	MFRIs	are	above	the	thresholds	associated	with	
assumed	significant	change.	The	top	part	of	each	subplot	presents	the	traffic	light	colour	coded	

classification	of	risks	of	ecological	change	for	high	and	low	flows.	
	

The	ERFA	results	for	MIKE	SHE	demonstrate	broadly	similar	patterns	for	each	individual	GCM	

at	 the	 five	 different	 gauging	 stations	 within	 the	 Upper	 Narmada	 Basin	 although	 there	 are	

some	differences.	Most	GCMs	result	in	at	least	some	degree	of	overall	risk	of	change	in	either	

low	or	high	flows	(or	both).	With	the	exception	of	Gadarwara,	only	one	GCM	(GCM8	-	GFDL-

ESM2M	 for	 Dindori	 and	 Manot;	 GCM11	 -	 MIROC5	 for	 Barmanghat	 and	 Hoshangabad)	 is	

associated	with	no	significant	changes	in	all	eight	MFRI	(and	consequently	no	over	all	risk	of	

change	in	both	flow	extremes).	At	Gadarwara	all	GCMs	project	a	significant	change	in	at	least	

one	 MFRI.	 At	 the	 other	 extreme	 of	 risk	 of	 overall	 change,	 no	 GCMs	 project	 a	 high	 risk	 of	

change	 in	both	 low	and	high	 flows	at	any	gauging	station.	 Indeed	of	 the	85	gauging	station-

GCM	combinations	(i.e.	5	gauging	stations	×	17	GCMs)	only	one	is	associated	with	a	high	risk	

of	change	for	high	flows	(GCM3	-	CSIRO-Mk3.6.0	at	Barmanghat).	No	GCMs	project	high	risk	of	

change	in	low	flows	at	any	of	the	five	gauging	stations.	
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Across	 the	 five	 gauging	 stations	 there	 is	 some	 variability	 in	 the	most	 frequent	 overall	 risk	

class,	 especially	 for	 low	 flows.	At	 both	Barmanghat	 and	Hoshangabad	 the	 low	 and	medium	

risk	of	change	in	low	flows	classes	are	equally	common	(six	GCMs	closely	followed	by	no	risk	

for	 the	 remaining	 five	GCMs).	 For	Dindori,	 six	 GCMs	 each	 project	 no	 and	 low	 risk	with	 the	

remaining	 five	projecting	medium	risk.	Low	risk	of	 change	 in	 low	 flows	 is	most	 frequent	at	

Gadarwara	(eight	GCMs)	and,	especially,	Manot	(ten	GCMs).	Medium	risk	is	less	common	(two	

GCMs	in	both	cases	with	the	remaining	GCMs	projecting	no	risk).	For	high	flows,	following	the	

high	risk	class,	no	risk	is	least	common	(either	one	or	two	GCMs).	Low	risk	of	change	in	high	

flows	 dominates	 at	 two	 gauging	 stations	 (nine	 and	 ten	 GCMs	 for	 Dindori	 and	 Gadarwara,	

respectively)	with	medium	risk	dominating	at	the	other	three	stations	(between	nine	and	11	

GCMs).	 	Consistency	in	the	risk	of	change	class	for	both	low	and	high	flows	for	an	individual	

GCM	are	in	the	minority	at	all	gauging	stations.	For	example,	the	number	of	GCMs	projecting	

low	 risk	 of	 change	 in	 both	 flow	 extremes	 varies	 between	 one	 and	 six	 (Barmanghat	 and	

Gadawara,	 respectively).	 The	 corresponding	 range	 for	 medium	 risk	 is	 1–5	 (Dindori	 and	

Hoshangabad,	respectively).	

	

There	is	some	consistency	in	the	individual	MFRIs	that	are	most	/	least	commonly	projected	

to	experience	an	assumed	significant	change.	For	low	flows,	changes	in	MFRI5	are	assumed	to	

be	significant	for	the	majority	of	GCMs	(11–12)	at	all	gauging	stations	apart	from	Gadarwara	

(seven	GCMs).	In	contrast,	no	GCMs	project	a	significant	change	in	MFRI7	with	few	(no	more	

than	 three	 or	 two,	 respectively)	 projecting	 such	 changes	 in	 MFRI1	 or	 MFRI3.	 The	 vast	

majority	 of	 GCMs	 (15	 at	 all	 but	 Hoshangabad	 where	 this	 figure	 is	 14)	 project	 significant	

change	in	the	high	flow	MFRI1.	Significant	changes	in	MFRI2	are	relatively	common	(between	

six	 and	 12	 GCMs	 at	 individual	 gauging	 stations)	 whereas	 such	 changes	 for	 MFRI3	 are	

restricted	to	a	single	GCM	at	just	two	stations	(GCM3	–	Barmanghat;	GCM	2	–	Hoshangabad).		

	

The	 ERFA	 results	 derived	 using	 the	GWAVA	 simulated	 discharges	 at	 the	 same	 five	 gauging	

stations	 are	 shown	 in	Figure	 3.2.	 These	 are	 presented	 in	 an	 identical	 form	 to	 those	 for	 the	

MIKE	SHE-derived	 results	 in	Figure	3.1.	 It	 is	 evident	 that	 changes	 in	 the	metrics	 associated	

with	high	flows,	and	so	the	resulting	assessments	of	the	overall	risk	of	change	in	these	flows,	

show	 broadly	 similar	 results	 for	 the	 five	 different	 gauging	 stations	whereas	 there	 is	much	

larger	 variability	 for	 low	 flows.	 Across	 the	 five	 stations	 no	 GCM	 is	 associated	 with	 no	

significant	 changes	 in	 all	 eight	 MFRIs.	 Consequentially,	 no	 GCM	 projects	 no	 overall	 risk	 of	

change	in	both	high	and	low	flows	(contrasting	with	one	GCM,	either	GCM8	or	GCM11,	for	four	
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of	 the	 stations	 for	 MIKE	 SHE).	 At	 the	 other	 extreme,	 and	 in	 common	 with	 the	 MIKE	 SHE	

results,	no	GCMs	project	high	risk	of	change	in	both	low	and	high	flows	at	any	gauging	station.	

Also	 in	 common	 with	 MIKE	 SHE,	 none	 of	 the	 85	 gauging	 station-GCM	 combinations	 is	

associated	with	high	risk	of	change	in	 low	flows	and	whilst	 for	MIKE	SHE	one	GCM	projects	

high	risk	of	change	in	high	flows	at	one	station,	for	GWAVA	not	a	single	GCM	projects	this	high	

risk	of	change	at	any	station.	

	

	
Figure	3.2.	ERFA	results	for	five	gauging	stations	in	the	Upper	Narmada	for	each	of	the	17	
climate	change	scenarios	as	simulated	by	GWAVA.	The	lower	part	of	each	subplot	identifies	
whether	individual	high	(H)	and	low	(L)	flow	MFRIs	are	above	the	thresholds	associated	with	
assumed	significant	change.	The	top	part	of	each	subplot	presents	the	traffic	light	colour	coded	

classification	of	risks	of	ecological	change	for	high	and	low	flows	
	

As	 for	MIKE	SHE,	 there	 is	some	variability	 in	the	most	 frequent	overall	risk	class,	especially	

for	low	flows.	At	Barmanghat	and	Dindori	low	risk	of	change	in	low	flows	predominates	with	

this	level	of	risk	being	projected	in	both	cases	by	13	GCMs.	The	remaining	two	GCMs	project	

either	 no	 (Dindori)	 or	 medium	 risk	 (Barmanghat).	 No	 risk	 of	 change	 in	 low	 flows	 is	

predominant	at	Gadarwara	(13	GCMs)	and	Hoshangabad	(11	GCMs)	with,	 in	both	cases,	 the	

remaining	GCMs	projecting	low	risk	of	change.	ERFA	risks	of	change	in	low	flows	at	Manot	are	

very	different	to	those	for	the	other	four	gauging	stations	with	either	three	(14	GCMs)	or	two	

(3	GCMs)	of	the	low	flow	MRFIs	showing	significant	changes.	As	a	result,	all	17	GCMs	project	

medium	risk	of	change	in	low	flows.	
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As	for	the	MIKE	SHE	ERFA	results,	following	the	high	risk	class,	no	risk	is	least	common	at	all	

five	gauging	stations	(either	none,	one	or	two	GCMs).	Whilst	 in	common	with	the	MIKE	SHE	

results,	 low	risk	of	change	 in	high	 flows	 is	dominant	at	 two	gauging	stations,	 these	stations	

differ;	Hoshangabad	(9	GCMs)	and	Manot	(11	GCMs)	compared	to	Dindori	and	Gadarwara	for	

MIKE	SHE.	Consequently,	and	as	for	MIKE	SHE,	medium	risk	dominates	at	three	stations	(10,	

11	or	13	GCMs)	but	again,	 these	stations,	with	 the	exception	of	Barmanghat,	differ	between	

the	 different	 hydrological	models.	 In	 a	 similar	way	 to	MIKE	 SHE,	 consistency	 in	 the	 risk	 of	

change	class	projected	by	GWAVA	for	both	low	and	high	flows	for	an	individual	GCM	are	in	the	

minority	at	all	of	the	gauging	stations.	The	number	of	GCMs	projecting	low	risk	of	change	in	

both	flow	extremes	varies	between	one	and	five	(Gadarwara	and	Barmanghat,	respectively).	

The	corresponding	range	for	medium	risk	is	2–6	(Barmanghat	and	Manot,	respectively).	

	

There	 is	 again,	 some	 consistency	 in	 the	 individual	 MFRIs	 that	 are	 most	 /	 least	 commonly	

projected	to	undergo	a	significant	change.	This	is	especially	the	case	for	the	high	flow	MFRIs.	

For	 example,	 the	vast	majority,	 and	 in	 some	 cases	 all	 of	 the	GCMs	 (range	15–17),	 project	 a	

significant	 change	 in	MFRI1.	With	 the	 exception	of	Manot	 (6	GCMs),	 the	majority	 (9–13)	of	

GCMs	project	 significant	 changes	 in	MRFI2	whilst	 no	GCMs	produce	 a	 significant	 change	 in	

MRFI3.	 In	 common	 with	 the	 MIKE	 SHE	 results,	 no	 GCMs	 at	 any	 gauging	 station	 project	 a	

significant	change	in	the	MFRI7	low	flow	indicator.	This	is	repeated	for	MFRI8	at	all	stations	

and	MRFI4	at	all	stations	except	Manot	(which,	as	previously	noted,	is	characterised	by	very	

different	risks	of	changes	 in	 low	 flows).	Whilst	at	 three	gauging	stations	(excluding	Manot),	

changes	 in	 MRFI5	 are	 most	 common,	 the	 number	 of	 GCMs	 projecting	 such	 changes	 vary	

dramatically	 from	 only	 three	 (Gadarwara)	 to	 15	 (Dindori).	 At	 the	 remaining	 station	

(Barmanghat)	only	 two	GCMs	project	a	 change	 in	 this	 indicator	whilst	all	17	GCM	project	a	

significant	 change	 in	MRFI6	 that	 is	 very	 uncommon	 (absent	 in	 the	 case	 of	 Dindori)	 at	 the	

other	gauging	stations.	

	

In	summary,	 the	application	of	 the	ERFA	environmental	 flow	methodology	 to	projections	of	

future	 river	 flow	 derived	 from	 two	 alternative	 hydrological	models	 of	 the	 Upper	 Narmada	

demonstrate	 both	 consistencies	 and	 differences	 in	 potential	 risks	 of	 change.	 In	 comparing	

ERFA	results	from	these	two	models,	the	important	caveats	described	in	Section	3.2	should	be	

borne	in	mind.	Future	work	should	seek	to	harmonise	as	much	as	possible	approaches	used	in	

the	 two	models	 including	 the	 gauging	 stations	 used	 for	 calibration,	 validation	 and	 scenario	

analysis	as	well	as	simulation	periods.	Notwithstanding	these	issues,	inter-model	consistency	
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in	 ERFA	 results	 tends	 to	 be	 greater	 for	 high	 flows	 compared	 to	 low	 flows	 (which	 are	

characterised	by	very	low	flows	compared	to	the	high	flow	period	during	the	monsoon).	It	is	

possible	that	these	differences	are	strongly	impacted	by	the	alternative	representations	of	the	

existing	hydraulic	infrastructure	within	the	Upper	Narmada	by	the	two	different	hydrological	

models.	Whilst	 in	 absolute	 terms,	 discharges	 at	 this	 time	 of	 year	 that	 are	 simulated	 by	 the	

different	 models	 may	 differ	 by	 relatively	 small	 amounts,	 relative	 differences	 may	 be	 large	

both	under	baseline	and	scenario	climate.	Given	 the	potential	 for	dams	to	 impact	 low	 flows	

according	to	patterns	of	releases	and	the	absence	of	detailed	 information	on	dam	operating	

regimes	that	necessitated	relatively	simple	and	temporally	consistent	approaches	to	be	used	

within	 the	 MIKE	 SHE	 and	 GWAVA	 models,	 this	 represents	 a	 considerable	 source	 of	

uncertainty.	Future	development	of	 this	work	would	require	the	acquisition	(if	available)	of	

more	detailed	information	on	current	operating	regimes	for	dams	within	the	Upper	Narmada.	

Additionally,	 how	 these	 might	 vary	 given	 the	 projected	 changes	 in	 river	 flow	 and	 water	

demands	 under	 climate	 change	 (which	 represents	 another	 source	 of	 uncertainty	 –	 e.g.	 Van	

Dijk	et	al.,	2008;	Thompson	et	al.,	2016,	2017a)	would	need	to	be	considered.	Project	partners	

will	consider	the	potential	for	these	developments	through	future	collaborative	research.	 	
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4. Applying	statistical	flood	frequency	estimation	methods	in	the	Godavari	and	Krishna	

river	basins:	pilot	study		

A.	Griffin,	L.	Stewart,	G.	Formetta,	C.	Kalai,	A.	Mondal	

	

4.1. Summary	

	
Monsoon-related	 extreme	 flood	 events	 are	 experienced	 regularly	 in	 the	 Indian	 state	 of	

Maharashtra	 causing	 costly	 damage	 and	 disruption	 to	 local	 communities.	 Being	 able	 to	

estimate	 the	 likely	 magnitude	 of	 the	 1-in-30	 year	 flood,	 say,	 would	 allow	 hydrological	

practitioners	to	design	new	structures	to	prevent	such	damage	or	at	least	withstand	it.	To	this	

end,	 this	 pilot	 study	 investigated	 the	 feasibility	 of	 developing	 spatially	 consistent	 flood	

frequency	 estimates	 using	 an	 index	 flood	 approach.	 Catchment	 descriptor	 equations	 and	

distribution	choices	were	made	for	the	region	using	stepwise	regression	and	Hosking-Wallis	

distribution	 tests.	 Along	 with	 this,	 a	 web	 application	 was	 developed	 to	 showcase	 how	

stakeholders	and	practitioners	in	the	region	could	use	the	work.	

	

4.2. Aims	

	

This	 part	 of	 the	 project	 was	 undertaken	 to	 assess	 the	 feasibility	 of	 developing	 spatially	

consistent	flood	frequency	estimates	for	relatively	long	return	period	floods	at	ungauged	sites	

within	 the	 Indian	 state	 of	 Maharashtra.	 Rivers	 in	 Maharashtra	 have	 a	 wide	 range	 of	

hydrological	behaviours.	In	particular,	around	Mumbai	and	within	the	Wainganga	Basin,	there	

are	regular	extreme	flood	events	due	to	monsoon-related	heavy	rainfall.	Although	prediction	

on	a	short	timescale	(flood	warning	systems)	 is	a	key	focus	 in	these	 locations,	estimation	of	

the	 frequency	 of	 large,	 destructive	 flood	 events	 is	 less	 well	 documented	 in	 the	 current	

literature.	 This	work	 is	 aimed	 at	 providing	 an	 addition	 to	 the	 toolkit	 of	 civil	 engineers	 and	

planners,	 as	 well	 as	 developing	 academic	 collaboration	 with	 Indian	 parties,	 such	 as	 IIT	

Bombay.		

	

The	key	objectives	of	this	part	of	the	project	were	to	use	open-source	or	freely	available	data	

to	 develop	 preliminary	 examples	 of	 tools	 such	 as	 catchment	 descriptor	 equations,	 growth	

curves	 and	 web	 applications	 to	 assess	 whether	 a	 more	 comprehensive	 follow-on	 study	

including	the	use	of	more	data	and	enhanced	stakeholder	engagement	would	be	fruitful.	
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This	 part	 of	 the	 project	 applied	 similar	 methods	 to	 those	 used	 in	 the	 Flood	 Estimation	

Handbook	 (FEH;	 Institute	 of	 Hydrology,	 1999)	 alongside	 a	 comprehensive	 survey	 of	 the	

available	 data	 for	 use	 within	 the	 study	 and	 future	 studies.	 In	 conjunction	 with	 the	

development	 of	 flood	 frequency	 estimation	 methods,	 a	 prototype	 web	 application	 was	

developed	for	use	by	practitioners	in	river	management,	civil	engineering	and	agriculture,	as	

well	 as	by	 the	general	public	 for	 their	own	 information.	This	application	 includes	 summary	

outputs	of	 relevant	data	 including	 flood	estimates	at	ungauged	sites	using	a	point-and-click	

interface	similar	to	the	FEH	web	service	or	StreamStats	(USGS).	

	

4.3. Background	and	current	research	

	

4.3.1. Extreme	flood	events	in	peninsular	India	

	

The	summer	monsoons	experienced	 in	peninsular	 India	 lead	to	regular,	significant	 flooding.	

With	rapid	expansion	of	cities	like	Mumbai	exerting	further	pressures	on	river	and	drainage	

networks,	 more	 disastrous	 flooding	 has	 occurred	 in	 recent	 years.	Water	 storage	 problems	

also	 arise	 during	 these	 periods	 of	 intense	 rainfall,	 forcing	 the	 release	 of	 large	 volumes	 of	

water	 from	some	dams	and	reservoirs,	 thereby	further	enhancing	flood	problems.	Table	4.1	

provides	examples	of	some	of	the	worst	floods	that	have	impacted	the	region	this	century.	

	

Table	4.1.	Examples	of	extreme	21st	Century	flood	events	in	Peninsular	India	

Date	 Location	 Notes	
29th	August	2017	 Mumbai	 Over	200mm	of	rain	in	5	hours	
July	2017	 Gujarat	 Over	550mm	of	rain	in	the	month	(over	165%	of	average)	

and	leading	to	over	220	deaths.	
9th	November	2015	 Neyveili	 483mm	 rain	 over	 2	 days.	 More	 than	 1000	 people	

evacuated.	
27th	July	2015	 Gujarat	 An	 additional	 7000	m3s-1	 of	water	 released	 from	Dharoi	

dam,	affecting	up	to	4	million	people.	
10th	August	2008	 Kolhapur/	

Andra	Pradesh	
“1266mm	of	rain	overnight”	in	Kolhapur	 	
53	deaths	over	the	week.	

July	26th	2005	 Mumbai	 994mm	 of	 rain	 fell	 in	 24	 hours,	 leading	 to	 over	 1000	
deaths.	

23rd	June	2005	 Gujarat	State	 Over	 505mm	 of	 rain	 in	 a	 week	 with	 floods	 affecting	
250,000	people.	

	

Most	of	 the	 research	 into	extreme	events	and	monsoon	behaviour	 is	 focused	on	short-term	

extreme	 event	 prediction	 and	 rainfall	 estimation	 methods.	 eSWIS	 (Central	 Water	

Commission)	is	an	example	of	such	a	project	giving	up-to	date	predictions	and	warnings.		
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4.3.2. Areas	of	interest:	Godavari	and	Krishna	river	basins	

	

The	 Godavari	 and	 Krishna	 river	 basins	were	 chosen	 for	 this	 pilot	 study.	 This	was	 to	 allow	

focus	 on	 complete	 river	 basins	 (rather	 than	 administrative	 regions	 in	which	 only	 part	 of	 a	

river	basin	might	be	 contained)	as	well	 as	 allowing	 the	use	of	data	 from	a	 large	number	of	

river	gauging	stations	(Figure	4.1).	

	

The	 Godavari	 River	 has	 the	 largest	 basin	 in	 peninsular	 India	 (India-WRIS	 Project	 Team,	

2014a),	with	a	total	extent	of	over	300,000	km2,	and	a	main	channel	length	of	over	1400	km	

(Central	Water	Commission,	1980;	1986).	The	Godavari	Basin	starts	in	Maharashtra	and	flows	

east	towards	the	Bay	of	Bengal.	The	basin	contains	(as	of	2014)	921	dams,	which	contribute	

towards	292	 irrigation	projects	within	 the	basin,	 and	eight	hydroelectric	power	stations.	 In	

terms	of	land	cover,	agricultural	land	accounts	for	approximately	60%	of	the	basin,	and	forest	

a	further	30%.	Urban	areas	are	small	(around	1.7%	of	the	basin).	The	majority	of	the	rainfall	

(mean	annual	rainfall	is	1093	mm)	arrives	as	part	of	the	southwest	monsoon	season	in	June-

September.	In	the	winter,	rainfall	for	January	and	February	ranges	from	55	mm	to	0.5	mm.		

	

The	Krishna	River	is	the	fourth	largest	river	basin	in	India	(India-WRIS	Project	Team	2014b),	

and	the	main	channel,	which	flows	south	of	the	Godavari,	runs	for	almost	1300	km	with	a	total	

basin	area	of	over	250	000	km2	(Central	Water	Commission,	2000).	Spread	between	the	states	

of	 Maharashtra,	 Andhra	 Pradesh	 and	 Karnataka,	 the	 basin	 is	 bounded	 by	 the	 Eastern	 and	

Western	Ghats,	and	flows	eastwards	into	the	Bay	of	Bengal.	Like	the	Godavari,	the	majority	of	

rainfall	arrives	during	the	southwest	monsoon	season.	Average	annual	rainfall	 for	 the	basin	

(1969–2004)	 is	 859	 mm,	 more	 than	 70%	 of	 which	 falls	 between	 July	 and	 September.	

However,	30	districts	within	the	basin	are	drought-prone,	receiving	an	annual	rainfall	of	less	

than	 500	mm.	The	 largest	 land	 covers	 by	 area	 are	 agriculture	 (75%),	 forest	 (10%),	 barren	

(7.6%)	and	urban	(2.3%).	

	

4.3.3. Previous	work	

	

This	section	outlines	governmental	and	academic	research	into	flood	frequency	estimation	in	

the	region,	with	a	focus	on	catchment	descriptor	equations.	A	brief	outline	of	FEH	methods	is	

also	provided.	
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4.3.3.1. CWC	(Central	Water	Commission)	Subzone	Reports	1980-2004	
	

These	reports	 for	the	various	hydrological	subzones	within	India	have	been	conducted	over	

the	last	40	years	to	develop	design	storm	methods	for	flood	frequency	estimation.	The	focus	

has	been	on	long	return	period	flood	events,	and	methods	rely	predominantly	on	rainfall	data,	

and	a	depth-duration-frequency	relationship.	

	

Upper	Godavari	Subzone	3(e)	Report	(1986)	

• Focus	on	unit	hydrograph	method	for	estimation	Q25,	Q50,	and	Q100.		

o 𝑄!" = 2.967 𝐴𝑅𝐸𝐴!.!"! 𝑆𝐿𝑂𝑃𝐸!.!"#𝑅!"!!"!.!"#𝐿𝐸𝑁!!.!"#	

o 𝑄!" = 3.317 𝐴𝑅𝐸𝐴!.!"# 𝑆𝐿𝑂𝑃𝐸!.!"#𝑅!"!!"!.!"#𝐿𝐸𝑁!!.!"#	

o 𝑄!"" = 3.569 𝐴𝑅𝐸𝐴!.!"# 𝑆𝐿𝑂𝑃𝐸!.!"#𝑅!"!!""!.!"!𝐿𝐸𝑁!!.!!"	

• AREA	 (km2),	 LEN,	 longest	 stream	 in	 subzone	 (km),	 SLOPE	 =	 slope	 of	 longest	 stream	

(m/km),	 RTD-N	 design	 storm	 point	 rainfall	 with	 duration	 TD	 given	 by	

𝑇𝐷 = 0.799 𝑆𝐿𝑂𝑃𝐸!!.!𝐿𝐸𝑁 !.!"	rounded	up	to	nearest	hour.	

• Computed	by	generalised	multiple	regression,	giving	correlation	coefficient	r>0.99.	

• Unit	 hydrograph	 given	 using	 time-to-peak,	 from	 which	 the	 other	 hydrograph	

characteristics	 can	 be	 obtained	 using	 descriptors	 obtained	 from	 generalised	 linear	

regression.	

• Data	used	were	hourly	river	 level,	daily	discharge	data	and	hourly	rainfall	data	for	5-11	

years	of	monsoon	season.	

Lower	Godavari	Subzone	3(f)	Report	(1980)	

• Data	used	were	hourly	river	 level,	daily	discharge	data	and	hourly	rainfall	data	for	3-10	

years	of	monsoon	season	from	22	catchments	with	areas	in	the	range	35-824	km2.	

• Unit	hydrograph	methods	applied	similarly	to	above	through	estimation	of	time-to-peak,	

but	no	derivations	of	QT	given.	

Krishna	and	Pennar	Subzone	Report	(2000)	

• Data	used	were	 from	approximately	30	 stations	with	2-17	years’	worth	of	 hourly	 river	

level	and	rainfall	data	with	daily	discharge	data.	

• Focus	 on	 unit	 hydrograph	methods	 for	 Q25,	 Q50	 and	 Q100.	 Some	work	 on	 catchment	

descriptor	equations,	no	formula	for	QMED	or	QBAR.	

o 𝑄!" = 0.4285 𝐴𝑅𝐸𝐴!.!""𝐿𝐸𝑁!!.!"!𝐿𝐸𝑁𝐶!.!"#𝑅!"!.!"#	

o 𝑄!" = 1.69432 𝐴𝑅𝐸𝐴!.!"#𝐿𝐸𝑁!!.!!"𝐿𝐸𝑁𝐶!.!"#𝑅!"!.!"#	
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o 𝑄!"" = 8.33458 𝐴𝑅𝐸𝐴!.!"#𝐿𝐸𝑁!!.!""𝐿𝐸𝑁𝐶!.!"!𝑅!""!.!"#	

o LEN	is	 longest	main	channel	 length	in	km,	LENC	is	 longest	path	from	outlet	to	

opposite	point	of	catchment	(across	diameter	through	centroid)	in	km,	RN	is	the	

24-hour	N-year	return	period	(in	years)	rainfall	depth	in	mm.	

• Synthetic	 Unit	 Hydrograph	 methods	 were	 shown	 to	 provide	 similar	 estimates	 to	

catchment	descriptor	equations	above.	

• The	 analyses	 were	 based	 on	 catchments	 of	 up	 to	 1500	 km2,	 at	 the	 efficacy	 for	 larger	

catchments	is	unclear.	

	
Figure	4.1.	Location	of	basins	and	hydro-observation	stations	

4.3.3.2. Academic	Papers	 -	Garde	and	Kothyari	(1990),	Swamee	et	al.	 (1995),	Bhunya	et	
al.	(2010);	Singh	et	al.	(2010).		
	
These	 studies	 use	 various	 methods	 of	 dimensional	 analysis	 to	 generate	 non-dimensional	

descriptors	that	are	combined	to	generate	estimates	of	QMED	and	QT/QMED.	They	mostly	use	

area,	river	length,	rainfall	depth	(for	given	frequency	and	duration)	and	forest	cover.	Singh	et	

al.	 (2010)	 made	 use	 of	 machine-learning	 methods	 to	 obtain	 “tree-like”	 models	 for	 QMED	

estimation	in	terms	of	area,	slope	and	forest	cover.	

• Garde	and	Kothyari	(1990)	
	

𝑄!.!! = 𝐶 𝑅!.!"#𝐴𝑅𝐸𝐴!.!"𝑆𝐿𝑂𝑃𝐸!.!"𝐹𝑂𝑅!!.!"	

o R	=	R(D,T)	rainfall:	D,T	depend	on	ratio	of	area/slope.	

o FOR	=	proportion	of	forest	cover	
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• Swamee	et	al.	(1995)	
	

𝑄𝐵𝐴𝑅 = 1.74
𝐴𝑅𝐸𝐴!.!"#$𝑝 𝐷,𝑇 !.!"

𝐷!.!"𝑇!.!"
𝑆𝐿𝑂𝑃𝐸 + 0.012
𝐹𝑂𝑅 + 0.049

!.!!

	

o p(D,T)	=	estimated	rainfall	with	duration	D	and	return	period	T.	

• Bhunya	et	al.	(2010)	
	

𝑄!
𝑄𝐵𝐴𝑅 = 0.8732 1+

𝜋!
𝜋!

!.!""#$
1+

𝜋!
𝜋!

!.!!""
𝜋!!.!"!#𝜋!!.!"#$

1− 𝜋! !.!"#$%

𝜋!
  	

o 𝜋!	=	Probability	of	exceedance	=	1/T.	

o 𝜋! = 𝐴𝑅𝐸𝐴/𝐿𝑒𝑛𝑔𝑡ℎ!	

o 𝜋!	=	L-CV	

o 𝜋! = L-skew	

o 𝜋!	=	L-kurtosis	

o Generated	by	trial-and-error	through	various	functional	forms.	

o QBAR	estimated	by	𝑄𝐵𝐴𝑅 = 127.82 log 𝐴𝑅𝐸𝐴 − 310.12	from	CWC	reports.	

	

4.3.3.3. FEH	(Flood	Estimation	Handbook)	Methods	(1999,	2008).	
	

In	order	to	estimate	QMED,	we	take	a	similar	approach	to	that	employed	in	the	FEH	(Institute	

of	 Hydrology,	 1999)	 by	 using	 catchment	 descriptors	 and	 performing	 generalised	 linear	

regression	on	log(QMED)	for	a	number	of	gauged	sites	within	the	two	basins.	To	account	for	

geographical	 correlation,	 we	 include	 a	 model	 error	 and	 sampling	 error	 as	 developed	 in	

Kjeldsen	 et	 al.	 (2008).	 This	 looks	 at	 geographical	 correlations,	 incorporating	 the	 selected	

distribution	for	the	annual	maxima	series.		

	

4.4. Data,	methods	and	results	

	

4.4.1. Data	acquired	

	

4.4.1.1. River	discharge	data	
	

The	 CWC	 and	 Indian	 Meteorological	 Department	 (IMD)	 have	 over	 900	 hydro-observation	

stations	 that	measure	 river	 stage,	 discharge,	 water	 quality	 and	 sediment	 content,	 although	

most	stations	only	measure	a	subset	of	these	parameters	(Central	Water	Commission,	2016).	

Within	the	Godavari	and	Krishna	basins,	129	stations	have	been	identified	as	measuring	river	
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discharge.	 Daily	 gauge	 data	 are	 available	 from	 the	 India-WRIS	 web	 portal	 for	 periods	 of	

between	2	and	40	years,	from	which	we	can	determine	annual	maxima,	and	hence	the	median	

annual	maximum,	QMED.	Some	stations	only	measure	stage/discharge	for	some	parts	of	the	

year,	namely	around	the	monsoon	season.	Of	these	stations	only	106	had	sufficient	discharge	

and	rainfall	data	to	allow	an	estimate	of	QMED.		

	

Most	 of	 the	 discharge	 data	 is	 computed	 using	 an	 area-velocity	 method	 using	 autographic	

water	 level	 recorders,	 except	 in	 very	 high	 flow	 when	 slope-area	 methods	 are	 applied	 to	

estimate	discharge.	In	some	periods,	missing	observations	are	filled	with	estimates	that	match	

the	general	day-on-day	trend	of	the	discharge.	

	

4.4.1.2. Elevation	and	flow	direction	data	
	

Although	 several	 sources	 were	 investigated,	 this	 work	 ultimately	 made	 use	 of	 the	

HydroSHEDS	 (Lehner	 and	 Grill,	 2013)	 and	 HydroBASINS	 (Lehner	 et	 al.,	 2008)	 datasets,	

maintained	 by	 the	WWF.	 The	 datasets	 rely	 mostly	 on	 Shuttle	 Radar	 Topography	 Missions	

outputs	and	topographic	maps.	This	included	“hydrologically	corrected”	elevation	data	at	a	3	

arcsecond	resolution	(which	equates	to	≈90m	at	the	equator),	along	with	flow	direction	and	

accumulation	data	at	a	15	arcsecond	resolution.	

	

4.4.1.3. Land	use	and	land	cover	data	
	

The	Harmonised	World	Soil	Database,	maintained	by	the	UN	(Fischer	et	al.,	2008)	provides	a	

30	arcsecond	gridded	dataset	of	 land-use/cover	combined	from	a	series	of	existing	regional	

and	 national	 soil	 datasets	which	 described	 grid-square	 percentage	 cover	 of	 cultivated	 land	

(and	specifically	 rain-fed	 land),	 forested	 land,	built-up/urbanised	 land,	and	barren/sparsely	

vegetated	 land.	 In	 this	 study,	we	also	use	SQ4:	 “Oxygen	availability	 to	 roots”	 as	 a	proxy	 for	

drainage	 and	 permeability	 of	 soil,	 based	 on	 methods	 used	 by	 the	 Food	 and	 Agriculture	

Organisation	of	the	United	Nations.	This	takes	into	account	the	soil	type,	texture,	soil	phases	

and	terrain	slope.	

	

HydroLAKES	 (Messager	 et	 al.,	 2016)	 describes	 the	 inland	 waterbodies	 across	 much	 of	 the	

world’s	 surface.	Drawing	data	 from	the	Global	Lakes	and	Wetlands	Database,	as	well	as	 the	

Global	 Reservoir	 and	 Dam	 database,	 this	 includes	 the	 position	 and	 shape	 of	 waterbodies,	

along	with	a	wide	range	of	relevant	information	including	lake	pour	point	(point	to	which	the	
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water	 drains),	 surface	 area,	 drainage	 area,	 volume	 and	 perimeter.	 All	 water	 bodies	 with	 a	

surface	area	of	at	least	0.1	km2	were	included,	subject	to	shoreline	smoothing	and	removal	of	

small	within-lake	islands.	

	

4.4.1.4. Meteorological	data	
	

Although	we	do	not	currently	have	access	to	systematic	daily	rain	gauge	data,	some	datasets	

are	available	which	describe	 the	weather	and	climate	patterns	of	 the	 two	basins.	The	CFSR	

(Fuka	et	al.,	2014)	has	constructed	a	global	weather	model	output	dataset	(1979–2014)	on	an	

approximately	38km	grid-square	with	hourly	resolution	which	records	rainfall,	wind,	relative	

humidity	 and	 solar	 energy.	 This	 has	 been	 interpolated	 and	 downscaled,	 in	 the	 absence	 of	

other	 data,	 to	 determine	 average	 annual	 rainfall	 and	 peak	 rainfall	 for	 each	 catchment	 of	

interest.	

	

Table	4.2	summarises	the	complete	range	of	catchment	descriptors	derived	from	the	datasets	

outlined	 above	 which	 were	 subsequently	 used	 in	 the	 flood	 estimation	 analyses	 described	

below.	

Table	4.2.	List	of	catchment	descriptors	

Descriptor	 Unit	 Definition	
AREA	 km2	 catchment	area	
Latitude	 degree	 latitude	North	
Longitude	 degree	 longitude	East	
ALTBAR	 m	 mean	altitude	
ASPBAR(VAR)	 radian	 mean	aspect	(clockwise	from	north)	
DPLBAR(VAR)	 km	 average	drainage	distance	
DPSBAR(VAR)	 m/km	 average	drainage	slope	
RCBAR	 km	 mean	channel	length	
RSBAR	 m/km	 mean	channel	slope	
RABAR	 radian	 mean	channel	aspect	(clockwise	from	north)	
CDEN	 km/km2	 channel	density,	length	per	unit	area.	
FARL	 -	 proportion	of	attenuation	of	flow	due	to	lakes/reservoirs	
AAR	 mm	 average	annual	rainfall	
PET	 mm/month	 average	potential	evapo-transpiration	
CULT	 -	 proportion	of	cultivated	land	
CULT-RF	 -	 proportion	of	rainfed	cultivated	land	
FOREST	 -	 proportion	of	forested	land	
URBAN	 -	 proportion	of	urbanised	land	
NVG	 -	 proportion	of	barren	(no	vegetation)	land	
SQ4	 -	 permeability	of	soil	(integer	scale	1,2,3,…)	
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4.4.2. Regression	methods	

	

Beginning	with	a	model	including	all	the	transformed	covariates,	the	first	step	was	to	identify	

likely	candidates	 for	 the	model	using	a	 stepwise	regression	method,	where	covariates	were	

added	or	removed	to	optimise	the	model.	Following	on	from	Meigh	et	al.	(1997)	and	Kjeldsen,	

et	al.	(2008),	certain	unbounded	descriptors	such	as	AREA	were	transformed	to	log(AREA)	to	

improve	 fit.	 The	 stepwise	 regression	 method	 outlined	 log(AREA),	 1000/AAR,	 log(PET),	

log(DPSBAR),	log(FARL),	SQ4,	and	ASPBAR	as	the	factors	which	gave	rise	to	the	best	model	in	

terms	of	AIC,	a	measure	of	 information	content	which	 is	optimal	when	low	(most	negative).	

The	stepwise	procedure	starting	from	a	single	covariate	is	outlined	in	Table	4.3.	

	

Table	4.3.	Summary	of	stepwise	regression	results.	

Final	model	with	fse	=	1.74,	adjusted	R2	=	0.832	

Covariates	 AIC	
log(AREA)	 -28.2	
log(AREA),	1000/AAR	 -71.71	
log(AREA),	1000/AAR,	log(PET)	 -85.25	
log(AREA),	1000/AAR,	log(PET),	log(DPSBAR)	 -94.93	
log(AREA),	1000/AAR,	log(PET),	log(DPSBAR),	log(FARL)	 -105.57	
log(AREA),	1000/AAR,	log(PET),	log(DPSBAR),	log(FARL),	SQ4	 -109.09	
log(AREA),	1000/AAR,	log(PET),	log(DPSBAR),	log(FARL),	SQ4,	ASPBAR	 -112.62	

	

The	correlation	graph	for	these	variables	alongside	QMED	is	shown	in	Figure	4.2.	Fitting	the	

variables	showed	they	were	all	significant	at	 the	95%	level,	and	all	but	ASPBAR	at	 the	99%	

level.	The	fitted	model	was	(after	taking	the	exponential	of	both	sides):	

𝑄𝑀𝐸𝐷 = 1.71×10!!" 𝐴𝑅𝐸𝐴!.!"# 0.0920
!"""
!!"  𝑃𝐸𝑇!.!"# 𝐷𝑃𝑆𝐵𝐴𝑅!.!""

×𝐹𝐴𝑅𝐿!.!"#1.627!"!0.903!"#$!%	
A	more	comprehensive,	systematic	investigation	was	made	into	all	models	that	consisted	of	a	

subset	of	the	variables	selected	above;	no	better	model	was	found	in	terms	of	AIC	or	adjusted	

R2.	 An	 inspection	 of	 the	 residuals	 (difference	 between	 observed	 and	 fitted	 QMED)	 showed	

that	there	was	some	correlation	in	the	variance	of	log(AREA)	compared	to	the	residuals,	and	

some	correlation	remained	in	the	residuals	compared	against	log(QMED).	This	is	due	to	some	

unexplained	behaviour	by	some	aspect	of	 the	basins	not	yet	documented.	One	possibility	 is	

the	 influence	 of	 dams,	 levees	 and	 reservoirs	 on	 the	 flow	 of	 the	 network,	 since	 the	 QMED	

model	described	above	implicitly	assumes	naturalised	river	flow.	None	of	the	other	variables	

showed	correlation	with	the	residuals.		
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Figure	4.2.	Pairwise	correlation	plot	of	variables	used	in	QMED	equation.	

4.4.3. Statistical	distribution	for	flood	growth	curve	

	
A	 similar	 method	 to	 that	 described	 in	 Kjeldsen	 et	 al.	 (2008)	 was	 applied	 to	 determine	

appropriate	 distributions	 for	 use	 across	 the	 basins	 using	 the	 Hosking-Wallis	 test.	 This	

computes	the	L-moment	ratios	(L-CV,	L-skew,	L-kurtosis)	for	the	AMAX	series	at	each	station	

in	 order	 to	 assess	 acceptability	 of	 distribution,	 and	 choose	 the	 distribution	 with	 the	 most	

success.	 The	 proposed	 distributions	 are:	 Generalised	 Extreme	 Value	 (GEV),	 Generalised	

Pareto	(GPA),	Generalised	Logistic	(GLO),	Generalised	Log-normal	(GLN)	and	Pearson	type-3	

distribution	(PE3).	

	

An	initial	assessment	of	distribution	choice	was	performed	using	the	L-moment	ratios	and	the	

Zdist-statistic	as	described	in	Kjeldsen	et	al.	 (2008)	on	the	whole	dataset	using	the	lmomRFA	

package	from	R	(Hosking,	2017).	Any	distribution	with	a	value	of	|Zdist|	<	1.64	is	deemed	to	be	

potentially	 acceptable	 for	 that	 station.	 The	 distribution	 with	 the	 smallest	 value	 is	 also	

recorded.	 Table	 4.4	 shows	 that	 although	 the	 Generalised	 Pareto	 is	 most	 often	 the	 best	

distribution,	it	is	not	the	most	frequently	accepted;	instead,	the	Pearson	Type	III	is.	Figure	4.3	

shows	that	there	is	no	obvious	spatial	correlation	to	the	choice	of	distribution;	these	patterns	

do	not	match	the	major	river	channels.	
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Figure	4.3.	Locations	of	chosen	distributions	showing	no	clear	geographical	correlation.	

Table	4.4.	Distribution	test	results	over	whole	region	of	study	

	 GLO	 GEV	 GLN	 PE3	 GPA	

Accepted	 67	 91	 95	 101	 92	

Chosen	 17	 17	 12	 29	 47	

	

4.5. Use	within	web	application	

	

A	web	application	was	constructed	in	the	R	programming	language	(R	Core	Team,	2016)	using	

the	shiny	package	(Chang	et	al.,	2017).	The	purpose	of	the	application	(screen	shot	provided	

in	 Figure	 4.4)	 was	 to	 allow	 users	 to	 select	 a	 location	 by	 point-and-click	 or	 entering	

latitude/longitude,	and	the	catchment	which	pools	into	that	point	would	be	highlighted.	The	

estimate	 for	 QMED,	 along	 with	 relevant	 catchment	 descriptors	 (subject	 to	 data	 licensing)	

would	 be	 presented	 along	with	 either	 a	 growth	 curve,	 or	 further	 estimates	 of	 other	 return	

periods	 (30,	 50,	 100-year).	 In	 this	 pilot	 study,	 the	 selectable	 points	 were	 restricted	 to	 the	

hydro-observation	stations	in	the	current	dataset.	The	next	step	will	be	to	either	perform	real-

time	catchment	computation,	or	 to	pre-calculate	results	 for	a	 large	set	of	catchments	which	

cover	 the	 whole	 region	 and	 also	 encompass	 a	 wide	 range	 of	 sizes	 of	 catchment.	 Both	 will	

require	additional	rainfall	and	evapotranspiration	data.	

	

From	 preliminary	 discussions	 with	 stakeholders	 and	 practitioners,	 a	 number	 of	 additional	

inclusions	 to	 the	 web	 application	 have	 been	 noted	 as	 possibilities.	 These	 include	 a	 more	

explicit	inclusion	of	more	return	periods	in	the	display,	rather	than	only	showing	them	in	the	

context	of	a	growth	curve.	Additionally	the	web	tool	could	eventually	be	extended	to	include	
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flood	frequency	estimates	derived	from	continuous	rainfall-runoff	modelling,	but	this	would	

have	to	be	done	carefully	to	avoid	confusion	between	“real-time”	updating	flood	predictions	

and	 long-term	 flood	 frequency	 estimation	 in	 an	 assumed	 stationary	 system.	 It	 will	 also	 be	

important	to	highlight	the	differences	between	this	web	application	and	the	already	existing	

WRIS	and	eSWIS.	

	

	
Figure	4.4.	Screenshot	of	application	demonstrating	layout	and	function	

4.6. Next	steps	

	

The	next	steps	will	be	to	improve	the	statistical	models	and	the	web	application,	conditional	

on	 the	 availability	 of	 higher	 resolution	 rainfall	 and	 evapotranspiration	 data.	 These	

improvements	 are	 outlined	 in	 the	 previous	 section.	 In	 addition	 to	 this,	 there	 is	 interest	 in	

performing	more	regional	analysis	to	identify	hydrological	regions	in	Maharashtra	for	which	

the	flood	estimation	can	be	tuned.	The	Wainganga	Basin	has	been	identified	as	a	specific	case	

study	on	which	 this	optimisation	should	be	performed.	This	regionalisation	may	be	done	 in	

conjunction	with	a	catchment	classification	project	with	IIT	Bombay.	Hopefully	this	will	allow	

the	project	to	refocus	on	Maharashtra	rather	than	the	Godavari	and	Krishna	basins.	

	

If	 more	 data	 are	 acquired,	 then	 the	 analysis	 in	 Section	 4	 can	 be	 rerun.	 This	 may	 lead	 to	

different	 descriptors	 being	 chosen	 or	 different	 coefficients	 being	 obtained,	 and	 the	 web	
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application	in	Section	4.5	can	be	updated	to	include	more	accurate	output.	Additionally,	these	

additional	data	would	allow	a	better	quantification	of	uncertainty,	and	also	allow	the	project	

to	investigate	other	regional	flood	frequency	estimation	methods,	such	as	pooling	groups	that	

use	sets	of	hydrologically	similar	catchments	to	improve	the	estimates	at	ungauged	locations.	
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Appendix	1.	Data	requirements	for	extension	of	FEH	methods	

	
A1.1.	Gridded	and	at-site	rainfall	and	evapotranspiration	data	
	
Currently,	 rainfall	 data	 have	 been	 collected	 on	 a	 district	 level	with	monthly	 averages	 from	
1901–2002	(example	pictured),	with	some	data	for	2004–2010	in	some	districts,	which	were	
interpolated	 from	 coarse	 gridded	 global	 datasets.	 For	 UK	methods,	 a	 daily	 total	 rainfall	 is	
typically	used	 to	determine	an	average	annual	 rainfall	within	 each	 catchment	using	 rainfall	
stations	within	the	catchment	or	close	to	it.	
	
It	would	be	of	most	use	to	obtain	rain	gauge	records	of	total	rainfall	on	a	daily	time-step	 for	
locations	 throughout	 Maharashtra,	 but	 particularly	 in	 regions	 with	 river	 gauging	 stations.	
This	is	particularly	important	in	regions	that	are	strongly	affected	by	flooding	in	the	state,	as	
well	as	for	urban	areas	such	as	Mumbai.	To	aid	with	estimates	within	the	state,	it	would	also	
be	of	use	 to	obtain	rainfall	data	 for	hydrologically	similar	regions	within	 the	Tapi,	Godavari	
and	Krishna	river	basins	but	outside	the	state.	In	addition,	to	investigate	seasonality	of	such	
floods,	significant	dates	associated	with	the	monsoons	(start	date,	end	date,	extreme	rainfall	
events)	would	be	of	use.	A	finer	gridded	rainfall	dataset	may	be	useful	within	the	hydrological	
modelling	methods.	
	
In	 addition	 to	 the	 rainfall	 data,	 gridded	 potential	 evapotranspiration	 (PET)	 data	 would	 be	
useful	 in	 both	 the	 catchment	 descriptor	 equation	 for	 QMED	 and	 the	 continuous	modelling	
approach.	As	an	alternative,	 thermal	energy	data	 could	be	used	along	with	a	 recommended	
method	of	computing	PET	or	actual	evapotranspiration.	
	
A1.2.	Locations	and	information	of	major	anthropogenic	impacts	
	
In	order	to	account	for	man-made	structures	and	water	abstraction	and	storage	in	the	river	
network,	 it	 would	 be	 useful	 to	 have	 access	 to	 precise	 geographical	 locations	 of	 these	
installations,	 as	 well	 as	 how	 they	 affect	 stream	 flow	 (e.g.	 storage,	 level	 of	 abstraction).	
Currently	the	National	Registry	of	Large	Dams,	compiled	by	CWC	is	known	but	is	not	in	a	form	
that	can	be	readily	applied	to	our	analysis.	
	
More	recent	land	use	maps,	including	information	on	the	extent	of	agricultural	and	urbanised	
land	at	a	high	spatial	resolution	would	allow	for	more	accurate	application	in	the	catchment	
descriptor	equations.	
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Appendix	2.	Flood	estimation	in	Maharashtra	State:	Stakeholder	engagement	

	
The	main	motivation	 for	 research	 in	 flood	 frequency	 estimation	 is	 improved	 prediction	 of	
extreme	flood	events	leading	to	more	effective	flood	risk	management.	Throughout	the	flood	
estimation	 part	 of	 the	 project,	 CEH	 has	 engaged	with	 a	 number	 of	 stakeholders	within	 the	
state	of	Maharashtra	 to	discuss	 the	 state	of	 the	art	and	 research	gaps	 to	ensure	 that	 future	
research	is	clearly	targeted.		Areas	explored	have	included	data	resources,	key	research	needs	
and	 possible	 ways	 to	 collaborate	 and	 exchange	 ideas	 and	 data.	 The	 stakeholders	 include	
academic	institutions	such	as	Indian	Institute	of	Technology	(IIT)	Bombay,	industrial	partners	
such	 as	 the	 Maharashtra	 Engineering	 Research	 Institute	 (MERI),	 and	 government	
departments	such	as	the	India	Meteorological	Department	(IMD).	
	
Early	in	the	project,	links	were	made	with	Professor	Arpita	Mondal	from	IIT	Bombay	who	has	
a	research	interest	in	extreme	hydrological	events	and	non-stationarity.	CEH	staff	made	two	
visits	to	Maharashtra	to	discuss	data	and	progress	and	also	hosted	the	visit	of	a	PhD	student	
from	 IIT	 Bombay.	 An	 outline	 of	 the	 discussions	 and	 outcomes	 of	 the	meetings	 is	 provided	
below.		
	
A2.1.	Visit	of	PhD	student	-	Chingka	Kalai	(June	2017)	
	
CEH	hosted	a	PhD	student,	Chingka	Kalai,	 for	two	weeks	to	work	with	us	on	this	part	of	the	
project,	offering	useful	insights	into	local	freely-available	data.	In	particular,	Kalai	was	able	to	
assist	 the	 team	 with	 the	 acquisition	 of	 freely	 available	 river	 discharge	 and	 catchment	
descriptor	 data	 and	 to	 help	 evaluate	 data	 quality.	 Kalai	 presented	 his	 work	 to	 CEH	 in	 a	
seminar	during	his	stay,	and	helped	the	group	find	several	new	sources	of	data	for	evaluation.	
This	working	relationship	has	been	of	great	benefit	to	the	project,	both	in	UK	and	in	India.	
	
A2.2.	Visit	to	Maharashtra	(August	2017)	
	
Lisa	Stewart	(CEH	team	leader	for	the	flood	estimation	part	of	the	project)	and	Harry	Dixon	
visited	Mumbai	and	Pune	in	August	2017.	Discussions	were	held	with	Arpita	Mondal	and	her	
team	at	 IIT	Bombay	 to	 consider	 the	 scope	of	 the	work	possible	 in	 the	 relatively	 short	pilot	
project.	 Common	 areas	 of	 research	 included	 extreme	 value	 distribution	 fitting,	 flood	 and	
rainfall	 frequency	 estimation	 using	 non-stationary	 methods	 and	 the	 use	 of	 spatial	 data	 as	
covariates.	 It	was	agreed	that	 informal	collaboration	between	CEH	and	IITB	would	continue	
with	the	latter	assisting	with	the	acquisition	of	data	from	government	sources	in	Maharashtra	
State	and	India	generally.		
	
Representatives	 from	Maharashtra	Engineering	Research	 Institute	 (MERI)	 in	Nashik	 visited	
IITB	to	learn	about	the	project	and	to	discuss	existing	needs	for	generalised	flood	frequency	
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estimates	 in	 the	 state	 of	 Maharashtra.	 It	 was	 agreed	 that	 a	 point	 of	 contact	 would	 be	
confirmed	and	that	MERI	would	release	data	to	CEH	via	IITB.	
	
CEH	staff	also	travelled	to	the	India	Meteorological	Department	(IMD),	Pune	to	discuss	project	
scope	and	possible	collaboration,	particularly	 through	 the	provision	and	analysis	of	 rainfall,	
temperature	 and	 potential	 evapotranspiration	 data.	 Again,	 a	 project	 representative	 was	
appointed.		
	
A2.3.	Visit	to	Maharashtra	(February	2018)	
	
A	 second	 visit	 of	 CEH	 staff	 to	 Maharashtra	 took	 place	 in	 February	 2018	 with	 the	 aim	 of	
discussing	the	outcomes	of	the	pilot	project	with	the	project	partners.	The	group	included	Lisa	
Stewart	(CEH	team	leader),	Gwyn	Rees	and	Adam	Griffin.		A	number	of	meetings	were	held	as	
discussed	below.	
	
A2.4.	 IIT	Bombay,	Mumbai	 (21	February	2018)	 -	Prof	T.	Eldho,	Prof	Arpita	Mondal,	Prof	
Riddhi	Singh,	Prof	Basudev	Biswal,	Prof	Subimal	Ghosh	
	
In	 this	 meeting	 CEH	 presented	 the	 work	 from	 the	 pilot	 study,	 focusing	 on	 the	 statistical	
methods	used	 in	 flood	 frequency	estimation.	Outcomes	of	 the	previous	 trips	by	CEH	and	by	
Chingka	Kalai	were	discussed,	with	positive	 feelings	 about	 the	work	done	 so	 far.	 Following	
this,	 the	 current	 challenges	 in	 the	 work,	 particularly	 data	 acquisition	 problems,	 were	
discussed.	Prof	Singh	spoke	of	current	catchment	characterisation	methods	that	her	group	is	
researching,	and	possible	collaborations	to	this	end	were	discussed.	Current	flood	estimation	
methods	in	India	were	discussed,	and	how	they	could	be	improved.	
	
Recommendations	 were	 made	 to	 ask	 the	 Indian	 Central	 Water	 Commission	 (CWC)	 about	
further	 gauging	 stations	 in	 the	 state,	 and	 about	 current	 flood	 estimation	 practice.	 Chingka	
Kalai	accompanied	the	CEH	team	to	the	rest	of	the	meetings	in	Maharashtra	during	this	trip.	
	
A2.5.	MERI,	Nashik	(23	February	2018)	-	Mr	Rajendra	Pawar,	Director	General;	D.R.	Joshi,	
Chief	Engineer;	Dr.	Mahendra	Nakil;	others	
	
In	this	meeting,	CEH	presented	its	wider	work	as	an	organisation,	including	a	summary	of	the	
work	done	in	water	resources	research.	Following	this,	the	work	done	in	the	pilot	study	was	
presented,	and	the	web	application	was	demonstrated.	The	priorities	of	the	Water	Resources	
Department	were	discussed:	 flood	estimation	 in	Wainganga,	water	 resources	assessment	 in	
Krishna	 and	water	quality	 of	 the	Nag	 at	Nagpur;	MERI	want	 to	 investigate	 all	 of	 them.	The	
next	steps	will	focus	primarily	on	the	flood	estimation	with	emphasis	on	the	Waingana	Basin,	
although	 it	 is	 possible	 that	 other	 projects	 at	 CEH	might	 explore	 the	 other	 two	 branches	 of	
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work.	Mr	Pawar	showed	interest	in	MOUs	with	CEH,	and	recommended	keeping	Mr	Joshi	as	a	
primary	correspondee.	
	
A2.6.	 IMD,	Pune	(26	February	2018)	 -	Dr	AK	Sahai;	Dr	Pulak	Guhathakurta,	Climate	Data	
Management	&	Services;	Dr	G	Krishnakumar,	National	Data	Centre;	Dr	Shivana	Pai,	Climate	
Prediction;	Dr	Somenath	Dutta,	Climate	Application	&	Users’	 Interface;	Dr	N	Chattopadhyay,	
Deputy	Director	General	of	Meteorology)	
	
As	at	MERI,	CEH	presented	the	findings	from	the	pilot	study	as	well	as	an	introduction	to	the	
wider	work	CEH	undertakes	within	water	resources	research	and	hydro-climatic	risks.	This	
led	 to	 interesting	discussions	on	 the	work,	 and	how	 it	 fits	 in	with	 the	 current	work	 IMD	 is	
doing;	 their	 focus	 is	 primarily	 on	 rainfall	 and	 evapotranspiration	 modelling	 and	 drought	
monitoring	(HydroSOS).	IMD	explained	the	extent	of	their	monitoring	network	including	144	
stations	with	daily	evapotranspiration	readings	and	25km	gridded	data.	
	
There	was	a	 lot	of	 interest	 in	CEH’s	Hydrological	Outlooks	programme,	and	 in	collaborating	
with	IMD	to	share	rainfall	and	evapotranspiration	data,	conditional	on	more	concrete	outlines	
for	 the	next	steps	 in	 the	project.	Dr	Guhathakurta	remains	 the	main	contact	 for	CEH	within	
this	area	of	work.	
	
A2.7.	 National	 Water	 Academy,	 Pune	 (26	 February	 2018)	 -	 Sunil	 Kumar,	 Director;	
Dattakumar	Chaskar,	Director;	Aditya	Sharma,	Director-in-Charge)	
	
The	 National	 Water	 Academy	 is	 a	 training	 centre	 and	 is	 overseen	 by	 the	 Central	 Water	
Commission.	 Following	 previous	 meetings	 between	 Gwyn	 Rees	 and	 Sunil	 Kumar,	 the	 pilot	
study	was	presented	as	a	current	project	of	interest.	It	was	recommended	that	to	pursue	this	
work	further	more	active	stakeholder	engagement	was	key.	NWA	was	positive	about	assisting	
with	developing	 this	 area	and	any	 capacity	building	or	 training	 that	 is	 run	 following	 future	
research	 and	development;	 this	will	 be	 specified	 in	 future	 correspondence	with	NWA.	 This	
would	probably	be	aided	through	an	MOU.		
	
The	exchange	of	 training	programmes	was	discussed	with	 regard	 to	 the	project	 at	hand,	 as	
well	as	other	opportunities	for	training	by	CEH.	
	
	
	


