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GRAPHICAL ABSTRACT

Dissolved organic nitrogen and phos-
phorus are bioavailable to river phyto-
plankton.

Nutrient limitation and dissolved or-
ganic nutrient use varies in time and
space.

Dissolved organic nutrient use is
greatest when nutrient concentrations
are low.

For simple compounds, growth oc-
curred even at low organic nutrient con-
centration.

DOM in rivers has been overlooked as a
potential nutrient source to
phytoplankton.
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The concentration of dissolved organic matter (DOM) in freshwaters is increasing in large areas of the
world. In addition to carbon, DOM contains nitrogen and phosphorus and there is growing concern that
these organic nutrients may be bioavailable and contribute to eutrophication. However, relatively few stud-
ies have assessed the potential for dissolved organic nitrogen (DON) or dissolved organic phosphorus
(DOP) compounds to be bioavailable to natural river phytoplankton communities at different locations or
times. Temporal and spatial variations in uptake, relative to environmental characteristics were examined
at six riverine sites in two contrasting catchments in the UK. This study also examined how the uptake by
riverine phytoplankton of four DON and four DOP compounds commonly found in rivers, varied with con-
centration. Total nitrogen (TN) and phosphorus (TP) concentrations, the proportion of inorganic nutrient
species, and nutrient limitation varied temporally and spatially, as did the potential for DON and DOP up-
take. All eight of the DOM compounds tested were bioavailable, but to different extents. Organic nutrient
use depended on the concentration of the organic compound supplied, with simple compounds (urea and
glucose-6-phosphate) supporting algal growth even at very low concentrations. DON use was negatively
correlated with the TN and ammonia concentration and DOP use was negatively correlated with soluble re-
active phosphorus (SRP) and dissolved organic carbon (DOC) concentration. The evidence indicates that
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DOM in rivers has been overlooked as a potential source of nutrients to phytoplankton and therefore as an

agent of eutrophication.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Nutrient enrichment of inland waters is a major global anthropo-
genic stressor, which can lead to excessive algal growth and algal
blooms (Le Moal et al., 2019; Schindler, 1975; Smith et al., 2006). Nutri-
ent limitation of algal growth, a key control on total biomass, is often
viewed as a static condition in lakes, rivers and the ocean, while in real-
ity both nitrogen and phosphorus can be limiting dynamically over
space and time and frequently both resources can be depleted leading
to widespread co-limitation (Elser et al.,, 2007). In lakes, seasonal pat-
terns of nutrient limitation have been observed (Kolzau et al., 2014;
Maberly et al., 2002), with phosphorus (P) limitation being common
in spring, as supplies are rapidly drawn down during the spring plank-
ton bloom, while nitrogen (N) limitation or co-limitation of N and P
can occur in summer in response to internal P cycling or external P sup-
ply and the loss of available N through denitrification. Nutrient limita-
tion of algal growth is therefore dependent on the balance of demand
for nutrients to support growth during the growing season and the sup-
ply of nutrients from natural or anthropogenic sources.

While research on the agents of eutrophication has largely focussed
on inorganic nutrients, in many systems concentrations of dissolved or-
ganic nitrogen (DON) can equal or exceed those of dissolved inorganic
nitrogen (Campbell et al., 2000; Durand et al., 2011; Kortelainen et al.,
2006; Lloyd et al., 2019; Perakis and Hedin, 2002; Yates et al., 2019).
Similarly, although less well studied, dissolved organic phosphorus
(DOP), sometimes referred to as soluble unreactive P, can be a major
component of total phosphorus (TP) (Heathwaite and Johnes, 1996;
Jordan et al., 2007, 2005; Yates et al., 2019). This organic material orig-
inates from natural and anthropogenic sources within catchments and
autochthonous production in the water as products of excretion or de-
composition (Wetzel, 2001). For example, areas of livestock farming
are associated with DON and DOP sources from manures and slurries
(Lloyd et al., 2019) such as urea, amino acids and phytic acid (Turner
et al.,, 2002), while leachate from blanket peat is associated with DOM
compounds with a higher aromaticity (Yates et al., 2019). In addition,
sources such as septic tanks and sewage treatment works are likely to
release DOM compounds of varying molecular weights, including pro-
teinaceous and humic-like compounds (Liu et al.,, 2012). If these forms
of nitrogen and phosphorus are bioavailable, they could have a major ef-
fect on algal growth, especially since concentrations of dissolved organic
carbon (DOC) are increasing in many parts of the world probably as a re-
sult of numerous factors including climate change, land use and man-
agement change, and recovery from acidification (Lepisto et al., 2014;
Monteith et al.,, 2007; Stackpoole et al., 2017).

DON exists in numerous forms in aquatic ecosystems including pro-
teins, free amino acids, amino sugars, nucleic acids, excretion products
such as urea and methylamines, and higher molecular weight sub-
stances typically deriving from the breakdown of polymers such as lig-
nin and chitin (Berman, 2003; McCarthy et al., 1997; Osburn et al.,
2016). Low molecular weight compounds such as urea, amino acids
and sugar amines are often useable by phytoplankton (Berman and
Chava, 1999; Flynn and Butler, 1986), while higher molecular weight
compounds may also be partly bioavailable to phytoplankton (Bronk
et al., 2007). DOP compounds include nucleic acids, phospho-sugars,
phospholipids, polyphosphates and phosphonolipids (Diaz et al.,
2018). The bioavailability of DOP to algae is less well studied but various
DOP compounds have been shown to be bioavailable (Bai et al., 2014;
Cotner and Wetzel, 1992; Diaz et al., 2018; Jansson et al., 2012;
Michelou et al., 2011; Whitney and Lomas, 2019).

The bioavailability of many organic nutrient compounds and their
increasing supply through the increased flux of DOM from terrestrial
sources may therefore play a role in promoting algal growth in freshwa-
ters (Feuchtmayr et al., 2019). The extent to which organic nutrients are
likely to regulate primary production could vary depending on a variety
of factors including the nutrient sources and the underlying nutrient
and light regime of a system. For example, Seekell et al. (2015) found
a threshold DOC concentration (4.8 mg C L™!) below which DOC was
positively related to lake primary production in boreal and arctic
lakes, suggesting an enrichment effect where existing DOC concentra-
tions are low. In highly enriched systems, where DON or DOP form
only a small fraction of the total nutrient concentrations (Yates et al.,
2019), it is generally assumed that most algal production is being driven
by inorganic nutrients. Algae can access organic nutrients by direct up-
take and indirectly after microbial remineralisation of DOM (Wetzel,
2001). This implies that nutrients derived from DOM are likely to be cy-
cled between different nutrient pools and organic sources may poten-
tially contribute to algal growth dynamically over time in sites at
differing levels of nutrient enrichment.

To date, research has largely focussed on whether or not a specific
DON or DOP compound is bioavailable rather than on how bioavailabil-
ity varies with environmental conditions. Thus, the importance of nutri-
ent concentration and nutrient limitation is largely unknown. Utilising
the marked spatial and temporal gradients in nutrient concentrations
identified in our previous work (Yates et al., 2019), this study addresses
the following hypotheses:

1. Nutrient concentrations and nutrient limitation will reflect variations
in catchment location and time of year.

2. DON and DOP compounds will differ in their overall bioavailability to
algae and this will vary by site and season reflecting changes in nutri-
ent concentration and limitation.

3. DON and DOP growth responses will depend on the total concentra-
tion of nutrients available instream.

4. Bioavailability to algae will depend on the concentration of the or-
ganic nutrient.

2. Methods
2.1. Site description

Two rivers with contrasting geologies were used in this study
(Fig. 1), with sites selected to represent an enrichment gradient across
different soils and land use. The lowland Hampshire Avon situated in
the south of the UK is predominantly underlain by chalk, with thin or-
ganic mineral soils. The upland Conwy situated in north Wales is
characterised by a mixture of Cambrian igneous and sedimentary
rocks in the west of the catchment and Silurian mudstones in the east
of the catchment, resulting in peat soils in the headwaters and brown
earths and podzols towards the river estuary. Full details on the envi-
ronmental characteristics and nutrient chemistry of these streams are
available in Yates et al. (2019). Three sites previously monitored to de-
termine their nutrient chemistry, were sampled within each river catch-
ment (Table 1). These ranged from small headwater streams such as
Priors Farm on the River Sem in the Hampshire Avon catchment and
Nant-y-Brwyn in the Conwy catchment, to larger tributary streams in-
cluding the River Nadder at Burcombe and River Wylye at South New-
ton in the Hampshire Avon catchment and Hiraethlyn at Bodnant in
the Conwy catchment (Table 1).
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Fig. 1. Maps of studied catchments and sampling sites: Conwy, north Wales (a) and Hampshire Avon, southern England (b). Site latitude and longitude are given in Table 1.

2.2. Sampling and chemical analysis

All six sites were sampled on at least a fortnightly frequency using
either spot sampling or an automatic water sampler (Yates et al.,
2019) over the period February to November 2016. Inorganic nutrient
analysis was conducted using a Skalar* ™ multi-channel continuous
flow autoanalyser (Skalar Analytical B.V., The Netherlands), as detailed
in Yates et al. (2019). DON and DOP concentrations were determined
as the difference between total dissolved nitrogen (TDN) or total dis-
solved phosphorus (TDP) and dissolved inorganic nitrogen (DIN) or sol-
uble reactive phosphorus (SRP) following persulphate oxidation of a
0.45 pm cellulose membrane filtered sample (Johnes and Heathwaite,
1992). Total N (TN) and total P (TP) were determined colourimetrically
following the persulphate digestion of an unfiltered sample. Particulate

organic N and particulate P fractions were also determined as the differ-
ence between TN and TDN, and between TP and TDP, respectively.

At Bodnant, Burcombe and South Newton each monthly mean con-
centration was typically calculated from 23 to 26 samples. At Glasgwm,
Nant-y-Brwyn and Priors Farm calculations were based upon 2 to 3
samples per month (Table 1). On seven occasions from February 2016
to January 2017, water samples for nutrient bioassays were transported
to the laboratory in a cooled container within 48 h and acclimatised
overnight in a 20 °C constant temperature room. In May and October
2017, further water samples were collected from the Nant-y-Brwyn
and South Newton sites to examine the role of dissolved organic nutri-
ent concentration in mediating the utilisation of the dissolved organic
nutrient compounds at chemically-contrasting sites. In both cases, the
initial phytoplankton chlorophyll a concentration was determined
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Table 1

Characteristics of the six study sites ordered by increasing concentration of total nitrogen. Water chemistry data are means of monthly mean concentrations (mg of N, P or CL™") between
February and November 2016, with monthly minima and maxima in parentheses. Land cover categories: A, Acid grassland; B, Bog; C, Calcareous grassland; H, Arable and horticultural; I,

Improved grassland; R, Rough low productivity grassland; W, Coniferous woodland.

River catchment Conwy Conwy Conwy Hampshire Avon Hampshire Avon Hampshire Avon
Tributary Glasgwm Upper Conwy Hiraethlyn Sem Wylye Nadder
Site Name Glasgwm Nant-y-Brwyn Bodnant Priors Farm South Newton Burcombe
Latitude 53.027 52.988 53.226 51.055 51.107 51.080
Longitude —3.845 —3.801 —3.799 —2.157 —1.878 —1.905
Elevation (m) 255 400 22 91 48 63
Catchment area (km?) 2.6 13 20.5 23 447 208
Major land use (top two) W (60%), A (18%) B (80%), A (18%) 1(72%), R (12%) 1(59%), A (29%) H (38%), C (32%) H (48%),1(30%)
TN 0.49 0.61 3.30 3.93 7.01 7.51
(0.34-0.65) (0.38-1.18) (3.02-3.66) (1.97-6.13) (6.56-7.28) (6.18-8.85)
DIN 0.11 0.12 2.72 2.36 6.20 6.42
(0.05-0.19) (0.01-0.62) (2.19-3.29) (0.86-4.54) (5.15-6.67) (5.24-7.83)
DON 0.35 0.48 0.54 1.17 0.49 0.56
(0.22-0.46) (0.25-0.68) (0.38-0.78) (0.89-1.72) (0.37-0.65) (0.38-0.77)
TP 0.011 0.024 0.106 0.376 0.095 0.212
(0.005-0.021) (0.017-0.039) (0.079-0.18) (0.233-0.501) (0.061-0.156) (0.160-0.293)
SRP 0.000 0.005 0.071 0.151 0.041 0.087
(0.000-0.002) (0.000-0.016) (0.035-0.150) (0.048-0.275) (0.025-0.055) (0.033-0.143)
DOP 0.006 0.012 0.021 0.039 0.016 0.020
(0.003-0.010) (0.005-0.017) (0.015-0.025) (0.015-0.062) (0.009-0.024) (0.011-0.029)
DOC 431 11.06 2.72 12.97 2.10 2.84
(1.98-6.62) (3.74-18.73) (1.75-3.71) (10.44-19.87) (1.89-2.31) (2.27-3.39)
TN:TP (molar) 44.8 56.7 69.1 23.2 1633 78.5
DON:TN 0.71 0.80 0.17 0.32 0.07 0.07
(0.570.77) (0.45-0.97) (0.01-0.25) (0.18-0.45) (0.06-0.09) (0.06-0.09)
DOP:TP 0.57 0.53 0.21 0.10 0.18 0.10
(0.26-0.92) (0.25-0.82) (0.06-0.09) (0.06-0.14) (0.08-0.29) (0.05-0.12)

prior to the experiments. For this, water samples were filtered onto
glass fibre filters (Whatman GF/C; nominal pore size 1.2 um), extracted
in hot methanol and optical density was measured in a spectrophotom-
eter (Talling, 1974). Concentrations of chlorophyll a were calculated
using equations in Ritchie (2008).

2.3. Nutrient bioassay

Bioassays were performed in a laboratory-based study following
Maberly et al. (2002). The aim was to balance environmental control,
replication and system realism to allow us to assess whether dissolved
organic nutrients were able to stimulate growth in the river phyto-
plankton community regardless of uptake mechanism. Water was fil-
tered through a 100 pm mesh to remove any zooplankton or large
particles and 35 mL transferred to 50 mL glass boiling tubes. Twelve dif-
ferent treatments were carried out in triplicate: a control with no chem-
ical addition, additions of inorganic phosphorus (sodium phosphate),

Table 2
Treatments of bioassay incubations and organic chemicals. Nitrogen was added at 90 and
phosphorus at 6 pmol L~". No addition is indicated by ‘.

Treatment name Inorganic addition Organic addition

Control

Inorganic phosphorus  Sodium phosphate -

Inorganic nitrogen Ammonium nitrate -

Inorganic N + P Ammonium nitrate + -
Sodium phosphate

Urea + P Sodium phosphate Urea

Glycine + P
Glutamate + P
Glucosamine + P
Glucose 6-phosphate
+N
Phytic acid + N
Methylumbelliferyl
phosphate + N
Methyl phosphonate
+N

Sodium phosphate
Sodium phosphate

Sodium phosphate
Ammonium nitrate

Ammonium nitrate
Ammonium nitrate

Ammonium nitrate

Glycine

L-Glutamic acid
N-Acetyl-p-glucosamine
D-Glucose 6-phosphate
sodium salt

Phytic acid sodium salt
4-Methylumbelliferyl
phosphate disodium salt
Methyl phosphonate

inorganic nitrogen (ammonium nitrate), inorganic P and N, four DON
additions with inorganic P and four DOP additions with inorganic N
(see Table 2). The selection of compounds was made to ensure that
growth responses related to either organic nitrogen or organic phos-
phorus addition, so only compounds containing either N or P were
used. Specific compound choices were made on the basis of our under-
standing of the catchment sites in terms of land use and activities such
as manure and fertiliser applications, the likely presence of compounds
in the freshwater environment, based on previous studies, and direct
measurement of compounds, in the case of urea, which was present at
all sites. Glycine and L-Glutamic acid are amino acids commonly found
within freshwater biota and as free amino acids in water. N-acetyl glu-
cosamine, an amino sugar, is a common compound in bacteria, algae
and crustaceans where it is a constituent of chitin and is found across
a range of freshwater habitats (Nedoma et al., 1994). Glucose-6-
phosphate is a phosphorylated form of glucose which has been found
to be widely used by freshwater bacterial communities (Brailsford
et al., 2019; Rofner et al., 2016). Phytic acid, a key P storage compound
in seeds, is common in agricultural soils receiving manures (Turner
et al,, 2002) and a constituent of lake organic P pools (Reitzel et al.,
2007). Methyl phosphonate has been recently shown to be a potential
P source to freshwater microbial communities, particularly in low nutri-
ent systems, through the cleavage of the C—P bond (Whitney and
Lomas, 2019; Yao et al., 2016). Methylumbelliferyl phosphate is com-
monly used in the assessment of extracellular phosphatase activities
in freshwaters (e.g. Strojsova et al., 2003), providing a substrate widely
associated with the potential for use of organic phosphorus compounds.
Dissolved organic nitrogen was added together with inorganic phos-
phorus and dissolved organic phosphorus was added with inorganic ni-
trogen in order to determine the potential for the use of the dissolved
organic compound without limitation by the other nutrient (N or P),
thereby avoiding a false negative response. Nutrients were added at ap-
proximate Redfield ratio proportions: Nat90 umol L™! (1.261 mgNL™1)
and P at 6 umol L™' (0.186 mg P L™') (Maberly et al., 2002).

The tubes were stoppered with foam bungs, to enable gas exchange,
incubated in a 20 °C constant temperature room, and illuminated from
below with cool white fluorescent lamps that generated a photon
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irradiance of 80-120 umol m~2 s~ ! (photosynthetically available radia-

tion, Macam Q102) with an 18 h light, 6 h dark cycle. The temperature
and light cycle were chosen to reflect an optimal summer day in this cli-
mate zone and ensure that we could compare growth effects indepen-
dent from other influences across different sites and seasons. After
14 days, the contents of each tube, including any biofilm on the inside
walls, were resuspended by scraping and the use of a vortex mixer
and filtered onto a Whatman GF/C glass fibre filter that was frozen at
—20 °Cuntil further analysis. Defrosted filters were analysed for chloro-
phyll a as described above.

The dissolved organic nutrient concentration experiments followed
the same initial procedure described above. The same DON and DOP
compounds (see Table 2) were added in triplicate at four concentrations
per compound: 90 pmol N L™!, 9 umol N L™! (0.126 mg N L™1),
0.28 umoINL~"(0.039mgNL~!)and 0.09 umolNL~! (0.013mgNL™1)
for the DON compounds and 6 pmol P L™, 0.6 umol P L™" (0.019 mg P
L™!), 0.186 umol P L~! (0.006 mg P L~!) and 0.06 umol P L~!
(0.002 mg P L™ 1) for the DOP compounds. These concentrations were
selected based on the ranges of DON and DOP concentration found at
these sites (16-123 umol N L™! and 0.01-2 pmol P L™'. Samples were
then incubated and chlorophyll a analysed in the same way as described
above.

2.4. Statistical analysis

All analyses were carried out in R version 3.5.1 (R Development Core
Team, 2011). To assess the growth response of the bioassays to the or-
ganic nutrient additions, a natural log response ratio was calculated fol-
lowing Elser et al. (2007):

NRx = In (%) 1)

where NR, is the nutrient response ratio for nutrient addition x, T, is the
chlorophyll a concentration of the nutrient treatment and C, is the cor-
responding control treatment response. In the case of the inorganic nu-
trient additions, the control was the sample where no nutrients had
been added. In the case of the organic nutrient additions, two different
response ratios were calculated. Where the comparison was against
the amount of chlorophyll produced compared to the inorganic N + P
treatment, the control (for both) was the control sample without nutri-
ent addition. Where the comparison was assessing if a particular organic
compound was being used, the control for DON + inorganic phospho-
rus was + inorganic P alone and the control for DOP + inorganic nitro-
gen was + inorganic nitrogen alone. The response ratios were initially
calculated for each of the three treatment replicates and then averaged.

2.4.1. Inorganic nutrient status

The inorganic nutrient limitation status of each site and date was de-
termined using the critical effect size criteria of Harpole et al. (2011)
from data resulting from bioassay incubations with inorganic nutrients
(see Table 2). This approach uses a critical threshold value of 38.5%
greater than the control values which corresponded to a P value <.05 de-
rived from a meta-analysis of many nutrient limitation studies. This crit-
ical threshold is used to evaluate whether a response is greater (or less)
than the control and is therefore indicative of a significant positive or
negative growth response. It was adopted in this study to avoid the
Type Il errors associated with low replication or statistical power that
can limit interpretation of traditional analyses. Where the inorganic nu-
trient addition, either singly or in combination, exceeded the control by
the threshold value we assigned each site and date combination to ei-
ther nitrogen, phosphorus or co-limitation by nitrogen and phosphorus,
respectively. Where the threshold was not exceeded the site and date
combination was assessed to have no overall limitation.

24.2. Causes of the organic nitrogen and phosphorus response

The first six experiments were used in this analysis as nutrient data
were unavailable for the seventh experiment. Prior to statistical model-
ling, relationships between the water chemistry data and the organic
nutrient response ratios were assessed visually to determine whether
data transformation was necessary. Where non-linear relationships
were found, the data were log-transformed and a small constant of
0.001 added to ensure there were no zeros in the data.

To identify potential drivers of the organic nutrient ratio response,
we undertook a three-stage statistical modelling approach based upon
linear mixed effects models with a Gaussian error distribution. Firstly,
a null model with only random intercept terms for site, date and organic
nutrient treatment was fit to the response data to quantify how the var-
iance in the organic nutrient response ratio was partitioned among
these variables. Secondly, potential water chemistry predictors of each
organic nutrient response ratio were added to this model as fixed ef-
fects, to determine how well these variables could account for the vari-
ability in response ratios across the different sites, dates and nutrient
treatments. To consider combined effects of multiple water chemistry
variables, a number of candidate models were constructed. Given the
high likelihood of correlations among water chemistry predictors, a cor-
relation matrix of the water chemistry variables was examined prior to
modelling, and predictor variables were only included in the same can-
didate model when the Pearson correlation value between those vari-
ables was <0.65. The null models and models with the fixed effects
were compared using Akaike Information Criterion (AIC) values,
which reflect the balance between model goodness of fit and model
simplicity. Following the identification of the best candidate water
chemistry model, we simplified this model further by sequentially re-
moving variables with the lowest F statistic value and comparing the
resulting model AIC and R? value to the previous models. The most op-
timal model was then determined as the most simple model with the
lowest AIC and highest R?. These models all contained a nested random
intercept term for each site and date and a separate random intercept
term for organic nutrient treatment to account for the structure of the
data. Thirdly, individual models of responses to specific organic chemi-
cal treatments were constructed, with a random intercept term for site,
using the same model selection procedure detailed above. These models
allowed assessment of whether the drivers of the chlorophyll a growth
response differed according to the organic chemical used. Model resid-
uals were assessed visually for conformity to underlying model assump-
tions of normality, homogeneity of variance, and independence of
observations. Analyses were conducted using the Ime4 package in R
(Bates et al., 2014)

2.4.3. Dissolved organic nutrient concentration effects

To examine the effect of the concentration of dissolved organic nu-
trients on growth, chlorophyll a concentrations from the different or-
ganic nutrient treatments from the May and October 2017
experiments were modelled using a linear model for each site and
chemical, followed by post-hoc testing among treatment pairs, with ad-
justed p values to account for multiple testing. We compared whether
growth responses at different dissolved organic nutrient concentrations
were significantly different from the respective inorganic nutrient con-
trol. Prior to the statistical analysis, chlorophyll a concentrations were
natural logged to ensure a more even distribution of observations across
the explanatory variable concentration gradient. Finally, model resid-
uals were again visually assessed to ensure conformity to model
assumptions.

3. Results
3.1. Nutrient concentration and limitation

The total nitrogen (TN) concentration across the six sites ranged 26-
fold from 0.34 to 8.85 mg L™, and the site average varied 15-fold, while
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the fraction of TN that was DON, on average, varied from 7% at South
Newton and Burcombe to 80% at Nant-y-Brwyn (Table 1). The total
phosphorus (TP) concentrations varied 100-fold from 0.005 to
0.50 mg L™ across sites and the site average varied 34-fold, with the
contribution of the DOP fraction to TP varying from 10% at Priors Farm
and Burcombe to 57% at Glasgwm (Table 1). Inorganic nutrient concen-
trations were consistently low at Nant-y-Brwyn and Glasgwm, where
soluble reactive phosphorus (SRP) concentrations were, on average,
<0.005 mg P L™ and dissolved inorganic nitrogen (DIN) concentrations
~0.1 mg N L~'. DOC concentrations varied 6-fold across sites and be-
tween the catchments, being highest at Nant-y-Brwyn and Priors
Farm, intermediate at Glasgwm and lowest at Bodnant, Burcombe and
South Newton.

The bioassays assessing nutrient limitation by addition of inorganic
nutrients revealed a wide range of variability in response across sites
and over time (Fig. 2). Phosphorus was the most common limiting nu-
trient, with co-limitation by both nitrogen and phosphorus also occur-
ring frequently and at all sites on at least one occasion. Nitrogen
limitation occurred at three sites, in particular at Nant-y-Brwyn where
the phytoplankton were strongly co-limited or nitrogen limited
throughout the year. Priors Farm was the most variable in nutrient lim-
itation status over time, with no-limitation, co-limitation, nitrogen lim-
itation or phosphorus limitation occurring on different dates
throughout one year. In contrast, the site at Burcombe was mostly phos-
phorus limited.

3.2. Response to DON and DOP addition

There was a significant positive effect of all four DON compounds,
urea, glycine, L-glutamic acid and N-acetyl glucosamine, on phytoplank-
ton growth for two to five sites for one or more dates (Fig. 3a). In partic-
ular, Glasgwm and Nant-y-Brwyn had a significant response to all

compounds throughout the year. The other sites showed a more vari-
able response, with a greater number of positive responses between

Glasgwm-

Nant-y-brwyn-. Q . .

Bodnant- @ o @

Site

Priors Farm- © (] ® O

South Newton- . Q . ‘

@

e © @

June and September. The frequency of utilisation of the DON com-
pounds was lowest in South Newton and Burcombe; there were five oc-
casions when a significant negative response to their addition occurred
at South Newton. However, throughout much of the year the addition of
the DON compounds had no significant effect across these sites and
those at Bodnant and Priors Farm.

Significant positive effects of DOP compounds on phytoplankton
growth were more common than similar effects of DON compounds
(Fig. 3b). Significant growth responses to both Phytic acid and Methyl
phosphonate addition were less frequent than responses to the addition
of Glucose-6-phosphate and Methylumbelliferyl-phosphorus. The
Glasgwm and Nant-y-Brwyn sites had the highest frequency of signifi-
cant positive responses throughout the year for all compounds, while
Priors Farm had the lowest.

Dissolved organic nutrient response ratios for both DON and DOP
compounds were compared to the response ratios where equivalent
concentrations of inorganic nitrogen and phosphorus were added. For
the majority of samples, the combined addition of inorganic nitrogen
and inorganic phosphorus produced the largest growth response in
the phytoplankton. However, on a number of occasions, at different
sites and for different compounds, growth resulting from organic nutri-
ent addition exceeded that resulting from inorganic nutrient addition
(Fig. 4a and b). For the DON compounds, this occurred on 67 occasions
out of a total of 168, while for the DOP compounds it occurred on 39 oc-
casions out of 168.

3.3. Effect of water chemistry on dissolved organic nutrient response

The null (random effects only) model indicated that chlorophyll a
response ratios for the DON bioassays (DON + inorganic phosphorus
vs + inorganic phosphorus alone) were more variable among sites
(82.5% of total variance) than by date or compound (14.4% and 0.5% of
total variance, respectively). The same pattern occurred for the DOP
chlorophyll a response ratio (DOP + inorganic nitrogen vs + inorganic

Nutrient limitation
@ colimitation N and P
@ Nlimitation

O No overall limitation
@ P limitation

Response ratio

1]
1

2

O
O
O 3
O

Burcombe- . ‘ Q @ . ® @

Feb)MarAbr Jﬁn Al:l_g Sép N6v Jén
Experiment

Fig. 2. Seasonal and site-based variation in nutrient limitation assessed by the phytoplankton biomass response to bioassays of inorganic N, P and NP.
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Fig. 3. Seasonal and site-based variation in the use of the fixed concentration of a) DON and b) DOP compounds assessed by the phytoplankton biomass response to bioassays in 2016/17.

nitrogen alone) null model, although variability between compounds
was higher than for the DON compounds (55.4%, 11.8% and 15.5% of
total variance, respectively). In both cases, the addition of fixed effects
for water chemistry explanatory variables improved the model fit
based on a comparison of the AIC values and reduced the variability as-
sociated with the random effect of site. Following model selection for
the DON response ratio full model, the most optimal model contained
TN and ammonia. Both variables had significant negative effects on
the DON response ratio (Table 3, Fig. 5a and b), indicating that the phy-
toplankton showed a lower growth response to the addition of DON
compounds as the ambient concentrations of TN and ammonia in the
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water increased. Models of the individual DON compounds generally
reflected the same result as that of the full model, with a significant neg-
ative effect of TN, except for L-glutamic acid where DON:TN had a signif-
icant positive effect on the DON response ratio, while ammonia and DOP
concentrations had a significant negative effect on the response ratio
(Appendix Table A.1).

Following model selection of the DOP chlorophyll a response ratio
full model, the most optimal model contained DOC and SRP, where
both variables had a significant negative effect on the chlorophyll a re-
sponse to DOP additions (Fig. 5c and d). This pattern also occurred
across the individual DOP compound models, except for methyl

(b)

B Glucose-6 P +N

o Phytic acid +N - | 3
A Methylumbelliferyl-P +N
< - * Methyl phosphonate +N

Organic P response ratio

Inorganic NP response ratio

Fig. 4. Comparison of the response ratios for the addition of the DON +P (a) and DOP+N (b) with the inorganic nitrogen and phosphorus addition. The dotted line denotes the 1:1 line.
Values above the 1:1 line denote samples where the response of phytoplankton biomass to the organic compound was higher than the response to inorganic N and P addition.
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Table 3

Model coefficients, standard errors and F statistic for the dissolved organic nitrogen and
phosphorus treatments. Significant coefficients terms are shown in bold with *** denoting
P<.001,"™ P<.01and * P<.05.

Model Explanatory Coefficient Standard F
variable error statistic
Organic nitrogen response ratio 2% TV —L17m 012 88.12
& sen resp Log —034" 012 7.79
for all compounds .
Ammonia
Organic phosphorus response Log SRP —0.48"*  0.05 79.89
ratio for all compounds DOC —0.05* 0.02 8.63

© ]
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phosphonate where SRP alone was the most optimal model (Appendix
Tables A.2).

3.4. Effect of dissolved organic nutrient concentration on bioavailability

The use of dissolved organic nutrient compounds by river phyto-
plankton varied according to concentration across the two sites and sea-
sons tested (Tables 4 and 5 and Figs. 6 and 7). Significant positive
growth effects at Nant-y-Brwyn occurred for most of the DON com-
pounds at the highest concentrations (90 and 9 umol L™!) in both sea-
sons. In addition, three compounds, urea, glycine and glucosamine,
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Fig. 5. Model fit of the key water chemistry drivers for DON use (a and b) and DOP use (c and d). Solid black line denotes model fitted slope and dashed lines represent at 95% confidence

interval.
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Table 4

Significant chlorophyll a growth responses to varying dissolved organic nitrogen compound additions in spring and autumn 2017. + denotes a positive growth response, — a negative

growth response, and ns no significant response.

Nant-y-Brwyn

South Newton

Concentration (mg N L™1)

Concentration (mg N L™1)

Chemical 1.261 0.126
Urea + P
Glycine + P
Glutamate + P
Glucosamine + P
Urea + P
Glycine + P
Glutamate + P
Glucosamine + P

Spring ns

ns
ns
ns

Autumn

A+t
T e e

0.039

0.013 1.261 0.126 0.039 0.013
+ - ns ns ns
ns ns ns ns ns
ns ns ns ns ns
ns ns ns ns ns
+ ns ns ns ns
ns ns ns ns ns
+ ns ns ns ns
ns ns ns ns ns

caused significant growth at 2.8 umol N L™! in spring. Urea and -
glutamic acid produced significant positive growth at the lowest con-
centration in the autumn, while urea produced a significant positive re-
sponse at this concentration in spring. In contrast, none of the
concentrations of the DON compounds generated a significant positive
growth response at the South Newton site, while in spring, urea pro-
duced a significant negative growth response relative to the control
(Fig. 6). DOP responses were similar, in that the significant positive
growth responses occurred at the highest concentrations at Nant-y-
Brwyn in both seasons and at South Newton in spring. Glucose-6-
phosphate and Methylumbelliferyl phosphorus only produced signifi-
cant positive growth at South Newton in spring at the highest concen-
tration. Glucose-6-phosphate produced significant positive growth at
all concentrations at Nant-y-Brwyn in spring (Fig. 7). These results for
the growth response to the dissolved organic nutrient additions
reflected the results of the inorganic nutrient bioassays. In 2017, nutri-
ent limitation was similar to the results from 2016, with the nitrogen
limitation in spring and co-limitation of nitrogen and phosphorus in au-
tumn at Nant-y-Brwyn and phosphorus limitation in both spring and
autumn at South Newton.

4. Discussion
4.1. Seasonal and spatial changes in nutrient limitation

We show that there are large seasonal changes in nutrient limitation
and the potential for river phytoplankton growth utilising dissolved or-
ganic nutrient compounds in the simplified system of a microcosm ex-
periment, supporting hypothesis 1. Although the determination of
nutrient limitation at sites is frequently restricted to single samples or
seasons, similar seasonal changes in nutrient limitation have been
shown previously. For example, in lakes, Maberly et al. (2002) showed
a transition from single nutrient limitation, particularly of P, in spring
to co-limitation in summer for phytoplankton and periphyton in 30
UK upland lakes. Similarly, in detailed studies on four lowland lakes,

Table 5

Kolzau et al. (2014) showed large seasonal variation in nutrient limita-
tion in three lakes with P-limitation most prevalent in spring and N-
limitation or co-limitation most prevalent later in the year. A similar
pattern is seen at the South Newton site, but in our study there also ap-
pears to be greater variability in the nutrient limitation pattern across
sites, with the headwater streams (Glasgwm, Nant-y-Brwyn and Priors
Farm) tending to show more temporal variation than the sites further
down the river network. This greater variability in headwater nutrient
limitation was also found by Jarvie et al. (2018) when assessing limita-
tion using nutrient ratios and concentrations across the UK. These sea-
sonal changes in nutrient limitation largely result from input to and
removal from different nutrient pools throughout the growing season
and more variation may be expected at headwater river sites caused
by the high surface area to flow volumes and lower dilution capacity
for anthropogenic inputs (Bernal et al.,, 2015; Triska et al., 2007).

Within each site, the concentration of DON and DOP was generally
less variable than that of the inorganic fractions DIN and SRP. This
could imply that these dissolved organic nutrient forms potentially pro-
vide a more consistent supply for algal growth throughout the year, or it
may also represent a residual nutrient pool that is not being utilised ei-
ther through lack of bioavailability or limitation by other factors that
could restrict their uptake (Mahaffey et al., 2014). This lower variability
in DOP concentration compared to inorganic P has also been reported in
the marine environment occurring both temporally and spatially over a
number of years in the north Pacific (Bjérkman et al., 2018). It should
however be noted that we are using a pore-sized operational definition
of TDN and TDP and therefore colloids and small particles, possibly with
lower bioavailability, may also contribute to the dissolved pool of nutri-
ents from which we derived DON and DOP concentrations.

4.2. Relationship between dissolved organic nutrient use and inorganic nu-
trient concentration and limitation

Evidence of the potential for dissolved organic nutrient use by
river phytoplankton was highest, both for DON and DOP, in the

Significant chlorophyll a growth responses to varying dissolved organic phosphorus compound additions in spring and autumn 2017. + denotes a positive growth response, — a negative

growth response and ns no significant response.

Nant-y-Brwyn

South Newton

Concentration (mg PL™1)

Concentration (mg PL™")

Chemical 0.186 0.019
Glucose 6-phosphate + N + +
. Phytic acid + N + +
Spring Methylumbelliferyl phosphate + N + ns
Methyl phosphonate + N ns ns
Glucose 6-phosphate + N + +
Autumn Phytic acid + N + ns
Methylumbelliferyl phosphate + N + +

Methyl phosphonate + N ns ns

0.006 0.002 0.186 0.019 0.006 0.002
+ + + ns ns ns
ns ns ns ns ns ns
ns ns + ns ns ns
ns ns ns ns ns ns
ns ns ns ns ns ns
ns ns ns ns ns ns
ns ns ns ns ns ns
ns ns ns ns ns ns
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Fig. 6. The mean and standard deviation of the bioassay growth response of river phytoplankton to varying concentrations of DON compounds in spring and autumn 2017 at Nant-y-Brwyn

(aand c¢) and South Newton (b and d).

sites where the underlying total nutrient concentrations were low-
est, in particular at the Nant-y-Brwyn and Glasgwm sites where inor-
ganic nutrient concentrations were typically below the values
considered limiting in river systems (Jarvie et al., 2018; Maberly
et al., 2002; Mainstone and Parr, 2002). At the other sites, DON use
reflected the patterns seen in nutrient co-limitation, with a tendency
for utilisation of more compounds during the summer months. These
results, showing DON and DOP use reflect patterns in ambient nutri-
ent concentration and limitation, support hypothesis two. DOP use
was more widespread than that of DON use, which again probably
reflects the higher frequency of P limitation across the sites. The dif-
fering composition of the phytoplankton communities and their in-
teraction with heterotrophic bacteria across these sites is also
likely to have influenced the utilisation of the DON and DOP com-
pounds and in turn be influenced by the prevailing nutrient environ-
ment. The interpretation of these results should, however, be made

in the context of the experimental design of the study and the
limitation that microcosms cannot fully replicate real world
conditions.

Despite the potential for dissolved organic nutrient use being
most commonly observed in the nutrient-poor sites, we also found
significant positive growth effects in the phytoplankton community
in response to dissolved organic nutrient additions at highly
nutrient-enriched sites. For example, at Priors Farm, where nutrient
concentrations were above limiting concentrations throughout
2016, significant positive growth was found for all compounds on
at least one occasion. The additional energetic costs of upregulating
organic molecule transporters or extracellular enzymes has gener-
ally been assumed to inhibit dissolved organic nutrient use under
conditions of sufficient inorganic nutrient supply. However, there is
also some evidence that organic compounds may be utilised irre-
spective of the prevailing background nutrient concentration by
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Fig. 7. The mean and standard deviation of the bioassay growth response of river phytoplankton to varying concentrations of DOP compounds in spring and autumn 2017 at Nant-y-Brwyn

(aand ¢) and South Newton (b and d).

either bacterial or algal communities in other environments
(Bjorkman et al., 2018; Diaz et al., 2018). This suggests that the
growth response at different sites is likely to be closely linked to
the specific compound a community is exposed to and the composi-
tion, in terms of algae and microbial community. We have not
attempted to infer the mechanisms of dissolved organic nutrient
uptake, as we are only observing the final growth stimulation of
the algal community in this study. However, it is highly likely that
there are both direct and indirect pathways for nutrient uptake in
these systems, depending on the compound, with the microbial
community potentially playing an important role in remineralising
organic nutrient compounds. For example, the urease gene that
breaks down urea to ammonia and CO, internally is present in
cyanobacteria and diatoms, but absent in green algae (Kanamori
et al.,, 2005; Veaudor et al., 2019). It also implies that dissolved or-
ganic nutrients may be supplementing or in some instances

replacing inorganic nutrient use to support algal growth, contribut-
ing to eutrophication in these water bodies.

4.3. Dissolved organic nutrient compounds as growth inhibitors or
enhancers

The DON compounds glycine, L-glutamic acid and urea produced a
significant negative growth effect on two occasions at South Newton
and on one occasion for urea at Priors Farm. This may be due to an inhib-
itory effect on uptake of these compounds caused by the high back-
ground concentrations of inorganic N forms, which has been
previously found in the case of urea (Solomon et al., 2010). High con-
centrations of organic compounds such as glutamate and other amino
acids have also been reported to be inhibitory to growth in some algal
species (Baldia et al., 1991; Chapman and Meeks, 1983). The initial
algal community composition of the sites may also have played a role
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in the growth response, where the affinity of different algal groups to
different N sources has been found to alter the dominant species con-
tributing to the algal biomass (Donald et al., 2011; Glibert et al., 2004).
If the dominant species at a site were not able to assimilate the DON ad-
dition, and community reorganisation, including competition for nutri-
ents from heterotrophic bacteria, occurred in response to the addition, it
may be possible that the phytoplankton growth in the DON addition
treatments was lower than that of the controls, which had ambient nu-
trient concentrations and an addition of inorganic P. It should be noted
though, that community reorganisation in response to dissolved organic
nutrient addition is also likely to have been influenced by the experi-
mental design and therefore may not fully reflect community changes
in the natural environment.

Enhanced growth of river phytoplankton on DON and DOP com-
pounds over and above the expected maximum yield of the combined
inorganic N and P treatment was found on 67 site-date combinations
for DON and 39 site-date combinations for DOP. This additional growth
could be a result of the addition of carbon within the system, which can
be used as an additional energy substrate to drive bacterial
remineralisation of organic molecules, freeing inorganic or lower mo-
lecular weight dissolved organic N and P for further algal growth. Car-
bon supplementation has previously been found to increase alkaline
phosphatase activity that was, in turn, highly correlated with bacterial
density and suggestive of increased microbial remineralisation of P in
other experimental studies (Anderson, 2018). It has also been observed
that high rates of microbial hydrolysis of adenosine-5’-triphosphate re-
sulted in net release of inorganic P into seawater when it exceeded the
requirements of the microbial community (Bjorkman et al., 2018).

4.4, Effect of water chemistry on organic nutrient bioavailability

The statistical models confirmed that nutrient limitation and poten-
tial for use of dissolved organic nutrients are closely linked to ambient
nutrient concentrations (hypothesis three). The significant driver of
the DON usage was the concentration of TN and ammonia in the
water. For DOP, the most significant driver was found to be the ambient
SRP concentration in the water. These findings imply that, as may be ex-
pected, phytoplankton biomass in nutrient-rich sites, responded less to
the DON and DOP compounds than in nutrient-poor sites. However, re-
sidual variation in the models is likely to reflect our finding that signif-
icant growth on DON and DOP compounds also occurred at more
enriched sites. The underlying reasons for this are likely to reflect the
adaptation of the phytoplankton and microbial communities, as agents
of remineralisation, to their prevailing nutrient environment. This is
both in terms of species composition and an upregulation of enzyme ac-
tivities and other organic molecular transporter mechanisms where
more readily assimilated inorganic molecules are scarce. The additional
variance explained by adding the nutrient concentration data into the
null model was nearly all attributable to the site variable, implying
that these conditions are likely to reflect the site specific adaptation or
composition of the phytoplankton and bacterial communities to the nu-
trients they are exposed to (Diaz et al., 2018; Donald et al., 2011). The
consistency in these drivers was also present in the response ratios for
individual chemicals, which suggests that, within this dataset, the driver
of use is generally not specific to the organic molecule being used. How-
ever, we did find that for L-glutamic acid the positive relationship with
DON:TN was the most important explanatory variable, along with am-
monia and DOP concentration. This may indicate that usage of this com-
pound has a more complicated relationship to nutrient enrichment than
solely the ambient TN concentration. The significant negative response
to the underlying DOC concentration of the DOP response ratio appears
potentially counterintuitive, given the general pattern of lower inor-
ganic nutrient concentrations with higher DOC concentration. However,
this result may be evidence of enhanced competition of P for heterotro-
phic growth in environments where carbon is in abundant supply
(Currie and Kalff, 1984) or be related to the chemical composition of

DOC at different sites and times reflecting differences in the proportion
of labile vs refractory compounds. Further research is required to disen-
tangle these possibilities.

4.5. Effect of dissolved organic nutrient concentration on bioavailability

The growth response to differing concentrations of DON and DOP
compounds followed the expected pattern of significant use at the
highest concentrations and in the location where background nutrient
concentrations tended to be lowest, confirming hypothesis four. This
growth response also reflected the inorganic bioassay results, with N
and co-limitation at Nant-y-Brwyn and P limitation at South Newton.
However, we also found some evidence that the simplest DON and
DOP forms, urea and glucose-6-phosphate, were producing a significant
algal growth response at all concentration levels at the Nant-y-Brwyn
site in spring. This indicates that these compounds are capable of
being utilised for algal growth, whether directly or indirectly via bacte-
ria, even at concentrations which are likely to be more similar to the low
natural background concentrations of these specific compounds, since
they are likely to have high turnover rates (Bronk et al., 2007). Local
sources of these compounds in this type of catchment include sheep
urine from the extensive sheep grazing on moorland areas, suggesting
that stream biota may be acclimated to these compounds as a nutrient
resource. The natural communities tested here, particularly at the low
nutrient Nant-y-Brwyn site, are likely to be well adapted to scavenging
these particular forms of dissolved organic nutrient at very low concen-
trations (Moschonas et al., 2017).

5. Conclusions

An experimental ex-situ microcosm approach has been used to
study nutrient limitation and the potential for dissolved organic nutri-
ent use in river phytoplankton, providing new insights under controlled
laboratory conditions into the role of dissolved organic nutrients in riv-
ers along a nutrient gradient. Nutrient limitation of riverine phytoplank-
ton in this study varied spatially and seasonally, with all sites showing
some variability in whether they were P, N or co-limited during the
year, supporting hypothesis one. In accordance with hypothesis two,
DON and DOP compounds differed in their algal bioavailability. The
DON compounds generally showed similar levels of bioavailability
among compounds, although there was limited evidence for occasional
significant negative growth response. DOP compounds tended to stim-
ulate growth more frequently than the DON compounds, likely
reflecting the greater occurrence of P limitation at the sites in this
study. However, we also found some evidence for growth enhancement
on organic nutrient substrates above that on inorganic nutrient alone.
Ambient nutrient concentrations were significant predictors of the
growth response to dissolved organic nutrient additions.TN and ammo-
nia concentration significantly explained the variation in DON growth
response and SRP concentration was the most significant predictor of
the DOP growth response, along with DOC concentration, supporting
Hypothesis three. The concentration of the organic nutrient influenced
bioavailability (Hypothesis four), however for the simplest compounds
tested, urea and glucose-6-phosphate, there was evidence of growth
even at the lowest concentration of nutrient addition. We conclude,
therefore, that DOM is a potential nutrient resource used to support pri-
mary production in freshwaters, and that the specific algal growth re-
sponse is likely to be controlled by site-specific conditions and
adaptations. We argue that DOM is an overlooked nutrient resource
for primary producers, and could be a key contributor to the process
of eutrophication in freshwaters, particularly in relatively unenriched
sites, where site-specific adaptations supporting the utilisation of dis-
solved organic nutrients may facilitate enhanced algal growth should
fluxes of DOM increase.
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