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Abstract 23 

Combining bioenergy land use with biochar production could represent a win-win management 24 

strategy to increase energy production whilst reducing greenhouse gas emissions. However, a fuller 25 

understanding of the effects that these changes in land use and soil amendment could have on soil 26 

biodiversity and processes is needed. We performed a 2-year field experiment to determine the 27 

consequences of adding three different amounts of biochar (10 t ha-1, 25 t ha-1 and 50 t ha-1) to a 28 

commercial Miscanthus bioenergy plantation on soil invertebrate community structure and 29 

abundances of enchytraeids, collembolans, mites and earthworms. We also used stable isotope 30 

analyses to determine shifts in feeding preferences and to quantify C assimilation by those soil 31 

organisms most likely to be affected by soil amendments (i.e. soil ingesters: earthworms and 32 

enchytraeids). Results showed that biochar additions to the soil had a negative effect on larger-sized 33 

soil fauna (earthworms) significantly reducing their population sizes and species richness whereas, in 34 

contrast, mesofauna appeared to benefit from the input of the biochar. Although significant 35 

assimilation of new C by anecic earthworms was observed, it was clearly insufficient to support 36 

population growth and, more importantly, the dominant ecological group in these agricultural soils 37 

(endogeics) showed the lowest assimilation values. These results indicate that biochar additions might 38 

result in the loss of some of the ecosystem services provided by earthworms, an important concern in 39 

these intensively managed agricultural soils. Finally, our findings highlight the need for more field 40 

research at species level to fully elucidate the mechanisms driving the biological responses of these 41 

types of ecosystem management. 42 

 43 

Keywords: Miscanthus; pyrolised carbon; soil invertebrates; stable isotopes 44 

 45 

  46 
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1. Introduction 47 

Biochar application to soil and bioenergy crop production are two management options that have 48 

significant potential for attaining climate change mitigation whilst increasing soil carbon (C) stocks 49 

(Winsley, 2007). Biochar can be produced from bioenergy crop residues and applied to the fields to 50 

promote plant growth, with the combined use of these two strategies representing a good example 51 

of circular economy, aimed at a more sustainable use of limited land resources, whilst enhancing C 52 

sequestration and improving soil quality and water holding capcity (Laird, 2008; Gaunt and Lehmann, 53 

2008; Sohi et al., 2009; Roberts et al., 2010; Hammond et al., 2011; Case et al., 2014). Since soil 54 

amendments and land use changes can have a strong influence on soil biota, interest has been raised 55 

on how these treatments could affect abiotic and biotic properties and in turn, ecosystem functioning 56 

as reviewed by McCormack et al. (2013). 57 

The addition of biochar to soils has been shown to increase C retention (e.g. Schmidt et al., 2019), 58 

soil fertility (Ding et al., 2016; Glaser and Lehr, 2019), water-holding capacity (Omondi et al., 2016; 59 

Nagel et al., 2019) and plant productivity (Katterer et al., 2019), while reducing greenhouse gas 60 

emissions (e.g. Wang et al., 2011; Cayuela et al., 2014; Jeffery et al., 2016; Azeem et al., 2019). 61 

However, it remains unclear whether these benefits can be extrapolated across climates (e.g. Jeffery 62 

et al., 2017) and soil types (e.g. Noguera et al., 2010; Streubel et al., 2011; Zhang et al., 2019). Although 63 

research on the effects of biochar on soil biota has increased in recent years (see reviews by Lehmann 64 

et al., 2011; Ameloot et al., 2013; Domene, 2016), the available evidence indicates no consistent 65 

responses (i.e. either positive, negative or no effect), hampering the application of this technique to 66 

improve soil fertility and mitigate climate change. Part of the problem is that the majority of the 67 

studies focus on single individual groups of soil organisms, such as microorganisms (e.g. Anderson et 68 

al., 2011), collembolans (e.g. Amaro, 2013; Marks et al., 2014; Domene et al., 2015), but mostly 69 

earthworms (e.g. Noguera et al., 2010; Weyers and Spokas, 2011; Li et al., 2011; Tammeorg et al., 70 

2014; Elmer et al., 2015), and they have often been performed under laboratory incubations (primarily 71 

toxicity assays using single species that can be easily reared under laboratory conditions). 72 
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The limited number of field observations show very contrasting results, with some studies 73 

reporting positive effects on certain soil faunal groups (Gruss et al., 2019; McCormak et al., 2019), 74 

others describing reductions in densities and diversity as well as avoidance behaviours (Fontodji et al., 75 

2009; Marks et al., 2014; Godfrey et al., 2014). Others have shown no population changes (Zhang et 76 

al., 2013; Prober et al., 2014; Domene et al., 2014) and, interestingly, in some of these studies, the 77 

observations from laboratory trials were not confirmed in the field (Tammeorg et al., 2014; Gruss et 78 

al., 2019). This could be the consequence of having a greater number of interacting factors (both 79 

abiotic and biotic) and a more complex soil foodweb under more natural conditions. Additionally, a 80 

longer investigated period, compared to the laboratory trials, might have resulted in changes in 81 

physical and chemical characteristics of the biochar and/or the degradation of the potential 82 

contaminants released from biochar long after their application to the field, and therefore, its effects 83 

on soil biota. 84 

Several factors have been proposed to explain the variety of observed biological responses of soil 85 

organisms to biochar: (i) the palatability and nutrition value of biochar is low (Salem et al., 2013), but 86 

it can be a source of energy (Ameloot et al., 2013); (ii) the porous nature of biochar can serve as a 87 

habitat for microorganisms, and in turn for microbial grazers, but the type of microorganisms that are 88 

enhanced (e.g. bacteria versus fungi) will dictate the microbivorous organisms that will benefit; (iii) 89 

the pollutant content of biochar (e.g. heavy metals and polycyclic aromatic hydrocarbons) could harm 90 

soil organisms (e.g. Elliston and Oliver, 2019), although concentrations do not usually reach the 91 

threshold levels indicated in relevant guidelines (Domene, 2016); (iv) biochar changes abiotic 92 

environmental conditions (pH, water availability), which could be beneficial for some organisms but 93 

not for others (McCormack et al., 2013).  94 

Biochar palatability by decomposers is strongly dependent on its physical and chemical structure, 95 

which can vary depending on how the biochar is produced. Differing pyrolysis conditions and 96 

temperatures, even when used with the same starting biomass material, can result in a range of 97 

differing physico-chemical properties. For example, slow pyrolysis reduces the labile content of 98 
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biochar and increases aromacity when compared to fast pyrolysis (Brewer et al., 2011). Similarly, 99 

higher pyrolysis temperatures (>350 °C) can also change the biochar elemental composition, with 100 

decreases in the O/C and H/C ratios, and aromaticity (Mimmo et al., 2014). From this, it may be 101 

expected that low-temperature and fast pyrolysis biochars would be preferred by soil organisms. 102 

However, Li et al. (2011) found that the earthworm Eisenia fetida avoided a slow pyrolysis wood 103 

biochar at ratios of 10% (w/w) and above, and Elmer et al. (2015) found that Lumbricus terrestris 104 

disliked fast-pyrolysis biochar made from hardwood sawdust, emphasising that the actual 105 

mechanisms of how these parameters influence soil biota responses remain unclear.  106 

We performed a 2-year field study to investigate, under field conditions, the biological effects of 107 

adding biochar made from Miscanthus feedstock to a Miscanthus bioenergy crop. We assessed the 108 

effects of three different biochar addition rates (10 t ha-1, 25 t ha-1 and 50 t ha-1) on soil invertebrate 109 

community structure and abundances, including mesofauna (enchytraeids, collembolans, and mites) 110 

and macrofauna (earthworms). In addition, we used stable isotope analyses to reveal changes in 111 

feeding preferences and C assimilation by those soil faunal groups that directly ingest soil organic 112 

matter (e.g. earthworms and enchytraeids), as previous studies indicated that they are more likely to 113 

be affected by pyrolised C (McCormack et al., 2013). We applied combined 13C and 15N isotope analysis 114 

since it has been proved to be a powerful tool for tracing dietary changes ( 13C) and investigating 115 

ecological groupings ( 15N) in earthworm communities from agricultural soils (reviewed by Briones 116 

and Schmidt, 2004).  117 

Previous studies at the same site have revealed that Miscanthus plantations provide a better 118 

habitat for bacterial grazers and a more functionally diverse earthworm community than other 119 

bioenergy crops such as Short Rotation Coppice (SRC) willow (Briones et al., 2019). We therefore 120 

hypothesised that biochar additions will promote enchytraeids and earthworm populations compared 121 

to those faunal groups that are fungal driven (e.g. collembolans). In addition, since earthworm 122 

ecological groupings are a direct reflection of their preferential diets, we also anticipated that 123 
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endogeic worms feeding on more humified substrates would benefit from greater amounts of 124 

pyrolised carbon present in the soil. 125 

 126 

2. Materials and methods 127 

2.1. Site description 128 

The field site used for this study was a commercial plantation of Miscanthus giganteus (11.56 ha) 129 

located in Lincolnshire, UK (53.318741, -0.590814). Prior to planting with Miscanthus in 2006, the field 130 

had followed a 1-year rotation of oilseed rape (Brassica napus) and 3 years winter wheat (Triticum 131 

aestivum). The soil was a fine loam over clay (59% sand, 36% silt and 15% clay; Robertson et al., 2017). 132 

The top 30 cm of soil had a mean total C and N concentration of 1.86% and 0.18%, respectively, with 133 

a soil pH ranging from 6.8 to 7.3. The soil bulk density before the experiment establishment was very 134 

high (1.67) because of compaction caused by long-term agricultural vehicle usage. The Miscanthus 135 

perennial crop was managed by spring harvest (March-April) and no fertilization. Meteorological data 136 

obtained from the nearest weather station (RAF Scampton, Lincoln; 53° 18ʹ 1ʺN, 0° 32ʹ 30ʺW) showed 137 

a mean annual minimum and maximum temperatures of 5.7 °C and 13 °C respectively and a mean 138 

annual rainfall of 613 mm (1981–2010). Further site details can be found in Robertson et al. (2017). 139 

 140 

2.2. Biochar preparation and experimental set-up 141 

Biochar was produced by slow pyrolysis from Miscanthus biomass by BTG Biomass Technology 142 

Group B.V. (Enschede, The Netherlands). The Miscanthus derived from a local farm in the Groeningen 143 

province, The Netherlands. Around 6 tons of chipped biomass (12.8% of moisture in average) was 144 

converted to around 2.3 tons of biochar in 17 runs, with an average yield of 35.6±7.5% (mean±SD, 145 

n=17) on dry weight (dw) basis. The pyrolysis unit used consisted of a screw reactor in which the 146 

biomass was subjected to a temperature of approximately 450 °C by means of hot combustion gases 147 

(~700 °C) mixed with air for an average time of 22.6±3 minutes. The resulting biochar had a total C 148 

content of 66.04±1.14% (n = 3), a total N content of 0.23±0.15% (n = 3), and an isotopic composition 149 
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of 13C = -12.38±0.036‰ and 15N = 3.68±0.36‰. Organic elemental analysis of the biochar was 150 

performed by dynamic flash combustion (modified Dumas method) of the sample with a Flash 2000 151 

analyzer (Thermo Fisher Scientific Inc.) set to a CNH configuration. 152 

Four random sampling blocks were established within the Miscanthus field in May 2010, one 153 

month after harvest. In each block, four square plots of 2 m  x 2 m, at least 5 m apart, were randomly 154 

assigned to one control treatment (i.e. no biochar added, CTRL), and to three amended treatments, 155 

where biochar was applied at a rate of either 10 t ha-1 (b10), 25 t ha-1 (b25) or 50 t ha-1 (b50) between 156 

the Miscanthus rows. Biochar was incorporated to an approximate depth of 10 cm with the help of a 157 

hoe and a tiller (Power digger, HSS Hire, UK) resulting in a mixing ratio of 0.6, 1.5 and 3% for b10, b25 158 

and b50, respectively. This mixing ratio was calculated by weight, based on the application rate, the 159 

initial soil bulk density of 1.67 g/cm3 and a 10 cm depth of application. Each plot (including the control 160 

plots) was ploughed twice, initially before and then after biochar application to the soil surface. The 161 

biochar was tilled into the soil, carefully avoiding the Miscanthus rhizomes and control plots without 162 

added biochar were tilled in the same way as for the biochar plots. Miscanthus straw and litter fall 163 

present on the ground were removed before tilling and repositioned after biochar incorporation into 164 

the soil. 165 

 166 

2.3. Soil sampling and faunal extractions 167 

Measurements were taken in September 2011 and October 2012 (i.e. 4 and 17 months after 168 

biochar was added to the soil). Litter and soil samples (taken to 10 cm depth) were analysed for 169 

isotopic composition (13C and 15N).  170 

On both sampling occasions, soil macrofauna (earthworms) was collected by excavating one 171 

quadrat (50 cm x 50 cm x 10 cm deep) at three blocks, whilst two soil cores (PVC cylinders 10 cm ø x 172 

3 cm deep) at each of the treatments in the four blocks were sampled for extraction of soil mesofauna 173 

(one core for enchytraeids and one for microarthropods). Earthworms were hand-sorted in the field, 174 

whereas soil cores were taken to the laboratory to perform the faunal extractions: wet funnel 175 
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extraction (O’Connor, 1955) in the case of enchytraeids, and the standard Tullgren method (Tullgren, 176 

1918) in the case of microarthropods. Mites and collembolans were fixed in 70% ethanol and identified 177 

to order level, whereas oligochaetes were collected alive, washed with deionised water to remove any 178 

surface soil particles, and sorted by species (earthworms), and family (enchytraeids). After 179 

identification, earthworm species were assigned to ecological groupings (Bouché, 1977): i) epigeic 180 

worms living in the litter layers and feeding on fresh organic matter; ii) anecic worms building 181 

permanent or semi-permanent vertical burrows to feed on the organic layers at night; iii) endogeic 182 

earthworms inhabiting the mineral layers and feeding on more humified food sources. 183 

Clean tissue samples of every earthworm species (after removing the gut by dissection) and all 184 

enchytraeids collected per replicate were then frozen at -20 °C for at least 24 h prior to freeze-drying 185 

and then weighed using a microbalance to determine their dry weight. 186 

 187 

2.4. Isotopic analyses and calculations 188 

Biomass C and N content as well as 13C/12C and 15N/14N ratios of soil and fauna samples were 189 

determined by continuous flow-combustion-isotope ratio mass spectrometry (CF-C-IRMS) using an 190 

elemental analyser (EA, Flash 2000, Thermo Scientific) coupled with a Continuous Flow-Isotope Ratio 191 

Mass Spectrometer (CF-IRMS, Delta V Advantage, Thermo Scientific) at the Stable Isotope Facility of 192 

the Free University of Bolzano (Italy). Analytical precision of < 0.2‰ 13C and 0.2‰ 15N was obtained.  193 

The isotopic values are expressed as δ values: 194 

ுXߜ = ൬ ܴ௦௔௠௣௟௘ܴ௦௧௔௡ௗ௔௥ௗ − 1൰ ∗ 1000 195 

where Rsample is the ratio 13C/12C or 15N/14N in each sample. International Reference Standards were 196 

Vienna Pee Dee Belemnite (VPDB) for C (Rstandard = 0.011180) and Air (AIR) for N (Rstandard = 0.0036765). 197 

The biochar derived from Miscanthus had a δ13C value of -12.38‰, very different to that of the soil 198 

(-26.11‰), but not statistically distinguishable from the C isotopic signature of the Miscanthus litter 199 

(-12.04‰). Therefore, we used isotopic data derived from a previous study located adjacent to the 200 
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current study site for reference soil, containing a Short Rotation Coppice (SRC) willow plantation, 201 

which had never grown Miscanthus nor received biochar (Briones et al., 2019). From this, the 202 

fractional contribution (F) of plant/biochar C4-derived C which had been incorporated into the worm 203 

tissues was estimated (after converting all δ13C results to atom% values) using a two source mixing 204 

model (after Balesdent and Mariotti, 1996): 205 F (atom%) = (13C atom%SAMPLE– 13Catom%SAMPLE SOIL REF)/(13Catom%C4 – 13Catom%SOIL REF)  206 

where 13C atom%SAMPLE is the atom% value of the biological sample collected from the treatment plots, 207 

13C atom%SAMPLE SOIL REF is the atom% of the biological sample collected from the reference soil (see 208 

above), 13CC4 is the atom% value of the C4 food sources (Miscanthus litter), 13CSOIL REF is the atom% 209 

value of the reference soil (SRC willow soil; Briones et al., 2019). Because enchytraeids had not been 210 

measured in this previous study, and earlier work (Ostle et al., 2007) has shown that these 211 

oligochaetes show similar 13C fractionation from basal food resources, we also used the earthworm 212 

values from the SRC willow plantation as our reference values for the enchytraeids. 213 

Thereafter, the total new C assimilated into each group per square meter was calculated as 214 

following: 215 

new C4–derived assimilated C = F (atom%) x biomass C (mg C per square meter) 216 

where biomass C was the dry weight of the animal tissue per area (mg m-2) x % C in animal tissue. 217 

 218 

2.5. Statistical analyses 219 

Abundance data for soil invertebrates are expressed as numbers per square meter and have been 220 

log transformed (log10 (x+1)) to meet normality and homoscedasticity criteria for further statistical 221 

comparison. Isotopic data (delta values) were transformed to atom% values prior to statistical 222 

analyses. 223 

Since all the measurements were taken on the same experimental plots over time, all data was 224 

analysed using linear mixed models (LMMs) with repeated effects (proc MIXED, SAS/STAT® Software, 225 

2011). For an experiment with blocks, treatments and measurements over time, the repeated 226 
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statement included the variable time (sampling year) and the experimental units which had been 227 

measured repeatedly (treatments or TREAT: biochar plots) and randomized within a block. 228 

Significant effects of treatments, sampling years or the interaction between these two factors on 229 

faunal abundances/biomass of invertebrates gross groups, earthworm species and ecological 230 

groupings, as well as on atom% and new C assimilated values were further explored using LS-means 231 

within each level of each fixed factor. 232 

 233 

3. Results 234 

3.1. Effects of biochar amendments on soil fauna community composition and structure 235 

Adding biochar to the soils significantly (TREAT: p < 0.05; see Table 1) altered the total abundances 236 

of invertebrates, but the responses differed between macro- and meso-fauna (Fig. 1). Thus, while 237 

earthworms were negatively affected by the presence of biochar in the soil (and proportionally to the 238 

application rate), enchytraeids and microarthropods appeared to benefit from the presence of the 239 

biochar. Indeed, both mesofauna groups increased their population numbers with higher 240 

concentrations of biochar, but in the case of microarthropods their populations peaked when the 241 

dosage application was 25 t ha-1, whereas for enchytraeids the highest dose applied (50 t ha-1) resulted 242 

in the highest increase in animal numbers. The sampling year also had a significant effect on total 243 

earthworm and microarthropod numbers (Table 1), with earthworm populations doubling those 244 

found in the previous year and microarthropods drastically reducing their densities by a factor of four 245 

when compared to the densities recorded in 2011 (Figs. 2 and 3). Despite this temporal effect, the 246 

responses to the treatments were consistent over time, since no significant effect of the interaction 247 

between treatment and year on animal abundances was observed.   248 

Not only did the relative abundance of the smaller-sized organisms increase in the soil invertebrate 249 

communities with increasing biochar additions, but the community structure of both microarthropods 250 

and earthworms also exhibited significant changes. In the case of microarthropods, the statistical 251 

analyses of the most abundant groups (i.e. Collembola, Diptera, Mesostigmata, Oribatida and 252 
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Prostigmata) resulted in both treatment and sampling year having a significant effect as well as the 253 

interaction between these two factors (Table 2). Although biochar additions increased the average 254 

abundances of each of the investigated groups on both sampled years, the treatment effect only 255 

became evident in the second year, when populations of collembolans and oribatid mites became 256 

significantly greater in the b25 treatment than in the control (Fig. 2). Furthermore, on this sampling 257 

occasion, the population densities of oribatid mites reached their maximum values in the b50 258 

treatment (Fig. 2). 259 

In the case of the earthworms, no significant biochar effect was observed on their functional 260 

groupings structure (Table 2) and their communities were dominated by endogeic species 261 

(representing up to 77% of the total abundance) in all treatments across both sampling years. 262 

Increasing biochar application rates had negative effects on all three ecological groupings, but epigeics 263 

and anecics were the least affected (Fig. 3a). Similarly, biochar treatment did not appear to have a 264 

significant influence on earthworm species composition (Table 2); however, species richness tended 265 

to decrease with increasing biochar application rate (p = 0.0321). Up to 6 species were identified in 266 

control and b10 plots in both sampled years (in the case of the b25 only in 2012), whereas 4 and 5 267 

species were recorded in the b50 plot in 2011 and 2012, respectively (Fig. 3b). Interestingly, L. 268 

terrestris was absent from the control plots and L. rubellus from those with the highest addition of 269 

biochar (b50). 270 

 271 

3.2. Contribution of dietary C4 sources in oligochaetes 272 

No significant treatment effect on the proportion of new C (C4 sources) uptake nor in the total 273 

amounts being assimilated by enchytraeids were observed (Table 3). However, all enchytraeids 274 

samples were isotopically enriched compared to the background soil, indicating that they were 275 

preferentially assimilating litter-derived C or root exudates from Miscanthus, rather than previous 276 

older C sources (Fig. 4a). In addition, there was a significant year effect (Table 3) and less new carbon 277 
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was assimilated by these small oligochaetes in 2011 than in 2012, especially in the control and the b50 278 

treatments (Fig. 4b). 279 

The amount of new C present in the earthworm tissues showed significant variations among the 280 

three ecological groupings depending on how much biochar was added to the soil (Table 3; Fig. 5a). 281 

Interestingly, the lowest preference for C4 sources was exhibited by the anecic worms collected from 282 

the b25 treatment (Fig. 5a), although with a wide variation in their C isotopic values. This was the 283 

result of Lumbricus terrestris exhibiting the lowest isotopic enrichment (δ13C = -19.95‰), when 284 

compared to the other anecic species (Aporrectodea longa, δ13C = -13.58; Supplementary Table 1). 285 

The mass balance calculations confirmed that anecic earthworms showed the greatest incorporation 286 

of the new C in the b50 treatment (≈ 0.97 mg C per m-2; Fig. 5b), whereas endogeic worms showed 287 

the lowest assimilation values, but with the highest values also being measured in the b50 treatment 288 

(≈ 0.82 mg C per m-2; Fig. 5b). In the case of epigeics, their low abundances at the study site did not 289 

allow for a robust statistical comparison, but the available data suggest that they were assimilating 290 

similar amounts of new C across all investigated treatments (ranging between 0.77 and 0.99 mg C per 291 

m-2; Fig. 5b). Similar to enchytraeids, earthworm assimilation was also significantly affected by 292 

sampled year (Table 3) and less new C was assimilated by all three ecological groupings in 2011 than 293 

in 2012 (on average 0.72 mg C per m-2 versus 0.85 mg C per m-2, respectively). 294 

Furthermore, although δ15N isotopic ratios clearly reflected the different feeding strategies (i.e. 295 

lowest values for the litter feeders, such as epigeic worms, and the highest values for those species 296 

feeding on more humified sources, such as the endogeic worms), they also showed a wide variation 297 

across treatments, spanning nearly 5 delta units (Fig. 5a). In particular, epigeic species ranged from 298 

low isotopic values of 2.2 measured in the b50 treatment (very close to those values measured in the 299 

Miscanthus biochar/litter), to 4.8 in the ones collected in the b25 treatment, being more similar to 300 

those of anecic worms (Fig. 5a; see also Supplementary Table 1). 301 

 302 

 303 



12 
 

Discussion 304 

Collembolans and mites are the most abundant microarthropod groups in agricultural soils (Behan-305 

Pelletier, 2003; Coleman and Wall, 2014) and, in this study, these two groups were less negatively 306 

affected by increased biochar additions than earthworms. Several studies have reported the 307 

consumption of biochar by collembolans in laboratory incubations (Hale et al., 2013; Domene et al., 308 

2015), although the evidence provided suggest that this group mainly feed on the fungi colonising the 309 

biochar particles rather than on the biochar itself (Lehmann et al., 2011). This has led Domene et al. 310 

(2015) to conclude that microorganisms play an important role in biochar consumption by 311 

collembolans. In support of this, it has been shown that the presence of biochar increased microbial 312 

biomass and that the soil microbial community composition shifted to higher fungal-to-bacterial ratios 313 

(Bamminger et al., 2014; Gómez et al., 2014; Paz-Ferreiro et al., 2015; McCormack et al., 2019). This 314 

is the result of a preferential advantage for fungi in the degradation of lignin (Lehmann et al., 2011), a 315 

plant-derived polymer whose content increases during pyrolysis (Mimmo et al., 2014). The affinity of 316 

collembolans for porous structures of char-like materials is supported by the fact that they are usually 317 

cultured in a mixture of plaster of Paris and activated charcoal (OECD, 2009; ISO 11267:2014). The 318 

enhanced porosity of such carbonised materials retains water, removing staling products and 319 

providing the high humidity conditions, which are essential for Collembola growth. Furthermore, the 320 

high internal surface area of biochar and its ability to adsorb soluble organic matter, gases and 321 

inorganic nutrients could provide a suitable habitat for microbes to colonise (Thies et al., 2015). 322 

However, other studies have not found a positive link between biochar-induced microbial increases 323 

and collembolan numbers and, for this reason, other factors such as soil pH and gut symbionts have 324 

been suggested as potential explanations for the lack of negative effects of biochar on collembolans 325 

(Domene et al., 2015). 326 

The effects of biochar additions on soil mites has been much less investigated, probably because 327 

they are not model organisms in standard toxicity tests, unlike nematodes, collembolans, and 328 

enchytraeids. However, laboratory studies suggest either avoidance (Godfrey et al., 2014), negative 329 
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effects (Ohsowski et al., 2015), or no effect (McCormack et al., 2019) of biochar on this group. In this 330 

study, the positive effects of biochar on mite abundances were mainly associated to the increases of 331 

Oribatid mites, which coincides with other field studies performed by Gruss et al. (2019) who 332 

suggested that biochar addition improved soil physicochemical properties, by increasing soil C, soil 333 

pH, CEC and water content. This group of mites have been defined as “choosy generalists” (Schneider 334 

and Maraun, 2005) and exhibit a great variety of fungal-based diets (e.g. Hubert et al., 2001) and 335 

hence, like collembolans, they could also have benefited from the microbes inhabiting biochar porous 336 

structure. 337 

Enchytraeids are particularly abundant in C-rich soils (such as organic grasslands and peatlands), 338 

but also in no-tilled agricultural soils where they can reach high numbers and become the most 339 

dominant group of soil fauna (Davidson et al., 2002). Laboratory experiments have shown neither 340 

avoidance nor preference to biochar (Marks et al., 2014; Domene et al., 2015), although the passage 341 

of biochar particles through their gut has been reported (Domene et al., 2015) and Topolianz et al. 342 

(2006) found enchytraeid fecal pellets containing charcoal in tropical soils. In contrast to these short-343 

term bioassays experiments using one culturable species (Enchytraeus crypticus), our field study 344 

clearly showed a positive stimulation of the population numbers with increased additions of biochar. 345 

The longer-term study might have allowed for greater microbial degradation of the biochar, reducing 346 

its particle size, and facilitating ingestion by these small worms; indeed, biochar particle size has been 347 

recently postulated as the main driver for soil biota responses (Prodana et al., 2019). However, the 348 

fact that C4–derived C assimilation was similar between the biochar plots and the control plots 349 

suggests that biochar C may not be the main energy source for the growing population. Therefore, 350 

indirect effects through changes in the soil structure and physicochemical conditions might have 351 

played a more key role governing their responses to biochar treatments. More research involving 352 

these much less studied taxa needs to be performed to disentangle the interactive effects between 353 

abiotic factors and biochar additions.  354 
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A very different response to biochar was observed in the case of the large soil ingesters 355 

(earthworms), and they were the only group of invertebrates showing a negative response to all three 356 

biochar treatments. This finding contradicts previous studies indicating a positive interaction between 357 

earthworm activity and biochar (e.g. Topoliantz and Ponge, 2005; Elmer et al., 2015), but agrees with 358 

others who have reported avoidance responses (Tammeorg et al., 2014; Sanchez-Hernandez et al., 359 

2019a). Active ingestion of biochar by earthworms have been widely reported both in the field and 360 

under laboratory conditions (Topoliantz and Ponge, 2003, 2005; Ponge et al., 2006; Elmer et al., 2015), 361 

leaving the question open of whether this ingestion is accidental or intentional. The presence of small 362 

biochar particles in their egested casts has led to the suggestion that earthworms are capable of 363 

grinding biochar in their gizzards (Topolizantz, 2002), but also they may use the biochar to help with 364 

the grinding of their selected food sources (Lehmann et al., 2011). In addition, a recent study (Sanchez-365 

Hernandez et al., 2019a) has shown that the incubation of earthworms in biochar-amended soils led 366 

to a significant increase of digestive enzyme activity. In agreement with these observations, our 367 

isotopic results showed that earthworms were assimilating C4 sources (including biochar), despite the 368 

negative effects on the abundances and diversity of their populations. This could suggest that only 369 

some earthworm species were able to get enough nutrition from these C sources to support 370 

population growth. Indeed, our results showed that the response to the biochar treatments varied 371 

according to the ecological group or even the species included in a particular grouping. This is also a 372 

reflection of the different feeding strategies exhibited by different earthworm species, which is one 373 

of the main criteria for their functional classification. Thus, epigeic and anecic species, that feed on 374 

fresh and less mineralised substrates (in terms of C:N ratios) deposited at the surface, assimilated 375 

more C4-derived sources than the endogeics (living in the mineral layers). Furthermore, the two 376 

species included in the anecic group showed distinct responses, with A. longa showing a greater 377 

incorporation of C from C4 sources in their tissues than L. terrestris. Oxidative stress in Lumbricus 378 

terrestris individuals exposed to biochar has been observed previously (Sanchez-Hernandez et al., 379 

2019a), and broader feeding strategies have also been observed in the case of A. longa (Briones et al., 380 
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2005), which might explain these opposite responses. In support of this, Topoliantz and Ponge (2005) 381 

reported the endogeic Pontoscolex corethrurus having a preference for charcoal–soil mixtures over 382 

soil due to increased pH, but Tammeorg et al. (2014) observed avoidance by another endogeic species 383 

(Aporrectodea caliginosa) to a spruce biochar due a slight decrease in water availability. These findings 384 

highlight the need for more research on biochar’s direct and indirect effects on individual species 385 

rather than on earthworms as a whole (and possibly for the other invertebrate groups investigated 386 

here). 387 

 388 

 389 

Conclusions 390 

Our findings partly confirm previous findings that pyrolysis products seem to have a negative effect 391 

on the soil fauna which directly ingest soil organic matter (e.g. earthworms and enchytraeids), 392 

whereas microbial feeders may indirectly benefit from the input of this organic substrate (McCormack 393 

et al., 2013). However, at least in our investigated systems, unlike earthworms, enchytraeids seem to 394 

benefit from biochar additions, although the driving factors behind these responses are not fully 395 

understood. Since biochar is not a uniform material (i.e. the physical and chemical properties vary 396 

depending on the feedstock used and the pyrolysis procedures; Theis et al., 2015), the interaction of 397 

specific biochars with the soil environment may be very different, and even the direction of biological 398 

responses. In addition, soil type and nutrient content have also been proposed as important factors 399 

influencing biological responses (Noguera et al., 2010; Paz-Ferreiro et al., 2015). Despite these 400 

uncertainties, the results from this field study clearly indicate that smaller-sized organisms (in 401 

particular, enchytraeids, collembolans and oribatid mites) were able to endure and even capitalise on 402 

biochar-induced changes in the soil environment, whereas earthworms experienced severe 403 

reductions in their population numbers and species richness. Due to the importance of all these soil 404 

organisms in soil processes, more information about the mechanisms driving these contrasting 405 

responses is needed, if we aim at increasing the benefits from using bioenergy crops, biochar and soil 406 
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biodiversity in different soils. Recently, it has been suggested to use earthworms to activate biochar 407 

via extracellular enzymes (Sanchez-Hernandez et al., 2019b), which could represent a viable strategy 408 

to increase biochar acceptance by decomposers and be extended to other soil invertebrates capable 409 

to stimulate microbial activities (e.g. through grazing). Finally, we show that species identity and 410 

feeding strategies may also play an important role in the observed responses and therefore, they need 411 

to be considered before applying biochar to soils as a routine practice. More specifically, caution 412 

should be given to those intensively managed agricultural soils where soil communities may have 413 

already become less functionally diverse due to land management (Tsiafouli et al., 2015; Briones and 414 

Schmidt, 2017) and hence, less resilient to environmental changes. 415 
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Table 1 Results from Repeated Measures of ANOVA on the effects of the four treatments (TREAT): no 659 

biochar added (CTRL) and biochar applied at a rate of either 10 t ha-1 (b10), 25 t ha-1 (b25) or 50 t ha-1 660 

(b50)) and sampling year (YEAR) on soil invertebrate total abundances 661 

Effect Num DF Den DF F Value Pr > F 
     

Earthworms     
TREAT 3 14 4.62 0.0190 
YEAR 1 14 31.34 <0.0001 
TREAT*YEAR 3 14 0.81 0.5089 

     
Enchytraeids     
TREAT 3 21 3.33 0.0392 
YEAR 1 21 0.00 0.0947 
TREAT*YEAR 3 21 0.67 0.5812 

     
Microarthropods     
TREAT 3 21 3.28 0.0409 
YEAR 1 21 40.63 <0.0001 
TREAT*YEAR 3 21 0.70 0.5653 
          

  662 
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Table 2 Results from Repeated Measures of ANOVA on the effects of the four treatments (TREAT): no 663 

biochar added (CTRL) and biochar applied at a rate of either 10 t ha-1 (b10), 25 t ha-1 (b25) or 50 t ha-1 664 

(b50)) and sampling year (YEAR) on soil invertebrate community structure (microarthropod orders-665 

ORDER, earthworm ecological groupings-ECOL and individual species-SPECIES) 666 

Effect Num 
DF Den DF F Value Pr > F 

     
Microarthropods 
dominant groups     
TREAT 3 100 4.22 0.0075 
ORDER 4 100 22.73 <.0001 
YEAR 1 100 45.08 <.0001 
TREAT*ORDER 12 100 0.55 0.8745 
TREAT*YEAR 3 100 0.97 0.4118 
TREAT*ORDER*YEAR 16 100 2.11 0.0132 

     
Earthworm ecological 
groups     
TREAT 3 46 2.03 0.1224 
ECOL 2 46 68.41 <.0001 
YEAR 1 46 11.82 0.0013 
TREAT*ECOL 6 46 1.46 0.2127 
TREAT*YEAR 3 46 0.42 0.7374 
TREAT*ECOL*YEAR 8 46 0.96 0.4753 

     
Earthworm species     
TREAT 3 57 1.96 0.1310 
SPECIES 7 57 7.29 <.0001 
YEAR 1 57 15.82 0.0002 
TREAT*SPECIES 19 57 0.49 0.9575 
TREAT*YEAR 3 57 0.40 0.7519 
TREAT*SPECIES*YEAR 18 57 0.97 0.5015 
          

  667 
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Table 3 Results of linear mixed effects models showing the effects of the four treatments (TREAT): no 668 

biochar added (CTRL) and biochar applied at a rate of either 10 t ha-1 (b10), 25 t ha-1 (b25) or 50 t ha-1 669 

(b50)) and sampling year (YEAR) on the proportion of new C uptake [F (%atom)] and the total amount 670 

of new C assimilated (as mg C m-2) by enchytraeids, earthworm species and ecological groupings 671 

  new C uptake  
[F (%atom)]   new C4–derived C assimilated 

(mg C m-2) 
 Num DF Den DF F Value Pr > F Num DF Den 

DF F Value Pr > F 
     

     
Enchytraeids          
TREAT 3 9 1.15 0.3818  3 4 0.42 0.7501 
YEAR 1 9 37.71 0.0002  1 4 80.33 0.0009 
TREAT*YEAR 2 9 5.81 0.0240  2 4 45.78 0.0018 

     
     

Earthworm ecological 
groupings          
TREAT 3 69 6.31 0.0008  3 69 10.06 <0.0001 
ECOL 2 69 0.96 0.3888  2 69 0.94 0.3945 
YEAR 1 69 5.81 0.0186  1 69 16.22 0.0001 
TREAT*ECOL 6 69 5.27 0.0002  6 69 3.78 0.0026 
TREAT*YEAR 3 69 2.19 0.0970  3 69 3.06 0.0339 
TREAT*ECOL*YEAR 6 69 1.55 0.1751  6 69 1.22 0.3052 

          
Earthworm species     

     
TREAT 3 47 3.23 0.0308  3 47 6.51 0.0009 
SPECIES 7 47 3.9 0.0020  7 47 1.70 0.1318 
YEAR 1 47 6.46 0.0144  1 47 13.79 0.0005 
TREAT*SPECIES 18 47 2.8 0.0024  18 47 1.58 0.1042 
TREAT*YEAR 3 47 1.59 0.2049  3 47 1.82 0.1566 
TREAT*SPECIES*YEAR 16 47 1.54 0.1252  16 47 0.71 0.7697 
                    

  672 
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Figure legends 673 

Fig. 1. Earthworm (a), enchytraeid (b) and microarthropod (c) densities in soils (0–10 cm) under the 674 

control (CTRL) and the three biochar treatments: 10 t ha-1 (b10), 25 t ha-1 (b25) or 50 t ha-1 (b50). 675 

Values are means + standard errors (S.E.) and different letters indicate significant differences between 676 

treatments. 677 

Fig. 2. Average compositional differences between microarthropod communities in the control (CTRL) 678 

and the three biochar treatments: 10 t ha-1 (b10), 25 t ha-1 (b25) or 50 t ha-1 (b50) at each investigated 679 

year. Taxonomic groups that are significantly different from the control are denoted with asterisks. 680 

Fig. 3. Average compositional differences between earthworm communities (as abundances of each 681 

ecological grouping (a) and species, including total species richness (identified species) in brackets (b)) 682 

recorded in the control (CTRL) and the three biochar treatments: 10 t ha-1 (b10), 25 t ha-1 (b25) or 50 683 

t ha-1 (b50) at each investigated year. Species abbreviations: Allolobophora chlorotica (Ah), 684 

Aporrectodea caliginosa (Ac), Aporrectodea rosea (Ar), Aporrectodea longa (Al), Lumbricus terrestris 685 

(Lt), Lumbricus rubellus (Lr), Lumbricus castaneus (Lc), Lumbricus sp. (Lsp). 686 

Fig. 4. Dietary preferences of enchytraeids collected in soils (0–10 cm) under the control (CTRL) and 687 

the three biochar treatments (10 t ha-1 (b10), 25 t ha-1 (b25) or 50 t ha-1 (b50)): (a) natural abundance 688 

isotopic signatures (13C and 15N) of enchytraeids together with the potential food sources (Miscanthus 689 

soil (Msoil) and C4 sources (biochar/Miscanthus litter); (b) total amount of C4–derived C incorporated 690 

into their tissues, with different letters indicating significant differences between sampling years per 691 

each treatment (NE = LS-means could not be estimated due to missing data in one of the cells of the 692 

interaction). Values are means ± standard errors (S.E.). 693 

Fig. 5. Dietary preferences of earthworm ecological groupings (epigeics – EPI, anecics – ANE, endogeics 694 

– END) collected in soils (0–10 cm) under the control (CTRL) and the three biochar treatments (10 t ha-695 

1 (b10), 25 t ha-1 (b25) or 50 t ha-1 (b50)): (a) natural abundance isotopic signatures (13C and 15N) of 696 
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earthworm ecological groupings together with the potential food sources (Miscanthus soil (Msoil) and 697 

C4 sources (biochar/Miscanthus litter); (b) the total amount of C4–derived C incorporated into the 698 

earthworm tissues of each ecological grouping, with different letters indicating significant differences 699 

between ecological grouping per each treatment (NE = LS-means could not be estimated due to 700 

missing data in one of the cells of the interaction). Values are means ± standard errors (S.E.). 701 
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