nerc.ac.uk

Molecular mechanisms of biomineralization in marine invertebrates

Clark, Melody S. ORCID: https://orcid.org/0000-0002-3442-3824. 2020 Molecular mechanisms of biomineralization in marine invertebrates. Journal of Experimental Biology, 223, jeb206961. https://doi.org/10.1242/jeb.206961

Before downloading, please read NORA policies.
[img]
Preview
Text (Open Access)
© 2020. Published by The Company of Biologists Ltd.
jeb206961.full.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (976kB) | Preview

Abstract/Summary

Much recent marine research has been directed towards understanding the effects of anthropogenic-induced environmental change on marine biodiversity, particularly for those animals with heavily calcified exoskeletons, such as corals, molluscs and urchins. This is because life in our oceans is becoming more challenging for these animals with changes in temperature, pH and salinity. In the future, it will be more energetically expensive to make marine skeletons and the increasingly corrosive conditions in seawater are expected to result in the dissolution of these external skeletons. However, initial predictions of wide-scale sensitivity are changing as we understand more about the mechanisms underpinning skeletal production (biomineralization). These studies demonstrate the complexity of calcification pathways and the cellular responses of animals to these altered conditions. Factors including parental conditioning, phenotypic plasticity and epigenetics can significantly impact the production of skeletons and thus future population success. This understanding is paralleled by an increase in our knowledge of the genes and proteins involved in biomineralization, particularly in some phyla, such as urchins, molluscs and corals. This Review will provide a broad overview of our current understanding of the factors affecting skeletal production in marine invertebrates. It will focus on the molecular mechanisms underpinning biomineralization and how knowledge of these processes affects experimental design and our ability to predict responses to climate change. Understanding marine biomineralization has many tangible benefits in our changing world, including improvements in conservation and aquaculture and exploitation of natural calcified structure design using biomimicry approaches that are aimed at producing novel biocomposites.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1242/jeb.206961
ISSN: 0022-0949
Additional Keywords: calcification, climate change, calcium carbonate, urchin, coral, mollusc
Date made live: 29 May 2020 16:37 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/527412

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...