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Abstract A coordinated regional climate model (RCM) evaluation and intercomparison project based on
observations from a July–October 2014 trans‐Arctic Ocean field experiment (ACSE‐Arctic Clouds during
Summer Experiment) is presented. Six state‐of‐the‐art RCMs were constrained with common reanalysis
lateral boundary forcing and upper troposphere nudging techniques to explore how the RCMs represented
the evolution of the surface energy budget (SEB) components and their relation to cloud properties. We find
that the main reasons for the modeled differences in the SEB components are a direct consequence of the
RCM treatment of cloud and cloud‐radiative interactions. The RCMs could be separated into groups by their
overestimation or underestimation of cloud liquid. While radiative and turbulent heat flux errors were
relatively large, they often invoke compensating errors. In addition, having the surface sea‐ice
concentrations constrained by the reanalysis or satellite observations limited how errors in the modeled
radiative fluxes could affect the SEB and ultimately the surface evolution and its coupling with lower
tropospheric mixing and cloud properties. Many of these results are consistent with RCM biases reported in
studies over a decade ago. One of the six models was a fully coupled ocean‐ice‐atmosphere model. Despite
the biases in overestimating cloud liquid, and associated SEB errors due to too optically thick clouds, its
simulations were useful in understanding how the fully coupled system is forced by, and responds to, the
SEB evolution. Moving forward, we suggest that development of RCM studies need to consider the fully
coupled climate system.

1. Introduction

Regional climate models (RCMs) provide a valuable tool to improve our understanding of the Arctic climate
system, a region that continues to experience unprecedented climate change (e.g., AMAP, 2017; Vaughan
et al., 2013). Since the spatial and temporal coverage by the observational network is sparse in the Arctic,
RCMs are a means to provide climatological information at a high resolution with full spatial coverage
(e.g., Gutjahr & Heinemann, 2018; Kohnemann et al., 2017). Thus, it is of great importance to evaluate
the current state of the art of RCMmodeling in the Arctic. The large‐scale climate of RCMs is generally con-
strained by global atmospheric models, either from reanalyses or climate models (GCMs), driving the lateral
boundaries of the RCM (e.g., Giorgi et al., 2009). Using a reanalysis, the constrained boundaries act to mini-
mize large‐scale dynamic and thermodynamic drift from reality, permitting the RCM to simulate the full
dynamical system within a smaller domain at relatively high horizontal and vertical resolutions, generally
much higher than current GCMs. If the RCMs are also be nudged to the large‐scale reanalysis in the upper
troposphere (i.e., Akperov et al., 2018; Berg et al., 2013), such an exercise can provide insight into model
soundness andmodel shortcomings (Rinke et al., 2000) by comparison to observations. This can guide future
development of model dynamics, thermodynamics, and descriptions of small‐scale processes©2020. American Geophysical Union.

All Rights Reserved.

RESEARCH ARTICLE
10.1029/2019JD031783

Key Points:
• Regional climate model simulations

of the Arctic summer and autumn
atmosphere are evaluated against
detailed field campaign observations
during 2014

• Modeled variability in the
simulation of low‐level liquid
containing clouds led to critical
errors in surface energy budget
terms

• Clouds, surface energy fluxes, and
lower tropospheric stability are
interdependent, and the models
have difficulty representing these
critical connections

Supporting Information:
• Supporting Information S1

Correspondence to:
J. Sedlar,
joseph.sedlar@colorado.edu

Citation:
Sedlar, J., Tjernström, M., Rinke, A.,
Orr, A., Cassano, J., Fettweis, X., et al.
(2020). Confronting Arctic troposphere,
clouds, and surface energy budget
representations in regional climate
models with observations. Journal of
Geophysical Research: Atmospheres,
124. https://doi.org/10.1029/
2019JD031783

Received 7 OCT 2019
Accepted 28 FEB 2020
Accepted article online 12 MAR 2020

SEDLAR ET AL. 1 of 29

https://orcid.org/0000-0003-3101-9401
https://orcid.org/0000-0002-6908-7410
https://orcid.org/0000-0002-6685-9219
https://orcid.org/0000-0001-5111-8402
https://orcid.org/0000-0003-3176-3978
https://orcid.org/0000-0002-4140-3813
https://orcid.org/0000-0002-4831-9016
https://orcid.org/0000-0003-0719-2570
https://orcid.org/0000-0001-9913-7696
https://orcid.org/0000-0002-3058-9157
https://doi.org/10.1029/2019JD031783
https://doi.org/10.1029/2019JD031783
http://dx.doi.org/10.1029/2019JD031783
http://dx.doi.org/10.1029/2019JD031783
http://dx.doi.org/10.1029/2019JD031783
mailto:joseph.sedlar@colorado.edu
https://doi.org/10.1029/2019JD031783
https://doi.org/10.1029/2019JD031783
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2019JD031783&domain=pdf&date_stamp=2020-03-23


(parameterizations) that are subgrid scale for tomorrow's global climate models, eventually when running
on similar resolutions as the current RCMs (Cassano et al., 2017).

Evaluation studies of RCM simulations across the Arctic have proved to be a rich exercise. Rinke et al. (2000)
performed multimodel RCM simulations of the Arctic region poleward of 65°N for one winter and one sum-
mer month in 1990 with two RCMs. They found substantial differences in the surface energy budget (SEB)
components that could be traced back to biases in the clouds and cloud properties, as well as to differences in
the treatment of sea‐ice extent within a model grid point. Biases in the SEB translated to errors in the surface
temperature, further biasing the near‐surface temperature structure and stratification (Rinke et al., 2000).
Systematic errors emerge because of an imperfect understanding of the coupled system, including the ocean,
land, cryosphere, and atmosphere. The generality of physical parameterizations further poses a problem for
the data‐sparse Arctic, where observations of small‐scale processes, often distinct from other regions on
Earth (Rinke et al., 2000), are few. Still, these observations are needed to improve foundational
process understanding.

The Arctic Regional Climate Model Intercomparison Project (ARCMIP; Curry & Lynch, 2002) coordinated
common surface and lateral boundary forcings for eight RCMs to simulate the annual evolution for the
1997–1998 SHEBA ice‐drift atmospheric and SEB observations (Uttal et al., 2002). Despite reasonable simu-
lations of the large‐scale atmospheric environment (Rinke et al., 2006; Tjernström et al., 2005), near‐surface
state variables contained obvious biases that were directly related to biases in the near‐surface radiative and
turbulent heat fluxes (Tjernström et al., 2005, 2008; Wyser et al., 2008). The forcing of the Arctic SEB, espe-
cially the radiative fluxes, is critically dependent upon the cloud macrophysical and microphysical proper-
ties (e.g., Intrieri et al., 2002; Klein et al., 2009; Persson, 2012; Sedlar et al., 2011; Shupe & Intrieri, 2004;
Tjernström et al., 2008). Wyser et al. (2008) reported that even though the simulations poorly captured the
observed instantaneous clouds, the correlations between surface radiation in the ARCMIP simulations
and the SHEBA observations were high. Errors in the amount of total cloud water/ice mixing ratio, particu-
larly the partitioning between liquid and ice, largely contributed to the modeled biases in surface radiation
(Inoue et al., 2006; Tjernström et al., 2005, 2008). Tjernström et al. (2008) further concluded that even if the
partitioning of cloud phase were accurate, the prescribed manner by which the modeled microphysics inter-
acted with the radiative transfer may exacerbate the surface radiation biases.

Despite relatively weak turbulent heat fluxes over summer Arctic sea ice, the observed sum of these fluxes is
often of the same order of magnitude as the SEB residual (Sedlar et al., 2011; Tjernström et al., 2005); an
accurate representation of the turbulent heat fluxes is therefore critical, especially if RCMs are coupled to
sea‐ice/ocean models. At SHEBA, the absolute magnitude of the modeled sensible and latent heat fluxes
(SHF and LHF) was not inconsistent with the observed turbulent fluxes (Tjernström et al., 2005).
However, instantaneous errors in modeled minus observed SHF and LHF were frequently as large as the
observed fluxes. These fluxes are dependent upon the surface characteristics, winds, and the lower tropo-
spheric stratification, which is very closely linked to low‐level Arctic mixed‐phase clouds (Brooks et al.,
2017; Persson et al., 2017; Sedlar et al., 2011; Sedlar & Shupe, 2014; Shupe et al., 2008, 2013; Sotiropoulou
et al., 2014; Tjernström et al., 2012). Known biases in modeled clouds can therefore directly influence biases
in modeled turbulent heat fluxes.

Given the advancement in modeling in recent years, such as increased grid resolution and improved under-
standing of key physical processes and their representations in RCMs, it is timely to assess the ability of
RCMs to simulate the linkages between bulk cloud properties and the SEB over the Arctic. Following the
legacy from ARCMIP, where RCMs simulated the drifting SHEBA observatory, this study describes a coor-
dinated RCM intercomparison where models simulated an Arctic field campaign, the Arctic Clouds in
Summer Experiment (ACSE), from early July into early October 2014. ACSE was deployed on the
Swedish research icebreaker Oden during a polar transit that navigated the eastern Arctic, from northern
Europe, following northern Eurasia to Alaska, and back to Europe (Figure 1; Sotiropoulou et al., 2016;
Tjernström et al., 2015, 2019). A suite of six RCMs with established Arctic domains from the CORDEX
(Coordinated Regional Downscaling Experiment, Giorgi et al., 2009) project contributed to this intercompar-
ison, running the simulations and extracting output at the moving ACSE location.

This study provides insight into a range of model‐observation biases for current state‐of‐the‐art RCM repre-
sentations of clouds, radiation, and surface energy fluxes in the contemporary Arctic climate. Results and
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conclusions from the intercomparisons will be useful for modelers in order to explore potential
parameterization development and improvement strategies ahead of the completion of the yearlong
international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) field
experiment, for which coordinated RCM experiments are anticipated. While we attempt to isolate causes
for discrepancy and spread in cloud properties and surface energy fluxes among the models, it is beyond
the scope of this study to delve into each individual model's physical parameterizations to pinpoint root
causes. Instead, we aim to provide guidance to the respective modeling centers identifying where models
adequately reproduce physical processes and when critical shortcomings are found. This work is a
contribution to the Polar CORDEX project (e.g., Giorgi et al., 2009) and comes nearly two decades after
the ARCMIP simulations, hence presenting a unique opportunity to investigate whether increased model
grid resolution or enhancements to physical parameterizations since ARCMIP leads to improvements in
Arctic clouds and radiation.

2. Models, Experimental Design, and Observations
2.1. Regional Climate Models

Table 1 provides a summary of the five atmospheric RCMs and the one coupled RCM. Each model provided
at least one full simulation, while CCLM, HIRHAM5, and CAFS also contributed additional explorative
runs. Two CCLM simulations were forced with different lateral boundary forcing: ERA‐Interim (Dee
et al., 2011; hereafter cclmi) and ERA5 (Hersbach et al., 2018; hereafter cclm5); CCLM uses ERA5 data with
a temporal resolution of 1 hr. Three HIRHAM5 simulations differed in cloud scheme and sea ice; hir-
ham5_v1 and hirham5_v3 employed the Sundqvist et al. (1989) cloud scheme but used different prescribed
sea‐ice thickness, 2 and 1.5 m, respectively, while hirham5_v2 ran the Tompkins (2002) cloud scheme with
prescribed 2‐m ice thickness. CAFS was run in one baseline simulation (cafs_bsl), while cafs_ini featured

Figure 1. Arctic Clouds in Summer Experiment (ACSE) cruise track depicting: (blue) the outbound transit from Tromsö,
Norway, to Utqiagvik (Barrow), Alaska, from July 5 to August 18, and (red) the inbound transit back from 21 August to 5
October 2014.
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increased ice nuclei (IN) concentration, from 0.16 to 1 L−1, to test the sensitivity of cloud phase partitioning
on IN concentration.

There is a wide range among models in horizontal and vertical grid resolutions (Table 1). Except for hir-
ham5, horizontal resolutions were 25 km or better, at least twice as high as in ARCMIP (Rinke et al.,
2006). The number of vertical levels increased, from 20–30 during ARCMIP, to 40–70 (mar_v3.9.6 is an
exception with 24 levels) in the current evaluation. The largest resolution increase was typically in the lower
troposphere (Table 2). With ARCMIP, three to four levels were below 500 m above ground level (AGL), here
that increased about twofold. The lowest model level, from 2.5 to 20 m AGL, is also reduced form the 15–
80 m range in ARCMIP (Tjernström et al., 2005). A list of the model surface layer, planetary boundary layer
(PBL), and cloud/radiation schemes is presented in Table 2.

2.2. Model Experimental Design

All six models provided at least one simulation of the ACSE period (section 2.3) forced by ERA‐Interim rea-
nalysis at the lateral boundaries over the Arctic CORDEX domain (https://www.cordex.org/domains/
region‐11‐arctic/). To minimize model drift due to the large, pan‐Arctic domain, different models used dif-
ferent techniques to constrain the larger‐scale dynamics of the RCMs (e.g., Giorgi et al., 2009): spectral or
grid point nudging of large‐scale state variables or frequent model reinitialization (Table 1).

Sea‐ice cover fractions were prescribed from satellite information, either directly or passed through the rea-
nalysis, except for in cafs. This was the only fully coupled ocean‐ice‐atmosphere model and therefore only
included prescribed sea‐ice concentration and thickness at the model initiation; cafs was then free to evolve
its own surface properties as dictated by its own SEB. Models calculated the effective surface skin tempera-
ture with a tiled‐averaging approach, using the open‐water and sea‐ice fractions prescribed. While sea‐ice
temperature was determined by each model's SEB evolution, sea‐surface temperatures were updated daily
or multiple times per day from reanalysis. Model time step was also specified individually for each RCM.

Variables were extracted hourly at the grid point nearest the ACSE location. Near‐surface radiation, turbu-
lent heat fluxes, and integrated cloud water paths were extracted as 1‐hr averages. All remaining variables,
including thermodynamic and cloud water content profiles, near‐surface winds, surface temperature, sea‐ice

Table 2
Regional Climate Model Specifications, Including Number of Vertical Levels and Number of Levels Below 1,000 and 500 m, the Lowest Vertical Model Level Above the
Surface, and the Parameterization Schemes

Model
name

Simulation
name Forcing data

Vertical levels
Total/below
1,000 m/500 m

Lowest
model
level Surface layer scheme PBL scheme

Cloud cover scheme/
radiation

CCLM cclmi cclm5 ERA‐Interim
ERA5

60/18/12 10 m Two‐layer thermodynamic
sea‐ice model, Louis
(1979) scheme,
tile approach for
fluxes

level‐2.5 closure
scheme (Mellor &
Yamada, 1974)

Ritter and Geleyn (1992),
Doms et al. (2011)

HIRHAM5 hirham5_v1
hirham5_v2
hirham5_v3

ERA‐Interim 40/10/7 ~10 m Louis scheme
(Louis, 1979)

Level 1.5 (TKE
closure; Brinkop &
Roeckner, 1995)

v1: Sundqvist et al. (1989)
v2: Tompkins (2002)
v3: Sundqvist et al. (1989)

WRF‐CU wrf_cu ERA‐Interim 40/10/8 ~12 m
AGL

Revised MM5
(Jiménez et al., 2012)

MYNN 2.5
(Nakanishi &
Niino, 2006)

Morrison et al. (2009)

CAFS cafs_bsl
cafs_ini

ERA‐Interim 42/10/8 12 m Revised MM5
(Jiménez et al., 2012)

YSU (Hong et al.,
2006)

Morrison et al. (2009)
Ice nuclei concentration:
cafs_bsl = 0.16 L−1

cafs_ini = 1.0 L−1

MetUM Metum ERA‐Interim 70/11/7 20 m JULES scheme
(Best et al., 2011)

Lock et al. (2000),
using the sharpest
stability function

Wilson and Ballard (1999),
Wilson et al. (2008)

MARv3.9.6 mar_v3.9.6 ERA‐Interim 24/12/11 2.5 m SISVAT
(Gallèe et al., 2001)

k‐epsilon closure
(Duynkerke, 1988)

Gallèe et al. (2001)

Abbreviation: PBL: planetary boundary layer.
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concentration, and surface albedo, were instantaneous. Comparison of RCMswith observations occurred for
01:00 UTC on 5 July 2014 to 07:00 UTC on 3 October, at a frequency of 1 hr.

It is important to understand the reason for these constraints. To compare model results to observations that
were taken at different locations along a time line, and to be able to asses and identify discrepancies due to
model deficiencies, the RCMs must be controlled such that they describe the larger‐scale meteorological
conditions correctly. Due to the inherent nonlinearity of atmospheric dynamics, if not controlled this way,
each free running model would develop its own weather development, all different and equally plausible
but in contrast with what actually happened. It would be difficult if not impossible to analyze what differ-
ences between the models and the observations resulted from inadequate small‐scale parameterizations
and what would be due differences in large‐scale weather. Herein lies one strength of using RCMs. By con-
trolling the larger‐scale dynamics, it becomes possible to compare model results directly to observations and
to assess the adequacy of themodels' process descriptions. The experimental design therefore rests on forcing
the models to realistically describe larger‐scale conditions while allowing them full freedom to develop sys-
tematic errors depending on the description of the small‐scale processes, including all the nonlinear feed-
back between different processes.

2.3. ACSE Observations

Unlike SHEBA, ACSE was based onboard a navigating icebreaker (Figure 1) and only sampled during two
seasons, from 5 July to 3 October in 2014. The sampling conditions during ACSE varied across a range of sur-
face types, changing between openwater and partial or complete sea‐ice cover, with and withoutmelt ponds.
Ice‐covered and ice‐free regions were sampled in frequency roughly the same during both seasons
(Sotiropoulou et al., 2016). ACSE was planned to observe two important seasons, summer melt and autumn
freeze, and the transition between them; Sotiropoulou et al. (2016) concluded that the seasonal transition
was observed.

Detailed descriptions of the instrumentation and measurements are provided in Sotiropoulou et al. (2016)
and Tjernström et al. (2019). We examine only a subset of the available observations. Atmospheric profiling
was made by 6‐hourly radiosoundings with temperature and pressure uncertainties documented to 0.5 °C
and 1 hPa, respectively. Relative humidity measurements are more complicated, with an accuracy of 5%
(Vaisala RS92 User Manual); specific humidity was calculated from Clausius‐Clapeyron. The radiosound-
ings were assimilated in the reanalyses.

A weather station was deployed on the upper‐most deck (~25 m AGL) of the icebreaker, combining mea-
surements of pressure, temperature, and relative humidity from a Vaisala PTU300, with horizontal wind
speed and direction from a heated Gill WindSonicM. The 25‐m level provided the least interference from
the ship's superstructure for downwelling radiative fluxes. An Eppley Precision Spectral Pyranometer and
a Precision Infrared Radiometer measured the broadband shortwave downwelling (SWD) and longwave
downwelling (LWD) fluxes. Extensive quality controls were applied to flag, and if possible correct, radiation
measurements, especially for the shortwave. Solar azimuth and zenith angles were computed to identify
times when direct solar irradiance may have been influenced by shading from physical structures on the
upper deck. Upwelling radiation measurements were not made during ACSE; hence, albedo was not mea-
sured. Heitronics KT15 infrared radiation thermometers viewing the surface on both sides of the ship pro-
vided surface skin temperature with 0.5 °C accuracy. We used the Stefan Boltzmann relationship
combining skin temperature and an assumption of surface infrared emissivity (0.99; e.g., Andreas et al.,
2010) to estimate the surface upwelling longwave flux.

Cloud properties are examinedmainly using a bulkmethodology. Retrievals from a dual‐channel microwave
radiometer provided cloud liquid water path (LWP) and precipitable water (PW) with uncertainties of 25 and
0.1 kg/m2, respectively (Westwater et al., 2001). Column‐integrated ice water path (IWP) was retrieved from
a combination of lidar, cloud radar, and thermodynamic profiles using the CloudNet retrieval algorithm
(Illingworth et al., 2007; Achtert et al., in preparation). The uncertainty inherent in such retrievals can be
as large as a factor of two (Shupe et al., 2004) and must be considered with caution. We have also used
the vertical retrievals of liquid and ice water contents (LWC and IWC) to explore the vertical partitioning
of hydrometeors.
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Finally, near‐surface turbulent SHF and LHF were estimated using eddy covariance. A 10‐m mast was
installed on a platform at the bow of the ship, reaching ~20m above the surface. A heatedMetek sonic anem-
ometer measuring three‐dimensional winds at 10 Hz was installed at the top of the mast, together with a
Licor open‐path gas analyzer, providing fast humidity measurements, and motion sensors. Computational
fluid dynamics modeling of the flow distortion around the ship, together with careful measurements of
ship's motions and accelerometer sensors collocated with the instruments, were used to correct and quality
control the wind measurements and turbulent flux calculations (e.g., Moat et al., 2015; Prytherch
et al., 2015).

Figure 2. One‐hour temporal evolution for the modeled (colors) and observed (black) (a) surface pressure [hPa], (b)
wind speed [m/s] at 25 m above ground level, (c) temperature [K] at 25 m above ground level, and (d)
column‐integrated precipitable water [kg/m2]. The gray‐shaded vertical bar marks the time ±1 day of 27 August 2014,
which Sotiropoulou et al. (2016) determined to be the transition between local melt season (prior) and freeze‐up
onset (after). The horizontal, dashed gray line in (c) marks the freezing temperature. The vertical, dashed black lines mark
the first of each month. Note that the first month is July (not labeled).
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3. Results
3.1. Near‐Surface Meteorological Conditions

All comparisons are done to the observations, not to the forcing data. The forcing is only applied at the lat-
eral boundaries and the free troposphere, not to the processes themselves. The forcing data itself—the rea-
nalysis—are run in a data assimilation cycle, where short forecasts are corrected six‐hourly using all
available data, including some of the observations from ACSE. Hence, it would be unreasonable to expect
any of the RCMs to outperform the reanalysis results, especially in the PBL. For that to happen, the
RCMs would also have to be run with data assimilation, which would to some degree defeat the purpose
of this study: to assess how well the RCMs can replicate the PBL structure, clouds, and energy fluxes impor-
tant for the SEB given that the larger‐scale development is reasonably accurate.

We therefore begin by examining variables that illustrate the meteorological evolution during ACSE. Along
the ACSE track, a number of synoptic weather events were encountered, manifested in the surface pressure
variability (Figure 2a). Large surface pressure variations were common, with increasing frequency but
decreasing synoptic‐event duration in late August through September, compared to July through
mid‐August. Low‐pressure minima did not drop below 1,000 hPa until 27 August. Interestingly,
Sotiropoulou et al. (2016) determined this date as the transition from summer melt toward autumn
freeze season.

Near‐surface wind speeds reflect the amount of synoptic variation observed during the ACSE transect. Wind
speeds showed a variable range, from rather calm to over 10 m/s (Figure 2b). Often, the variability in wind
speed followed the temporal variability in surface pressure. Variation in near‐surface wind speed would be
expected from different surface roughness lengths and elements associated with varying open water and
sea‐ice conditions, but the synoptic setting exerted a dominance on near‐surface wind speed.

Seasonal variability is evident in the variations in 25‐m temperature (Figure 2c). Near‐surface temperatures
before 27 August mostly remained at, or above, the freezing level, while after this, temperatures cooled sub-
stantially but remained between the freezing points of fresh and saline water until after around 20
September. PW decreased during cold higher‐pressure events, while often showing localized peaks with
low‐pressure events (Figure 2d). PW also showed differences before and after 27 August; observed median
PW decreased nearly twofold, from ~14 kg/m2 before 27 August to ~8 kg/m2 after. While the models did
not always fully capture the 1‐hr instantaneous observations (see Figures S1–S3 in the supporting informa-
tion showing scatterplots of 25‐m wind speed, temperature, and PW for each model), it is encouraging that
all models reproduced the high‐ and low‐frequency variability associated with the synoptic settings, suggest-
ing that the general circulation is sufficiently constrained in the RCMs, despite the large integration domain
used by the models. Furthermore, all models well captured the transitioning lower‐troposphere thermody-
namic state occurring around 27 August (gray‐shade bar, Figure 2). Time‐pressure cross sections of tempera-
ture and specific humidity from radiosoundings and models (Figures S4 and S5) corroborate the capacity of
these models in reproducing the thermodynamic evolution of the troposphere observed during ACSE.
Importantly, the models simulated the main weather events observed during ACSE, such as the
warm/moist‐air advection at the beginning of August and the seasonal thermodynamic transition in
late August.

However, while the models capture the synoptic variability and transitions, vertical atmospheric struc-
ture exposes systematic deviations from the observations, summarized in Figure 3. The largest tempera-
ture and specific humidity errors are found across the midtroposhere to lower troposphere (Figures 3b
and 3d). The temperature root‐mean‐square error (RMSE) is largest across the lower troposphere,
decreasing with pressure. The specific humidity RMSE peaks at 850–925 hPa, with substantially lower
values below and also tapering off with altitude. Many models show a cool bias near the surface up
to ~900 hPa, with smaller systematic errors through the free troposphere (Figure 3a). Most of the models
had a dry bias in specific humidity at the lowest level (Figure 3c), where temperatures were too cool. In
general, cafs and wrf_cu (the atmospheric model in both RCMs is WRF) were the coldest and driest in
the lowest troposphere, while mar_v3.9.6 had the largest moist bias, persisting across most of the tropo-
sphere. The other models generally exhibited smaller mean bias error and RMSE profiles in both tem-
perature and humidity.
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For comparison, the bias statistics from ERA‐Interim and ERA5 reanalyses relative to the observed profiles
are also shown in Figure 3 (black and gray lines). Reanalysis RMSEs for temperature and specific humidity
were substantially lower than for all RCMs across the whole troposphere. This is expected as the reanalysis
assimilated all the ACSE radiosounding measurements, in addition to other near‐surface meteorological
observations onboard the icebreaker. The reanalyses may also have benefitted from assimilation of other
surface observations in the region as well as of satellite observations from the vicinity of the icebreaker.
This information is unavailable to the RCMs except through the nudging.

For both temperature and specific humidity, mean bias error profiles for the RCMs were similar in sign and
shape to the bias profiles of the reanalysis product that were used to nudge or initialize the forecasts
(Figures 3a and 3c). This result indicates that errors in the background thermodynamic state from the rea-
nalyses may be emergent within the domain of the RCMs; exceptions include the mar_v3.9.6, cafs, and
wrf_cu simulations, revealing much larger biases across the lower atmosphere. However, the fact that that
the RMSE is systematically larger in all RCMs indicates that the effect of the nudging does not inhibit the
RCMs to develop their own thermodynamic state. Without the forcing from reanalysis, the RCMs would
not be able to simulate the true atmospheric evolution with relatively high accuracy (Figures 2 and
S1–S3), which would render an intercomparison to observations useless.

Figure 3. (a and b) Vertical temperature ([K]) and (c and d) specific humidity ( [g/kg]) profile statistics, where mean bias
error (MBE) are shown in panels a and c and root‐mean‐square error (RMSE) in panels b and d. Models and
observations were linearly interpolated onto standard pressure levels of 1,000, 925, 850, 700, 600, 500, 400, and 300 hPa.
Reanalysis error profiles are included for ERA‐Interim (black) and ERA5 (gray). Statistics are valid for the full Arctic
Clouds in Summer Experiment (ACSE) campaign, 5 July at 01:00 UTC through 3 October at 07:00 UTC.
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It is important to note that the biases vary temporally, illustrated in time‐pressure cross‐section differences
(Figures S6 and S7). All models shared a common cold bias in the lower troposphere (Figure S6). The bias
was exacerbated between late July and mid‐August in connection with a persistent pulse of warm air with
above‐freezing temperatures (Tjernström et al., 2015; Figure S4). The low‐level cold bias was generally elimi-
nated after this event and through the remainder of the simulation, except for in wrf_cu and cafs. Specific
humidity errors were also largest prior to 27 August (Figure S7), especially in connection with the advection
event. Splitting the simulations to periods before and after 27 August, RMSEs in specific humidity during the
latter were a factor of 2 smaller than those in Figure 3d (not shown).

The observed surface skin temperature relative frequency distribution (RFD) is bimodal, with a broad
dominating peak across the freezing points of fresh and saline water, around 271 to 273 K, and a weaker
peak a few degrees above freezing (Figure 4a). Modeled skin temperatures show a similar bimodality but
with narrower distribution peaks. Difference distributions indicate that the models were most often too
cool by 0.5 to 1 K (Figure 4b); the cool bias was slightly larger for metum. The various methods of pre-
scribing sea‐ice concentration among the models (Table 1) yielded intermodel differences from the
observed AMSR2 daily satellite‐observed sea‐ice concentrations (Figure S8). The modeled sea‐ice concen-
trations (SICs) in cafs, and to a lesser extent in wrf_cu, were frequently larger than 80%, and as such,
caused the relatively high frequency of skin temperature differences below −3 K (Figure 4b). The overly
high SICs in these models may also have contributed to the lower tropospheric cold biases found in
Figures 3 and S6f and S6i–S6j.

Figure 4. Relative frequency distributions of the (a) surface skin temperature [K], (b) surface skin temperature model
minus observation difference [K], (c) surface stress [N/m2], and (d) surface stress model minus observation difference
[N/m2]. Note that mar_v3.9.6 was unable to extract surface stress. Statistics are valid for the full Arctic Clouds in Summer
Experiment (ACSE) campaign, 5 July at 01:00 UTC through 3 October at 07:00 UTC.
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In terms of surface stress, the observations reveal a broad peak distribution between 0.04 and 0.1 N/m2,
including a relatively long, positive tail (Figure 4c). All models underestimated surface stress and the
observed distribution shape by having the most frequently occurring stress at the smallest values, followed
by a sharper distribution drop off for increasing stress; exceptions were the hirham5 andmetum simulations,
that did manage to recover a secondary peak near that of the observations. The generally large underestima-
tion inmodeled surface stress for wrf_cu and cafs is consistent with an overrepresentation of ice‐covered sur-
faces, which in principle, would have a smaller roughness length compared to open water. It is likely the
combination of too much sea ice and too low surface stress contributed to overestimating the near‐surface
winds in all models, and especially in cafs and wrf_cu (Figure S1). As cafs was the only fully coupled
atmosphere‐sea‐ice model, the exaggerated production of sea ice, and hence colder surface temperatures
and reduced wind stress, is likely connected to errors in the SEB; these connections and associated biases will
be explored in the next section.

3.2. Surface Energy Fluxes

In a broad sense, RFDs of the models' SEB components bear similarity to those observed during ACSE
(Figure 5). Relatively small SWDs (<100 W/m2) were most frequent, LWD typically ranged 290–
330 W/m2, and turbulent heat fluxes most frequently between ±40 W/m2; SEB fluxes are defined positive
when energy is transferred from the atmosphere to the surface.

While the models captured these dominant, observed ranges, subtle statistical discrepancies in the radiative
fluxes indicate model‐specific biases. For example, both cafs simulations and, to a lesser extent wrf_cu,
underestimated large SWD values, while metum and mar_v3.9.6 overestimated SWD occurrences above

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Observed (black) and regional climate model (colors; see legend) relative frequency distributions of (a) shortwave downwelling (SWD; W/m2), (b) long-
wave downwelling (LWD; W/m2), (c) sensible heat flux (SHF; W/m2), (d) latent heat flux (LHF; W/m2], and model minus observation relative frequency distri-
butions of (e) SWD (W/m2), (f) LWD (W/m2), (g) SHF (W/m2), and (h) LHF (W/m2). Statistics are valid for the full Arctic Clouds in Summer Experiment (ACSE)
campaign, 5 July at 01:00 UTC through 3 October at 07:00 UTC.
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200 W/m2 (Figures 5a and 5e). Peak LWD distributions were narrower for cafs and mar_v3.9.6 than for the
other RCMs, also containing sharper declines in frequency above 320 and 310 W/m2, respectively. All but
the hirham5 model simulations underestimated the occurrence of LWD greater than 320 W/m2. However,
all models overestimated LWD less than 250 W/m2. Because of overestimated small, and underestimated
large, LWD values, the error RFDs peaked below 0 W/m2 and were negatively skewed (Figure 5f); the dis-
tributions for metum and mar_v3.9.6 stand out, shifted further negative; the latter substantially overesti-
mated LWD below 230 W/m2 (Figure 5b). Downwelling radiative fluxes are strongly affected by the
presence and microphysical properties of clouds. These results suggest that some models that systematically
(metum and mar_v3.9.6) overestimate SWD and underestimate LWD simulate too few clouds, or too little
liquid condensate in clouds, while other models underestimating SWD and overestimating LWD (cafs and
wrf_cu) likely overrepresent liquid‐bearing cloud cover (e.g., Wyser et al., 2008). Furthermore, while the dis-
tributions for hirham5 and cclm simulations generally agree with the observations (Figures 5a and 5b), the
error distributions indicate that instantaneous errors in SWD and LWD are still present (Figures 5e and 5f).

Net turbulent heat fluxes over the summertime Arctic Ocean are typically small (Persson et al., 2002; Sedlar
et al., 2011; Tjernström et al., 2005). However, the distribution shape and magnitude of modeled errors here
(Figures 5c and 5d and 5g and 5h) were similar in size to the actual heat fluxes (e.g., Tjernström et al., 2005).
SHF error distributions generally peaked around 0W/m2; hence, modeled fluxes have only a small, systema-
tic statistical error. However, the shape of the SHF‐error RFD is quite similar to the RFD for the fluxes them-
selves, so that random errors are similar in magnitude to the flux itself. Generally, the modeled SHF errors
revealed a negative correlation to observed SHF (Figure S9). This result implies that random errors in the
modeled surface and near‐surface temperatures (Figure 4b), together with deviations in wind speed
(Figure S1), contributed to errors in SHF (Tjernström et al., 2005). The shapes of the error distributions
can also be separated into groups. The cafs, wrf_cu, and mar_v3.9.6 distributions were slightly shifted and
skewed toward negative values (energy from surface to atmosphere); metum and hirham5 simulations
had narrow difference distributions, while the cclm distributions were slightly shifted and skewed toward
positive values (Figure 5g). Small but negative SHFs dominated the cafs simulations all, while positive
SHFs were underestimated (Figure 5c); wrf_cu also frequently overestimated larger negative fluxes. These
are the same models that showed the largest near‐surface and lower troposphere cold bias (Figure 3), imply-
ing a relationship.

Measurements of LHF in polar regions are notoriously difficult (e.g., Persson et al., 2002), and here proved
the same, with an observed LHF recovery rate of only 21% recovery (466 of 2,168 hr) for 1‐hr averages.
Consistent with the models' SHF distributions, their LHFs were also frequently too largely negative
(Figures 5d and 5h), resulting in an overestimation of moisture transport from the surface to the air.

To explore causes for differences in SHFs, we turn to the bulk parameterization. SHFbulk combines the wind
speed at a reference level (Uref) with the gradient between the surface and near‐surface air temperatures
(ΔT), multiplied by a heat exchange coefficient (CH), itself a function of stratification, to estimate SHF:

SHFbulk ¼ ρaircpUrefCHΔT; (1)

and includes the density of air (ρair) and specific heat capacity of dry air (cp). We can rearrange the terms in
this parameterization such that SHF is scaled byUref and plot this against the near‐surface ΔT, using surface
and reference level (10–12 m AGL depending on the model's height of each model's lowest level) values in
equation (1) from the respective RCMs and observations (Figure 6).). The slope of the distribution is then
proportional to CH and therefore moderates the transfer of sensible heat in the surface flux parameterization
scheme. Scaled SHFs from the observations were largest when the surface was warmer than the near‐surface
air temperature and decreased following a linear dependence with decreasing ΔT (black circles). The
broadly near‐linear slope for ΔT < 0 K distributes around the linear regression with a positive slope (gray
line), indicating that CH was relatively constant in this regime. The distributions for all RCMs besides cafs
(panels g and h) managed to resolve the positive, linear dependence of scaled SHF for ΔT < 0 K, indicating
that errors in modeled SHFs for this temperature difference regime are likely not stemming from the surface
flux parameterization scheme. Instead, what we do find is that the scaled fluxes for the models are more uni-
form and generally lack the variability that was observed, pointing toward differences in the near‐surface
winds (e.g., Figure S1) and errors in surface (e.g., Figures 4a and 4b) and near‐surface temperatures
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(Figure S6) as the cause; Tjernström et al. (2005) reported a consistent result from SHEBA simulations. The
cafs simulations better simulated variability in the scaled SHF; however, these distributions do not resolve a
clear, positive relationship with ΔT, especially for cafs_bsl (panel g).

When ΔT > 0 K, the observations reveal a slightly different regime where the scaled SHF does not increase
as dramatically with ΔT and so the slope, while still positive, is reduced (pink line). Tjernström et al. (2005)
noted a change in slope for the positive temperature difference regime, and all but one RCM in their study
failed to reproduce it. Here we find relatively modest to moderate changes in the models' distribution of
scaled SHF when ΔT was stably stratified. The more modest slope changes were simulated by hirham5,

Figure 6. Covariability between the sensible heat flux (SHF, W/m2) weighted by the reference‐level (10–12 m, depending on model) scalar wind speed (Uref, m/s)
and the near‐surface (10–12 m, depending on model) air temperature minus surface temperature difference (ΔT, K) for observations (black) and each regional
climate model (colors, see title for model name). The gray line is the linear regression for the observations of scaled SHF for ΔT < 0 K; the pink line is the linear
regression for observations when ΔT > 0 K. Statistics are valid for the full Arctic Clouds in Summer Experiment (ACSE) campaign, 5 July at 01:00 UTC through 3
October at 07:00 UTC.
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mar_v.3.9.6, and metum. Besides mar_v3.9.6, these same models consistently show a peak occurring at
more positive SHFs compared to the observations (Figure 5g), suggesting the lack of slope decrease has con-
tributed to a slightly larger and more efficient heat exchange under the stable ΔT regime. CCLM simula-
tions reveal a split in the scaled flux distributions, where the slope for one branch follows a similar slope
as found when ΔT < 0 K, while another branch shows a more amplified, positive slope (panels e and f).
Consequently, the scaled fluxes under near‐surface stable stratification in cclm are connected to overesti-
mation of the exchange coefficient. As a result, the SHF distributions for cclm were skewed toward larger,
positive values contributing to relatively large additional +10 to +40 W/m2 energy input into the surface
(Figures 5c and 5g). Further analysis revealed the amplified‐positive slope branch in Figures 6e and 6f
occurred during hours when the sea‐ice concentration was above 90% (not shown), indicating that the sur-
face roughness parameterization may be contributing to the overly excessive exchange of sensible heat in
this model. With cafs, we find the positive SHFs for ΔT > 0 to be relatively small, and instead, its distribu-
tions are dominated by negative SHFs (panels g and h), which agrees with its frequency distributions in
Figures 5c and 5g. Such a counter‐gradient aspect to the SHFs for cafs suggests that errors are emerging
between mean temperature structure and the treatment of flux contributions from open leads or melt ponds
within a grid cell.

3.3. Factors Impacting Surface Energy Fluxes
3.3.1. Cloud Water and Its Vertical Distribution
RFDs for cloud LWP (Figures 7a and 7b) and IWP (Figures 7c and 7d), and model‐observed scatterplots
(Figures S10 and S11), provide some insight into the modeled surface radiative fluxes. Observations show
decreasing frequency of occurrence with increasing LWP and IWP, a behavior the RCMs resolved.
However, the degree to which models mimicked the decreasing frequency of higher LWPs varied greatly,
in both an intermodel sense and a temporal sense. The cafs and wrf_cu simulations largely overrepresented
occurrences with LWP > 100 g/m2, primarily at the expense of the more frequently observed 0–100 g/m2

range; the occurrences of LWP 350 g/m2 for these models was nearly as large, or larger, as their cases of
LWP < 50 g/m2. In contrast, LWPs in mar_v3.9.6 and metum were nearly exclusively below 100 g/m2, espe-
cially during the colder and drier second period (Figures S1 and S2). During the latter period, hirham5 and
cclm simulations also deviated from the observed distribution, underestimating clouds with LWP > 25 g/m2

(Figure 7b). However, the cafs_ini, with increased IN concentrations, dramatically reduced the occurrence
of substantial cloud liquid in the second period, in better agreement with observations than cafs_bsl. LWP
scatterplots and correlation coefficients indicate that while the distribution shapes modestly agreed, instan-
taneous values between models and observations were relatively poor (Figure S10), a key result also found
for the ARCMIP RCMs simulating the SHEBA experiment (Wyser et al., 2008).

During both periods, observed IWP was most frequently below 50 g/m2 (Figures 7c and 7d). RCM IWP dis-
tributions reflected the observed distribution shape, although the majority of the models overestimated
cloud ice for both periods, especially for values above 20 g/m2; overestimated frequencies of IWP came at
the expense of underestimating IWP between 0 and 20 g/m2 (Figure S11), especially during the latter period
(Figure 7d). The hirham5 and mar_v3.9.6 simulations consistently had the highest frequencies of the largest
IWPs. Oppositely, the cclm simulations did not produce IWPs above 100 g/m2. Interestingly, the cafs_ini
IWP distributions were not very different from the cafs_bsl, although the increased IN concentration did
cause a reduction in the cloud LWP during the latter period (Figure 7b). This suggests that the conversion
of cloud liquid to ice, and subsequent ice crystal growth, resulted in increased frozen precipitation from
the atmosphere to surface, and hence, the increased ice did not remain within the cloud.

Shortwave transmissivity (ST) is calculated as the ratio between the surface SWD and the SWD at the top of
the atmosphere, which was estimated for each 1‐hr profile using a radiative transfer model (Mlawer et al.,
1997). ST provides a measure of how much shortwave radiation was scattered, reflected, or absorbed within
the atmospheric column, with small ST indicating large atmospheric attenuation of SWD. The differences in
the modeled cloud water paths and SWD (Figures 5a and 5b) RFDs are further reflected in the ST distribu-
tions. Especially for the period 5 July to 25 August, when solar zenith angles were smaller than later, models
that overestimate LWP (cafs & wrf_cu) also underestimate the transmissivity (Figure 7e); ST was consider-
ably larger for the models that underpredicted LWP (mar_v3.9.6 andmetum). The connection between LWP
and IWP and ST suggests discrepancies between modeled and observed cloud properties. Interestingly, the
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change in IN concentration between the cafs runs had a profound impact on ST during the second period
(Figure 7f) but had a minor impact during the first. Sotiropoulou et al. (2016) reported more warm‐phase
clouds during the first period, compared to the second, agreeing with >80% frequency distribution of

Figure 7. Relative frequency distributions of (a and b) liquid water path (LWP; g/m2), (c and d) ice water path (IWP;
g/m2), and (e and f) shortwave transmissivity (ST) for the models and observations. The distributions in panels a, c,
and e are valid for 5 July through 25 August, while panels b, d, and f are for 28 August through 3 October. ST is computed
as the following ratio: SWDsfc/SWDtoa, and only for solar zenith angle (SZA) smaller than 80°; the SZA requirement
limited the ST distributions during the second period to only 22% of the full period.
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IWPs during the first period (Figure 7c); the latter period was dominated more by the prototypical Arctic
mixed‐phase clouds. The change in ST distributions for cafs simulations is consistent with increasing
solid‐phase cloud hydrometeors in cafs_ini during the second period, resulting in a larger consumption of
cloud liquid into ice. But since IWPs for cafs_ini were similar in distribution to cafs_bsl (Figures 7c and
7d and S11g and S11h), the change in ST is mainly due a lower cloud optical depth in connection with
reduced cloud liquid.

Figure 8. Relative frequency distributions of vertical profiles of cloud liquid water content (LWC, kg/kg, green contour shading) and ice water content (IWC, kg/kg,
blue contour lines). Regional climate models are shown in panels a–j, with the model name in the title, while observations are in panel k. The values of LWC and
IWC have been taken to the log10 (x axis). Note that the observed retrievals of LWC and IWC were limited to the highest vertical resolution of the cloud radar,
6,000 m AGL, which is corresponding to approximately the 500‐hPa pressure level. Statistics are valid for the full Arctic Clouds in Summer Experiment (ACSE)
campaign, 5 July at 01:00 UTC through 3 October at 07:00 UTC.
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To investigate possible causes for the statistical grouping of models by their water paths, we examine the ver-
tical distribution of LWC and IWC in Figure 8. Focusing first on IWC (blue contour lines), we find unique
distribution profiles among the different models. There is a wide range in predominant IWCs across the
lower troposphere, spanning multiple orders of magnitude among the models. The mar_v3.9.6, cclm, and
wrf runs (panels d–f and j) have the least amount of IWC in the lower atmosphere, with the other remaining
models having more similar magnitudes. Retrievals of IWC from the radar suggest that the models with
lower IWCs in the lower troposphere are more realistic. Figures S12 and S13 separate the vertical hydrome-
teor distributions into the two periods, which reveal that more ice was observed in the lower troposphere
during the colder, second period, a feature the models captured. The profile shape of IWC across the free tro-
posphere also varied. Observations reveal a broad range of IWCs spanning about 2 orders of magnitude
across the most of the free troposphere (panel k); the radar had a maximum vertical extent of 6,000 m and
so no retrievals exist above about 500 hPa. All models besides cclm had a consistent, broad distribution range
of IWC across the troposphere to the 500‐hPa level, although the IWC ranges spanned one (panels a–c) to
over 3 orders of magnitude (panels d, i, and j). The profile of IWC in cclm generally increased from very
low ice near the surface to its largest IWCs in the upper free troposphere (panels e and f).

Cloud liquid (green contour shading) was most frequent at pressures larger than 800 hPa (Figure 8), and all
models simulated the preference for low‐level liquid‐bearing clouds. However, the magnitude of LWCs var-
ied by orders of magnitude amongmodels and with observations. The cclm simulations were most similar to
the observations in representing the spread and vertical partitioning of LWC (panels e and f). For hirham5,
cloud liquid was present across most of the troposphere, although the LWCs were often very small (panels a–
c). Simulations of LWP from both of these models were most similar to the observed distribution during the
first period (Figure 7a). Considering their different vertical partitioning of LWC, cclm and hirham5 simu-
lated rather different clouds at any given time. Additionally, only modest differences between the different
microphysical parameterizations employed in the hirham5 simulations are present. The mar_v3.9.6 (panel
d) and metum (panel i) models that underestimated LWP (Figures 7a and 7b) do so because of an underes-
timation of low‐level liquid. For metum, the underrepresentation of cloud liquid is because too much ice is
formed at the expense of supercooled liquid (Furtado & Field, 2017). Oppositely, cafs and wrf_cu show large
and relatively consistent LWCs distributed vertically below 800 hPa (panels g and h and j). When IN concen-
trations were increased (panel h), the vertical extent of cloud liquid decreased relative to the baseline simu-
lation (panel g), but the lower level LWCs largely remained unchanged between cafs runs. Therefore, the
decrease in LWPs between the cafs_bsl and cafs_ini (Figures 7a and 7b) appears to be connected to a reduc-
tion in liquid‐bearing clouds in the free troposphere.
3.3.2. Cloud LWP‐Radiation Interaction
Here we investigate how cloud longwave emission temperature varies with cloud emissivity for low
liquid‐bearing clouds, with a focus on the layer between the surface and 800 hPa, where cloud liquid was
more frequently found in both observations and models (Figure 8). Observed retrievals of LWC were inte-
grated from the first radar range (~70 m AGL) to the height level corresponding to the 800‐hPa pressure
level, providing the LWP of these low cloud layers. We then sampled only instances where liquid hydrome-
teors were present across this layer and the total LWP across this layer was at least 5 g/m2 and then apply the
bulk parameterization to estimate the low cloud layer emissivity, ε

ε ¼ 1− e − kc·LWPð Þ (2)

with kc as the mass absorption coefficient value of 0.158 m2/g (Stephens, 1978). The observations (black cir-
cles) in Figure 9 depict the range of low cloud layer emissivity when at least 5 g/m2 of integrated liquid were
present, showing a dominant mode of black or near blackbody (ε ≈ 1) emitting clouds. The blackbody (or
black) clouds are observed to occur across a range of effective infrared emission temperatures, defined as
the atmospheric temperature where the integrated LWC from near surface up to 800 hPa reaches a value
of 5 g/m2; this temperature can be approximated as the liquid cloud base temperature. Graybody (or gray)
clouds (ε < 1) were also frequent and across the same range of emission temperatures as the black clouds
(Wyser et al., 2008), indicating the rather frequent occurrence of supercooled liquid.

Emission temperature and effective emissivity for the modeled low‐level clouds were computed as in the
observations from the profiles of LWC and temperature. Here we subsample the models to the times
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when a low‐level cloud emissivity and emission temperature were observed; the modeled distributions
overlay the observed (colors in Figure 9). There are clear differences in the physics of the low‐level liquid
bearing clouds among the models. The wrf_cu (panel j) and cafs simulations (panels g and h) nearly
exclusively represent low clouds as near blackbodies; very few gray clouds are simulated in these models,
but if they are, they occur at temperatures below freezing. All other models reveal a combination of black
and gray clouds, but with differing characteristics. The mar_v3.9.6 (panel d), hirham5_v1 (panel a), and
hirham5_v3 (panel c) fail to simulate clouds with ε ≈ 1 at temperatures below freezing, suggesting an
artificial conversion of liquid to ice in these models. However, there are more supercooled liquid clouds
with ε ≈ 1 for hirham5_v2 (panel b), implying that the Tompkins microphysics parameterization scheme
is better suited at partitioning liquid and ice for low clouds compared to the Sundqvist et al.
parameterization in v1 and v3 simulations. This version also contains more liquid clouds at freezing
temperatures with emissivities below 0.9 compared to versions with Sundqvist microphysics. The
distributions for the cclm (panels e and f) and metum (panel i) runs capture the temperature range of
blackbody clouds and also simulate graybody clouds across a range of emission temperatures. There are a
number of cloudy conditions with emission temperatures around 260 K and for a range of emissivity
values in metum. The colder emission temperatures spread across the lower emissivity range appear to be
connected to the model's overly efficient production of ice at the expense of cloud liquid across the lower
atmosphere (see Figure 8i). Finally, all models fail in simulating clouds with emission temperatures
warmer than approximately 275 K and ε < 1. The models are able to represent these warmer emission
temperatures; however, they are almost exclusively modeled with an ε = 1. The larger emissivity and
warmer temperatures of these clouds in the model runs will contribute to overestimated LWD compared
to observations for these cases.

The median and interquartile distributions of LWD and SWD for particular observed and modeled LWP
ranges are shown in Figure 10. Cloud emissivity increases with LWP, resulting in an increase in LWD, until
the cloud emissivity approaches a blackbody (e.g., Stephens, 1978), typically within a LWP range of 30–
50 g/m2 (Shupe & Intrieri, 2004). After becoming a blackbody, variations in LWD are connected to emission
temperatures and cloud droplet size effects (Garrett et al., 2002; Garrett & Zhao, 2006; Lubin & Vogelmann,

Figure 9. Covariability between low‐level (pressure > 800 hPa) liquid cloud effective emission temperature (K) and the longwave effective emissivity estimated
from equation (2), for observed low clouds with at least 5 g/m2 of liquid water path. Observations are in black, and the regional climate models are colors, with
the name of each model in the panel title. See text for explanation of the derivation of low cloud liquid water path, effective emissivity, and cloud emission
temperature.
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2006). Conversely, the optical thickness of the cloud layer also increases with LWP, resulting in enhanced
solar extinction and a decrease in surface SWD. Note that since each model's LWD/SWD is grouped using
the model's own LWP, this metric isolates each models' cloud‐radiative interaction at a given LWP,
regardless of whether or not that instantaneous LWP was correctly simulated.

The RCMsmanaged to capture these broad, expected cloud‐radiation interactions. However, intermodel dif-
ferences are apparent. CCLM simulated relatively large LWD for low LWPs (< 35 g/m2), while these clouds
also amplified the SWD reduction. This behavior is difficult to understand considering the cloud emissivity
and emission temperatures generally agreed reasonably with the observed distribution (Figures 9e and 9f). It
is possible that the relative sparsity of low‐level cloud ice in these simulations fails to interact significantly
with the persistent cloud liquid (Figures 8e and 8f). As such, the radiative transfer through the cloud is only
influenced by the cloud droplets with only small variability in the longwave introduced entirely through
increases in LWP. In a similar, fashion, median, and quartile ranges of both LWD and SWD in wrf_cu were
relatively invariant to the amount of LWP compared to the other models; obviously, the dominance of near
blackbody clouds in the lower atmosphere is the reason (Figures 9j and 8j). The sensitivity in SWD to LWP in
metum was also lower, although its LWD was more sensitive to the amount of cloud liquid. Cloud‐radiative
interactions in the hirham5_v2 simulation, with the Tompkins cloud scheme, differed from hirham5 simu-
lations using the Sundqvist scheme (v1 and v3), with less LWD and more SWD for nonblackbody emitting
clouds. This result is consistent with the results in Figures 9a–9c where hirham5_v2 exhibited the ability
to maintain lower cloud emissivity at slightly cooler emission temperatures. The presence of less opaque
and cooler clouds should reduce the amount of LWD while also decreasing the extinction of SWD for low
LWP clouds; changes in cloud cover and phase partitioning, including changes to atmospheric temperature
structure, have been attributed to the choice of cloud scheme in hirham5 (Klaus et al., 2016). For cafs, the
differences in radiation with LWP are difficult to explain. At LWPs above 35 g/m2, the ranges of LWD
and SWDwere comparable for cafs_bsl and cafs_ini, and likely the radiative fluxes are dominated by the per-
sistent low‐level liquid bearing clouds common to both simulations (Figures 8g and 8h) However, when
LWPs are smaller, cafs_ini shows a greater decline in the amount of incoming SWD, that is, larger cloud
attenuation. The results in Figure 10 highlight that small differences in cloud‐phase partitioning can yield
substantial ranges in radiative energy fluxes.

Figure 10. Interquartile ranges (bars) and median (a) longwave downwelling (LWD;W/m2) and (b) (μ −1) * shortwave downwelling (SWD; W/m2] for six selected
ranges of LWP [g/m2]. SWD in (b) is weighted by the cosine of the solar zenith angle, μ; only periods when the solar zenith angle <80° are included. Statistics are
valid for the full Arctic Clouds in Summer Experiment (ACSE) campaign, 5 July at 01:00 UTC through 3 October at 07:00 UTC.
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3.4. Modeled Total SEB

This section focuses on how the models represented the total SEB (SWN + LWN + SHF + LHF; SWN = net
shortwave radiation, LWN = net longwave radiation). We do not attempt to estimate the observed SEB for
two primary reasons. First, upwelling radiation fluxes were not directly measured during ACSE.While LWN
is later estimated using the skin temperature (sections 3.5 and 3.6), SWN requires accurate estimates of sur-
face albedo; small deviations from reality, especially over 1‐hr time spans when the icebreaker was moving
through variable surface conditions, would have drastic effects on the estimated SWN values. Moreover,
even if a local albedo could have been estimated from the web‐cam monitoring, it would not be the areal
average albedo over many km2 that the models use. Second, the data recovery rate for observed turbulent
fluxes (21% and 65% for the LHF and SHF, respectively) would further bias the analysis to specific times.
Instead, we compare how the models' SEB evolved, as well as examining the modeled SEB statistical distri-
butions for the two seasonal periods discussed previously.

The 24‐hr running‐mean time series of modeled SEB in Figure 11c confirms that the models did capture the
observed seasonal transition discussed in Sotiropoulou et al. (2016). Prior to 27 August, modeled SEB distri-
butions peaked on the positive side (energy to the surface; e.g., melt season), with long tails skewed toward
large net energy surpluses and much fewer negative values (Figure 11a). After 27 August, the distribution
peaks shifted toward negative SEB values with more pronounced negatively skewed tails (Figure 11b); this
shift signals the onset of the surface freeze‐up.

The SEB distributions simulated by cafs and wrf_cu differ from the other models. Their RFDs have more
well‐defined and narrower peaks for both periods. For cafs, the lower variability, especially for largely

Figure 11. Relative frequency distributions of the models' full surface energy budget (SEB; W/m2) split into two periods,
(a) 5 July through 25 August and (b) 28 August through 3 October. (c) Twenty‐four‐hour running mean time series of
models' SEB, with the 2‐day separation between periods shaded dark gray. Positive SEB indicates a surplus of energy into
the surface; negative indicates a deficit of energy.
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positive SEB values in Figure 11a, is likely a combination of excessive cloud liquid shielding the surface from
larger SWD (Figure 5a), and too high surface albedo from too much sea‐ice cover in the fully coupled runs,
causing an excessive amount SWD that did penetrate the clouds to be reflected by the surface. Furthermore,
the temporal variability of cafs SEB simulations typically revealed the smallest absolute changes in time,
especially during the latter period (Figure 11c). The RFDs of SWD and LWD, and the cloud emissivity
(Figure 9), are representative of a too opaque atmosphere in wrf_cu. Further contributing to wrf_cu's smaller
SEB is thicker sea ice specified and too large SIC relative to the most other models (Figure S8), further
restricting the amount of shortwave that could be absorbed at the surface. The wrf_cu SEB also had lower
residuals during the first period (occasionally <0 W/m2) relative to the other models with prescribed
sea‐ice conditions (Figure 11c). The metum model consistently had the largest SEB values, consistent with
its positive biases in SWD (Figure 5a), while all hirham5 and cclm simulations feature broadly similar
SEBs over the entire period, consistent with their similar radiative and turbulent energy
distributions (Figure 5).

The mean intermodel SEB spread was ~90 W/m2 before 27 August and ~50 W/m2 after (Figure 11c).
However, despite the large intermodel variability, all models showed similar SEB tendencies that appear cri-
tical to the evolution of the seasonally transitioning Arctic. These include the sharp dip from a consistently
positive to briefly negative residuals between 23–25 August, seemingly a regime change during the last week
of August, and a return to net‐zero SEB variability transition during the first 2 weeks of September. Similar
circumstances involving a regime change followed by a transitional period were also observed in August–
September of 2008 during the ASCOS field experiment (Sedlar et al., 2011).

3.5. Lower Tropospheric Stability and Model Processes

Clouds containing super‐cooled liquid water over Arctic sea ice are a main controller of lower‐troposphere
stratification (Brooks et al., 2017; Sedlar et al., 2012; Sedlar & Shupe, 2014; Shupe et al., 2008; Shupe et al.,
2013). Statistical differences between modeled and observed water paths and cloud‐radiative interactions
highlighted in Figures 7–10 indicate that important cloud‐driven processes typically observed in the
Arctic may be missing, or misrepresented, in the RCMs. It is therefore important to make the connections
from modeled biases in clouds and radiation to potential biases in inter‐connected processes.

One metric to combine analysis of atmospheric stratification with cloud cover is the LWN‐LTS (lower tropo-
spheric stability) relationship. Like in Wood and Bretherton (2006), LTS is estimated as the difference in
equivalent potential temperature between two levels, here the 950 hPa pressure level and the surface. A con-
servedmeasure in amoist environment, the equivalent potential temperature difference, provides a measure
of the lower‐level static stability up to 950 hPa, typically 450–600 m AGL during ACSE. Hence, 950 hPa is
often above the relatively shallow surface‐generated turbulent boundary layer (Sotiropoulou et al., 2016;
Tjernström et al., 2004; Tjernström et al., 2012) but frequently within the subcloud overturning mixed‐layer
(e.g., Brooks et al., 2017). This layer is frequently associated with mixed‐phase stratocumulus often observed
between 400 m and 2 km AGL (Sedlar et al., 2012; Shupe et al., 2008; Sotiropoulou et al., 2016; Tjernström
et al., 2012); the turbulent surface‐generated and cloud‐driven subcloud layers can be either coupled or
decoupled. Recent studies found that weak decoupling occurred most frequently (Brooks et al., 2017;
Sedlar & Shupe, 2014; Shupe et al., 2013; Sotiropoulou et al., 2016). To relate to the cloud‐radiative state, sur-
face LWN is analyzed together with LTS. LWN is strongly dependent upon two parameters: the
presence/absence of liquid‐water clouds, generally with a large infrared emissivity, and the temperature
of the surface. When combined, LWN‐LTS distributions can provide useful relationships and indicate
regimes combining the surface state, emissivity of the overlying atmosphere/cloud, and the degree to which
these mechanisms influence stability.

Exploring the joint RFD of observed LWN and LTS gives an indication of the most common cloud‐stability
regimes during ACSE (Figure 12a). A well‐defined distribution peak occurred at near‐neutral stratification,
LTS within ±2 K and LWN between 0 and −10 W/m2. In summer‐autumn, when low‐level stratocumulus
contains liquid droplets over Arctic sea ice, LWNgenerally falls within the 0 to−10W/m2 range (Sedlar et al.,
2011). Coupled with stratification, this peak is characteristic of intermittent coupling between
surface‐generated and cloud‐generated turbulent mixing layers. This is an important regime in that it indi-
cates potential communication, that is, transfer of heat and moisture, between surface and cloud.
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Around this peak, the observed distributions also indicate relatively frequent unstable stratification
(LTS < 0 K) with LWN as low as−30 W/m2. This regime is likely associated with a colder air mass over war-
mer, open water, supporting convection through warmer skin temperatures keeping the lower troposphere
well‐mixed, at the same time increasing the LWN deficit. Another observed regime was positive LTS (stable)
together with positive LWN (gain for the surface). This regime tended to occur for two different synoptic
situations. The first in warm‐air advection connected with synoptic frontal passages, causing larger long-
wave radiation from the cloud than upwelling from the melting ice. This regime resulted in LTS ranging
approximately 5 to 15 K. The second situation led to the extremely large, but infrequent, LTS in

Figure 12. Relative frequency distributions showing the relationship between surface net longwave radiation (LWN; W/m2] and lower tropospheric stability (LTS,
[K]) for (a) observations, (b) hirham5_v1, (c) hirham5_v2, (d) hirham5_v3, (e) mar_v3.9.6, (f) cclmi, (g) cclm5, (h) cafs_bsl, (i) cafs_ini, (j) metum, and (k) wrf_cu.
See text for details. Statistics are valid for the full Arctic Clouds in Summer Experiment (ACSE) campaign, 5 July at 01:00 UTC through 3 October at 07:00 UTC.
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connection with positive LWN radiation. This was associated with strong warm andmoist air advection from
the nearby continent. As this air encountered and traversed over a melting, colder sea‐ice surface, air‐mass
modification processes developed a strong surface temperature inversion, while near‐surface saturation
developed fog or shallow low clouds (e.g., Tjernström et al., 2019). The combination of low clouds trapped
in a stable and warm lower troposphere led to large LTS and positive LWN. In ACSE this regime was primar-
ily associated with an 8‐day event in early August (Tjernström et al., 2015), although stable, moist inversions
did occur during other instances at ACSE (Tjernström et al., 2019) and climatologically occur with a modest
frequency (Sedlar & Tjernström, 2017).

The final important regime is the largely negative LWN (<−40W/m2) associated with a radiatively clear sky
in connection with intermediate LTS values, 10–20 K (Figure 12a). Lack of radiatively opaque low clouds
eliminates one mechanism driving lower tropospheric mixing, that is, cloud buoyancy, and as a feedback
promotes a large LWN deficit, which isolates this regime into further stable stratification.

The modeled LWN‐LTS relationships, and their representation of the associated regimes in the LWN‐LTS
phase space, are shown in Figures 12b–12k (see Figure S14 for model‐observation differences). Broadly,
the modeled relationships were similar to the observations for the most common regime: the cloud‐driven
near‐adiabatic mixing of the lower troposphere. Hence, models captured the frequent weak or intermittent
coupling between the surface and 950‐hPa level, likely crucial in maintaining the heat and moisture
exchange between the surface and lower clouds. However, most models underestimated the occurrence of
the well‐mixed (LTS < 0 K) regime (Figure S14). Instead, they favored a slightly more stable regime with
moderate ranges of LWN deficit (−10 to −30 W/m2). The fully coupled surface‐atmosphere cafs runs corro-
borate the close connection between surface conditions and LWN‐LTS relationships; cafs distributions were
the least variable and had the least occurrence of unstable stratification (Figures 12h and 12i and S14), a con-
sequence of a surface predominantly modeled as ice‐covered.

Another common discrepancy among all models was a lack of the observed clear‐sky, stable regime. The hir-
ham5 (b–d), mar_v3.9.6 (e), cclm (f and g), and metum (j) simulations all showed the presence of clear‐sky
conditions (LWN < −40 W/m2), but the observed moderate stability associated with this regime (10–20 K)
was often replaced with modest stability (0–10 K), indicating an apparent disconnect between decoupling
and surface‐based stability. Both cafs (h and i) and wrf_cu (k) generally failed to produce any clear‐sky stable
scenes, consistent with overestimated LWPs, frequent blackbody liquid clouds, and the associated
radiative‐flux biases shown in Figures 7–10. Instances of stably stratified clear‐sky events have been charac-
terized as crucially important in dictating the transition between seasons over Arctic sea ice, from melt to
onset of freeze (Persson, 2012; Sedlar et al., 2011; Sotiropoulou et al., 2016). The differences between obser-
vations and models in the occurrence and radiative impact of this cloud‐stability regime signify a critical
shortcoming in modeling a fundamental Arctic atmospheric process.

Additionally concerning is the models' representation of moderate to large positive LTS associated with a
surplus in LWN. The models overrepresented this regime, especially for the more moderate stability range,
LTS ~10–25 K (Figure S14), compared to the observations. This regime was primarily associated with signif-
icant horizontal advection and air mass transformation, resulting in anomalously large and positive LWN
(Tjernström et al., 2015). The differences in LWN‐LTS distributions between the models and observations,
and among the models themselves, indicate that these types of large‐scale advective events pose complica-
tions for the models; an example of this is explored in the next section.

3.6. Warm, Moist Advective Event

The ACSE campaign directly observed an intense warm and moist advection event across the lower tropo-
sphere to midtroposphere, between 30 July and 8 August 2014 (see Figures S4 and S5). This event led to
anomalous sea‐ice melt (Tjernström et al., 2015) primarily through anomalies of large, positive LWN and
SHF into the ice surface, both of which were driven by low clouds trapped within a very warm inversion
associated with advection (Tjernström et al., 2015). To examine this important event, statistical ranges of
LWN were calculated for three distinct 7‐day periods characterizing its evolution: (1) preevent [23–30
July], (2) core event [31 July to 6 August], and (3) postevent [8–14 August].

The 10th–90th and interquartile ranges of LWN revealed substantial transitions between the three periods.
Observed median LWN jumped from −20 to 5 W/m2 from preevent to core event (Figure 13, black); the
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median transition was even larger into the postevent week, from 5 to −45 W/m2. These swings in LWN are
consistent with the advection of warm, moist air trapping a low, liquid‐bearing cloud layer, followed by a
drying and subsequent low‐cloud dissipation.

The simulations also revealed distinct transitions between the three periods, although to various degrees.
The transitions most similar to the observations were found in hirham5 simulations. However, the magni-
tudes of LWN, both during the core event and postevent, were considerably larger than observed; the larger
positive LWN values during period (2) are consistent with the overestimated occurrence frequency of posi-
tive LWN in connection with the LTS metric (Figures 12b–12d). While all the remaining models similarly
resolved a LWN surplus during the core event, the variability of LWN during this week was considerably
smaller than observed. The 10th–90th percentile ranges of LWN for cclm, cafs, and wrf_cu simulations were
nearly indistinguishable from the median values, revealing a persistent, positive energy input on the surface.
But potentially more critical to the processes driving the surface energy balance is that all models besides
hirham5 did not transition to large LWN deficits, reflective of clear or intermittently cloudy skies, during
the postevent period (3) as indicated in the observations. Instead, mar_v3.9.6, cclmi, cafs, metum, and
wrf_cu had LWNmedians and interquartile ranges resulting in smaller LWN deficits during period (3) than
during period (1). This suggests that the modeled clouds in response to the advective event, and after its pas-
sing, failed to represent the appropriate mechanisms contributing to cloud formation and dissipation.

4. Discussion

This suite of six state‐of‐the‐art RCMs, providing 10 total simulations of the ACSE field campaign, permitted
a detailed evaluation regarding the models' capabilities in simulating observed atmospheric and SEB proper-
ties and processes over the Arctic. Here, we discuss some of the major findings in the context of how
model‐specific processes and energy inputs may be governing the sensitive evolution of the SEB.

The most significant biases between models and observations emerge from the model physics, as all the
models use the same forcing (ERA‐Interim). The radiative fluxes represent the largest energy input, and con-
sequently, their absolute biases are also the largest. While the hirham5 and cclm agreed reasonably with the
observed radiation and LWP distributions, the other models could be grouped by their biases in downwelling
radiation. Both cafs and wrf_cu underestimated SWD while exhibiting too little variability in LWD; unsur-
prisingly, these models also overestimated the amount of cloud liquid, especially low liquid‐bearing clouds.
Increasing the IN concentration in cafs_ini did little to reduce cloud LWPs, except for a reduction in cloud
liquid at pressure levels lower than 800 hPa, because the lower atmosphere was above freezing for the major-
ity of the first 2 months; there were also marginal increases in IWP between the two cafs simulations even
during the second colder period, suggesting that the increased IN concentration resulted in ice crystal pre-
cipitation and deposition. The mar_v3.9.6 and metum overestimated SWD and underestimated LWD; these
models underrepresented the amount of cloud liquid. Interestingly, metum's colder skin temperature bias
(Figure 4b) is consistent with a lower frequency of liquid‐bearing clouds (Sedlar et al., 2011). However,

Figure 13. Observed (black) and modeled (colors) percentile ranges of net longwave radiation (LWN; W/m2] for three
1‐week periods around the warm, moist advection event in early August; period (1): 23–30 July; period (2): 31 July to 6
August; and period (3): 8–14 August. The thin bars are the 10th–90th percentile bounds, the thick bars are the 25th–75th
percentile bounds, and the white stars are the medians, for each week‐long period.
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skin temperature bias for the mar_v3.9.6 was very similar to the other simulations with larger LWP.
Therefore, consistent underestimation of LWD in this model does not appear to be driving the cold bias at
the surface, suggesting some error compensations in mar_v3.9.6, as already highlighted over Greenland
by Fettweis et al. (2017).

With turbulent fluxes, the models captured the qualitative distribution shape of the observations, but modest
distribution differences are intriguing. The cafs simulations displayed a dominant presence of negative SHFs
(cooling the surface), while the remaining models and observations peaked at weakly positive fluxes. The
fully coupled cafs simulations also considerably overestimated the sea‐ice cover, further causing the surface
temperatures to be too cold. For negative SHFs to dominate, air temperatures above the surface must also be
too cold, a result that was confirmed by the analysis of temperature profiles. Therefore, for cafs, it is the
atmospheric thermodynamic structure, and not an overly warm surface, that was driving the turbulent
heat‐flux distributions. At the same time, we found negative SHFs were common for cafs even when tem-
perature gradients suggest a stable stratification in the surface layer (Figures 6g and 6h); we attribute these
counter‐gradient fluxes to the influence of open water (leads, large melt ponds) in the otherwise large sea‐ice
concentrations. An even larger cold bias was present in wrf_cu's lower troposphere; this model also had large
negative SHF distribution tails, consistent with atmospheric biases guiding its near‐surface turbulent heat
biases. The covariability of LWN and LTS indicated that both the cafs and wrf_cu simulations contained
the most excessive static mixing regime associated with small deficits in LWN, without the occurrence of
the stably stratified and radiatively clear regime that was present in the observations and other models.
These distributions were indicative of an over‐abundance of cloud driven mixing, supporting turbulent heat
transfer away from the surface to the atmosphere. These findings support a coupled surface‐lower atmo-
sphere structure that can actively exchange momentum, heat, and moisture and potentially sustain the
abundance of low liquid clouds so prevalent in these models. Relatively large positive biases in SHF were
observed in the cclm simulations. When scaling the SHF by 10‐m wind speed, it was found that the overly
excessive SHFs during stable stratification are likely connected to errors in the exchange coefficient of sen-
sible heat within the model's surface flux parameterization scheme (Figures 6e and 6f).

Differences in radiation and turbulent heat flux distributions are directly responsible for the differences in
total SEB distributions among the models. Despite critical energy input biases, the models agreed well on
the evolution of the seasonal transition of the SEB. This must be intimately connected to daily (or subdaily)
specification of SIC and sea surface temperature, and the application of large‐scale atmospheric nudging or
daily/subdaily model forecast initialization. Even while sufficiently simulating the synoptic environment,
the LWN transitions surrounding the extreme warm, moist advective event clearly were not in agreement
among the models, or between the models and observations. The critical processes in connection with this
event, the strong surface‐based inversion and trapping of low clouds, were not universal among the models.
Furthermore, at any given time, the spread in SEB among models during the first 2 months of ACSE was
nearly 100 W/m2; this spread decreased to around 50 W/m2 through September and early October. Such a
spread in SEB residuals is large, and it is obvious that each model's SEB solution cannot represent what
occurred in reality and would also give vastly different results if the models would have been coupled to a
sea‐ice and ocean model.

Having at least one fully coupled model, cafs, provided a unique opportunity to assess how its SEB evolved
when the open water, sea ice, snow, and melt pond surfaces responded to biases in energy inputs. Too large
liquid‐cloud presence shielded the surface too much from shortwave radiation. Subsequently, the largest
SEB residuals (those greater than 125 W/m2) were severely underestimated. Without this heat being
absorbed at the surface, especially during July with the sun at a higher elevation, sea‐ice coverage is sus-
tained, during times and locations where the other models, forced by observed SIC, suggest the open water
fraction (leads, melt ponds) should have been larger; overactive turbulent mixing near the surface further
adds to the cooling at the surface. As a result, the SEB time series for both cafs simulations were among
the lowest in absolute magnitude. However, these SEB evolutions were also the most physically consistent
with the excessive liquid clouds and their impact on the radiative and turbulent fluxes.

Oppositely, the metum and cclm simulations generally showed the largest absolute SEB magnitudes but
were connected to different processes. For metum, the lack of relatively large LWP clouds permitted too
much shortwave radiation to be absorbed by surfaces that generally had smaller SICs. Had the metum (or
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any other atmosphere‐onlymodel) been fully coupled, it is unclear how the general lack of liquid clouds, and
subsequent overestimation of SWD, would have impacted its energy budget evolution. SICs for cclm typi-
cally matched well with the satellite observations (Figures S8e and S8f), but the LWD, in conjunction with
more liquid‐bearing clouds, led to a narrower distribution relative to the observations and other RCMs.
There was also a shift to more positive SHFs for cclm, further transferring energy toward the surface, a bias
that has been attributed to the behavior of the surface flux parameterization scheme under statically stable
conditions. Taken together, these biases caused the cclmi and cclm5 SEBs to be consistently large, especially
prior to 1 September. The statistical comparisons between cclmi and cclm5 showed very little differences,
suggesting only modest differences in conjunction with the lateral boundary forcing between the ERA‐5
and ERA‐Interim reanalyses.

Improved understanding of critical, yet infrequent, events is a necessary future step in the analysis of RCM
simulations. However, a more fundamental step is needed to address the variability related to
cloud‐radiative interactions. By only increasing the IN concentrations, the cafs_ini simulation revealed a
better agreement with observed cloud LWP compared to the baseline simulation. Although we found that
while the lower atmosphere IWC increased marginally, the LWCs were statistically as large as for the base-
line simulation; instead the increased IN lead to a reduction in liquid‐bearing clouds higher up in the free
troposphere, resulting in a smaller, total column‐integrated LWP. However, low‐level liquid clouds exert
the largest impact on surface radiation, and therefore, we found very little difference in SWD and LWD
between cafs simulations. The hirham5 simulations employing two different cloud schemes led to only mod-
est differences in the LWP and IWP distributions; however, the cloud‐radiative interactions associated with
these LWP differences did impact the downwelling radiative fluxes. In particular, we found the simulations
applying the Sundqvist et al. (1989) microphysical parameterization failed to retain supercooled liquid and
therefore were unable to sustain low‐level clouds emitting as blackbodies, while the Tompkins (2002) para-
meterization did (Figures 9a–9c). At the same time, clouds with emissivity below 1 (graybody clouds) were
more often associated with a somewhat colder emission temperature with the Tompkins versus the
Sundqvist et al. scheme, and therefore, differences in LWD emerged among the hirham5 simulations, espe-
cially for smaller LWPs that are responsible for the graybody clouds (Figure 10). This seesaw‐type behavior
highlights the struggle present when evaluating these models.

5. Conclusions

To conclude, the following points represent the main conclusions from this study:

• Different reanalysis forcing (ERA‐Interim and ERA5) the lateral boundaries and nudging for cclm simu-
lations hadminimal impact on the physical processes determining the surface energy fluxes and the cloud
properties. Whether or not this is a universal conclusion applicable to all RCMs employing different para-
meterization schemes is unknown and deserves attention.

• Variation among the simulated cloud properties is the most important factor in correctly representing the
surface energy fluxes. Errors in the amount of cloud condensate, especially the cloud liquid, directly influ-
enced the radiative fluxes, and indirectly modified the turbulent heat fluxes through modification of the
near‐surface mixing state. RCMs continue to struggle with these important cloud forcing processes over
the Arctic.

• In this respect, we conclude that the situation has not improved vastly since the ARCMIP simulations
over a decade ago.

• The importance of longwave cloud radiative forcing in the Arctic is well established, and we found that it
is critical in determining the static stability of the lower troposphere. However, during the middle to late
summer months, accurate representation of the incoming shortwave radiation is also found to be crucial.
Shortwave radiation typically is the largest energy source to the surface, and we found that models that
overestimate the SWD had the largest SEB residuals, while those with too little shortwave had the lowest
residuals. Again, properly describing the cloud properties is of utmost importance, and unfortunately,
here is where the state‐of‐the‐art RCMs continue to underperform.

Regardless of the cause, these distributions and errors in clouds and radiation are still similar to those
reported by studies evaluating RCMs that simulated the SHEBA campaign from years past (Inoue
et al., 2006; Rinke et al., 2006; Tjernström et al., 2005, 2008; Wyser et al., 2008). Undoubtedly, the
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scientific understanding of the processes underlying the modeling problems reported on a decade and a
half ago is much better today, but still it seems only that marginal improvements have been realized in
the models. We will offer only one recommendation: that model development is performed both in
atmosphere‐alone (or ice‐ocean‐alone) framework and in a fully coupled framework. This puts additional
constraints on both the observational and modeling science communities, since both the modeling and
the observations need to consider the coupling between different systems. This is timelier now than ever
before, with the MOSAiC field campaign set to provide a full year of process observations adapted to a
truly coupled framework for the observations. This will provide a unique dataset optimally suitable for a
new set of RCM intercomparisons, but this time with several fully coupled modeling systems; this is
highly recommended.
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