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Abstract We describe the basis of a theory for interpreting measurements of two key biogeochemical
fluxes—primary production by phytoplankton (p, μg C ⋅ L−1 ⋅ day−1) and biological carbon export from
the surface ocean by sinking particles (f , mg C ⋅ m−2 ⋅ day−1)—in terms of their probability distributions.
Given that p and f are mechanistically linked but variable and effectively measured on different scales,
we hypothesize that a quantitative relationship emerges between collections of the two measurements.
Motivated by the many subprocesses driving production and export, we take as a null model that large-scale
distributions of p and f are lognormal. We then show that compilations of p and f measurements are
consistent with this hypothesis. The compilation of p measurements is extensive enough to subregion by
biome, basin, depth, or season; these subsets are also well described by lognormals, whose log-moments
sort predictably. Informed by the lognormality of both p and f we infer a statistical scaling relationship
between the two quantities and derive a linear relationship between the log-moments of their distributions.
We find agreement between two independent estimates of the slope and intercept of this line and show
that the distribution of f measurements is consistent with predictions made from the moments of the p
distribution. These results illustrate the utility of a distributional approach to biogeochemical fluxes.
We close by describing potential uses and challenges for the further development of such an approach.

1. Introduction

Two of the most important processes in the carbon cycle are net primary production by phytoplankton (NPP;
here we use p [μg C ⋅ L−1 ⋅ day−1]) and the export flux of sinking biogenic particles out of the upper ocean
(f [mg C ⋅ m−2 ⋅ day−1]; Williams & Follows, 2011). p is typically defined either as the amount of photosynthet-
ically fixed carbon available to first-level heterotrophs in an ecosystem (Osmond, 1989) or as the difference
between autotrophic photosynthesis and respiration (Lindeman, 1942). f is preferably defined as the down-
ward flux of particulate organic carbon (POC) at the base of the euphotic layer zeu (Buesseler & Boyd, 2009)
but operationally is often defined as the flux though a particular depth, for example, 100 m, because most
measurements of POC flux historically have not been taken at zeu.

Much remains unknown about the variability of p and f . Both p and f are influenced by a myriad of biological,
physical, and chemical processes. Measurements of each range over several orders of magnitude (Buesseler &
Boyd, 2009; Buitenhuis et al., 2013) and exhibit substantial variability. The interpretation of the most common
method of measuring p, based on radiocarbon uptake, is debated (e.g., Marra, 2009), and f measurements
are notorious for having large uncertainties (e.g., Buesseler, 1991). However, in order to gain a thorough
understanding of production and flux we must characterize their variability.

The relationship between f and p is also of interest; mass conservation suggests an inextricable dependence
of f on p as all of the sinking material that comprises f must previously be fixed via p. However, because many
other fluxes, for example, heterotrophic respiration, affect the organic carbon balance of the surface ocean,
their quantitative relationship is not immediate (Williams & Follows, 2011). Multiple relationships have been
proposed specifying f as a function of local depth-integrated production  (mg C ⋅ m−2 ⋅ day−1; e.g., Eppley
& Peterson, 1979; Dunne et al., 2005; Laws et al., 2011; Maiti et al., 2013), often a scaling relationship with an
error term which accounts for processes the model does not resolve. However, direct comparison of these two
measurements is challenging; these relationships have indicated  has little predictive power for f . Figure 1
shows Southern Ocean f and  data compiled by Maiti et al. (2013), whose correlation is nonsignificant at the
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Figure 1. Scatterplot of particulate organic carbon flux (f ) and
depth-integrated net primary production by phytoplankton ( ) data from
Maiti et al. (2013). Notice the lack of a clear correlation between the two.
Metrics reported are from Pearson’s correlation: The fraction of variance
of explained (R2) and the p value of the correlation. Compare to Figure S2.

0.05 level (Figure 1), illustrating the difficulty in understanding the relation-
ship between f and p—though other data sets have suggested stronger
relationships (e.g., Dunne et al., 2005; supporting information S1).

This lack of predictive power is in no small part because p and f can
become locally decoupled, that is, not consistently comparable pointwise
(Buesseler, 1998). p is measured on the scales of liters and days; f is effec-
tively measured on the spatial scale of kilometers and/or the time scale of
weeks (which due to mixing also implies far larger spatial scales; Buesseler,
1991; Marra, 2009; Siegel & Deuser, 1997; sections 3.1 and 3.3). The variable
nature of both p and f therefore implies that a given  measurement can
be a poor measure of the productivity occurring in the waters sampled by
a colocated f measurement.

Given the mechanistic relationship between p and f , it is nonetheless rea-
sonable to expect that a quantitative relationship between measurements
of the two should emerge at larger scales. In other words, even if p and
f can become locally decoupled, it is still plausible that the p characteris-
tics of a region could be predictive of the f characteristics of that region.
Here we adapt previous approaches quantitatively relating p and f to
larger scales by analyzing collections of measurements—describing these
in terms of their probability distributions and then inferring a relationship
between the two quantities via their distributions’ moments.

One way to understand variable processes such as p and f is through their probability distributions.
Rather than trying to predict the value of every measurement, can the underlying distribution that the values
are “drawn” from be understood? How does the distribution (or its parameters) differ for different envi-
ronmental conditions? Can two quantities be related not by a pointwise function but via their probability
distributions? Here we develop the basics of such an approach for p and f (Figure 2). We hope our efforts can
provide direction toward a more complete theory.

We argue that the lognormal distribution is a natural null model for both p and f on large scales. We then
show that an extensive compilation of 14C measurements for p (Buitenhuis et al., 2013) and a large compilation
of sediment trap and 234Th measurements for f (supporting information S2) are well described by lognor-
mal distributions. Subregions of the p compilation are also well described by lognormals, whose moments
sort according to oceanographic intuition, indicating that the lognormal is a general and robust feature of
large-scale p variability. In agreement with recent models for the relationship between f and  (Britten et al.,
2017; Laws et al., 2011; Maiti et al., 2013), we posit a statistical scaling relationship between f and p, noting
that it is the only relationship mapping one lognormal into another (Campbell, 1995); we then demonstrate
that the moments of the two distributions should be linearly related via this scaling relationship. We then find
agreement between two independent approaches to estimate the scaling relationship’s parameters—one
an out-of-sample test utilizing the log-means of p and f from three open ocean time series stations, and the
other subregioning the p and f data into three biomes, following Banse (1992). We show that the prediction
made by this scaling relationship agrees with the log-moments of the global distributions p and f and with
the log-standard deviations of the time series’ and biomes’ distributions. We close by discussing advantages,
potential uses, and limitations of a distributional approach.

2. Theory
2.1. Lognormal Distribution as a Null Model
What distribution might be expected to underlie p or f ? The processes that affect the distributions are both
structured and stochastic. Structured processes are governed by large-scale geophysical fluid dynamics and
climate, while stochastic processes are inherently variable. For instance, the average nutrient supply to the
euphotic layer over a region should directly shift the mean of the distribution for p or f , while turbulence
can drive local fluctuations in nutrient supply (Falkowski & Ziemann, 1991). Here we explore what is
expected when the distributions for p and f are driven by a combination of many processes, both structured
and stochastic.
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Figure 2. Schematic of approach: p and f data from the global ocean are grouped into probability distributions and the
probability distributions are then analyzed. Production and flux are then related to each other (and to other quantities)
via the moments of their probability distributions.

We begin with the observation that both p and f are complex processes, occurring as the result of a number
of subprocesses. In the case of p, a single carbon fixation event (i.e., carbon being fixed by phytoplankton at a
particular place and time) requires the occurrence of a number of subevents: the presence of a phytoplankton,
the absence of a predator that would consume the phytoplankton, the presence of light and various
nutrients at suitable concentrations, and the presence of appropriate temperature and physical conditions
(Durham et al., 2013; Eppley, 1972; Marra, 1978; Sverdrup, 1953).

In the case of f , a single export event (in the microscopic sense, i.e., a particle sinking out of the upper ocean)
requires that a particle be generated by p (and thus all of the above subprocesses), that it not be consumed
or remineralized by heterotrophic processes (Steinberg et al., 2008), that it not be deflected by flow (Siegel &
Deuser, 1997), that it not be disintegrated by shear processes (Alldredge et al., 1990), and that it be of sufficient
density and size to overcome the viscosity of water and sink (Alldredge & Silver, 1988; Jackson & Burd, 1998;
Smayda, 1970). Thus, we can consider the completion of a p or f event as dependent on the completion of
many subevents.

Given the general description of p and f as being composed of many subprocesses, the natural candidate
for the probability distribution of both is the lognormal distribution. By the Central Limit Theorem
(Montroll & Shlesinger, 1982; Shockley, 1957), the probability of completing any task that relies on the suc-
cessful completion of many subtasks is lognormal. To illustrate, we adapt an example from Shockley, (1957;
Montroll & Shlesinger, 1982), who used a similar model to explain the observed lognormal distribution
of papers published by researchers. Let the fixation of carbon require the occurrence of n subprocesses
(in a general sense, including the absence of predation), each of which occur at a given place and time with
probabilities q1, q2,… , qn. The probability Q that a phytoplankton fixes carbon at that place and time is then
their product: Q = q1q2 … qn. Therefore, taking the log of both sides,

ln Q = ln q1 + ln q2 +…+ ln qn (1)
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so by the Central Limit Theorem, the distribution function of ln Q (and therefore the sum, that is, ln p), is the
normal distribution, irrespective of the individual subprocesses. Hence, given a few weak conditions (Montroll
& Shlesinger, 1982; supporting information S3), the distribution function for p should be lognormal.

Equivalently, lognormal distributions emerge from a large number of variable, multiplicative factors (Limpert
et al., 2001), so the lognormal may be thought of as resulting as the product of variable environmental and
compositional effects. The lognormal distribution, which has the form

 (ln x;𝜇, 𝜎) = 1

𝜎

√
2𝜋

exp
(
−(ln x − 𝜇)2

2𝜎2

)
(2)

is agnostic of the underlying subprocesses and reduces all of the complexity into two parameters—the
log-mean 𝜇 and the log-standard deviation 𝜎—providing a simple way to describe the quantity in question.

Thus, we use the lognormal as a null hypothesis that p and f occur as the result of many distinct require-
ments or equivalently that they are influenced by many variable compositional and environmental factors.
We note that f involving additional factors does not necessarily imply the 𝜎 of f ’s distribution will be larger
because of possible correlations between these factors; for instance, one might expect a higher abundance of
detritivores (who consume material that could otherwise contribute to f ) in areas where sinking particles are
more abundant.

The lognormal distribution has enjoyed some utility in ocean ecology and carbon cycling. Some optical vari-
ables like chlorophyll appear to be lognormally distributed, and it has been recognized that these distributions
could be useful for estimating primary productivity from satellite data (Campbell, 1995). In a terrestrial system
Forney and Rothman (2012) showed decomposition rates of organic carbon followed a lognormal distribu-
tion. In the surface ocean, ecological abundance data are also lognormal (Luo et al., 2012). When biology is
involved, one often encounters the lognormal distribution (Koch, 1966).

2.2. Relating f and p by Their Distributions’ Moments
Relating f to p via their probability distributions can circumvent the decoupling problem discussed in section
1, because measurements are no longer related pointwise; the question becomes how the distribution of f
values is related to the distribution of p values. If we hypothesize that p and f are lognormally distributed, can
we describe the parameters of f ’s distribution as a function of the parameters of p’s distribution?

As previous studies have posited a scaling relationship between export efficiency ef and depth-integrated
production  (Laws et al., 2011; Maiti et al., 2013), and a scaling relationship is consistent with p and f being
lognormally distributed (supporting information S4), we hypothesize a scaling relationship between f and p,
that is,

f = eC p𝛼 (3)

where C and 𝛼 are constants, e is the base of the natural logarithm, and the equality holds in a statistical sense.
If p is lognormally distributed according to

ln p ∼  (𝜇p, 𝜎p) (4)

and f scales with p according to equation (3), this implies that f is lognormally distributed according to

ln f ∼ 
(
𝛼𝜇p + C, 𝛼𝜎p

)
(5)

which therefore implies the log-moments of f and p are related according to

𝜇f = 𝛼𝜇p + C, (6)

𝜎f = 𝛼𝜎p (7)

A full derivation of the above is given in supporting information S4. Estimates of C and 𝛼 can thus be used
to predict the log-moments of f (and hence the distribution of f ) from those of p. Because 𝜇 is a lower-order
moment than 𝜎, it can be estimated more accurately (Flannery et al., 1992); therefore, in section 4.3 we
estimate C and 𝛼 via equation (6).

CAEL ET AL. DISTRIBUTIONAL THEORY FOR NPP & POC FLUX 957



Global Biogeochemical Cycles 10.1029/2017GB005797

3. Materials and Methods
3.1. Compilation of p Measurements
The most common in situ measurements of p are those taken by the “14C method,” which form much of
the basis of our understanding of p. The method is discussed comprehensively elsewhere (Marra, 2009;
Pei & Laws, 2013; Peterson, 1980); in brief, p is inferred from differences in light and dark bottles incubated with
isotopically labeled (14C) carbon dioxide. The principal issues discussed in the literature are the interpretation
of metabolic terms and the accuracy with which in vitro measurements reflect in situ conditions. Individ-
ual sample errors are less concerning when considering logarithmic probability distributions. Additive errors
would yield significant measurement artifacts for small p samples but increasingly negligible ones for larger
p values; multiplicative errors would affect estimates of 𝜎 but not the shape of the probability distribution
itself. In any case, as long as natural variability is larger than measurement error, it is a plausible assumption
that the statistics of 14C measurements reflect those of p itself.

Recently, Buitenhuis et al. (2013) compiled an extensive database of 50,050 measurements of p via the 14C
method, spanning the ocean in time, depth, and latitude-longitude. This provides an excellent database with
which to test the lognormal null model. See Buitenhuis et al. (2013) for a complete description of the compila-
tion. We augment the Buitenhuis et al. (2013) compilation with data from the CARIACO time series (available
at http://www.imars.usf.edu/cariaco; accessed 7 June 2017) in order to compare with the f data from that time
series in section 4.3. To minimize the effect of additive errors, we compare the lognormal distribution to the
empirical distribution of p 10% of the distribution’s peak height in log-space, which we determine by a relative
residual error analysis (supporting information S5). This operation excludes 16% of the observations where
p> 0, but the excluded observations account for <0.01% of the total primary production in the database. For
consistency we use the same threshold for all analyses of p data throughout the manuscript. Figure 3 shows
the locations of these p measurements. Our results are not sensitive to factor of two changes in this threshold.

3.2. Subregions of p
This total set of p measurements is large enough to subregion in time, depth, and latitude/longitude. We
test four ways of coarsely subregioning the p data, noting that many other, more sophisticated subregioning
schemes are possible (e.g., Longhurst, 1998). We do so to test for robustness of the lognormal and to address
the issue of nonrandom sampling. If the lognormality of the total p distribution is a coincident result of the
spatiotemporal structure of p measurements, subregions’ p distributions should not be lognormal. We also
do this to test whether the log-moments of the subregions’ p distributions sort predictably (section 4).

1. Biome. Following Banse (1992), who defined three ocean “Domains”—respectively low-seasonality,
nutrient depleted (oligotrophic), low-seasonality, nutrient-replete (eutrophic), and high-seasonality
(seasonal)—we generate latitude-longitude subregions by objectively identifying three biomes using a 

climatology from the Carbon-based Productivity Model (Westberry et al., 2008; available at http://www.
science.oregonstate.edu/ocean.productivity/standard.product.php). The “Seasonal (B3)” biome includes all
locations where the log-variance of climatological is>0.3; the “Eutrophic (B2)” biome includes all remain-
ing locations where the log-mean of climatological  is >6.5; the “Oligotrophic (B1)” biome includes all
other locations. Threshold values were chosen to correspond with the “Domains” drawn in Banse (1992);
biomes are shown in Figure 3 (cf. Figure 1 of Banse, 1992). Our results are not sensitive to the values of these
thresholds.

2. Basin. We generate three latitude-longitude subregions by splitting the data by basin into Atlantic, Southern
Ocean, and Indo-Pacific (Figure 3).

3. Depth. We generate three-depth subregions by sorting p values by the depth at which they were sampled
and splitting the data evenly into <6, 6–20.5, and > 20.5 m (i.e., 6 m is the 33.3rd percentile of the sampling
depths, and 20.5 m is the 66.7th percentile).

4. Time. We generate four seasonal subregions by taking all data from the Northern Hemisphere and splitting
them into boreal “winter” (DJF), “spring” (MAM), “summer” (JJA), and “autumn” (SON), where, for example,
DJF refers to December, January, and February.

3.3. Compilation of f Measurements
The most common measurements of f are those using sediment traps (Honjo et al., 2008), which collect sink-
ing material, and those using the “234Th method” (Buesseler et al., 2006), which measures disequilibrium of
the particle reactive 234Th isotope as a chemical signature of particulate flux.
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Figure 3. Top: Locations of p samples > 0.5 μg C ⋅ L−1 ⋅ day−1 from the compilation by Buitenhuis et al. (2013); compare
to their Figure 2a. The solid black boundary line denotes the separation of data into ocean basins (section 3.2). The time
series are indicated by “crosses.” Middle: Locations of f samples >3.6 mg C ⋅ m−2 ⋅ day−1 from the compilation. The time
series are indicated by “crosses.” Bottom: Map of biomes into which p and f data are subregioned; compare to Figure 1
of Banse (1992). Biomes are defined as B1: low-seasonality, nutrient-depleted (oligotrophic), B2: low-seasonality,
nutrient-replete (eutrophic), B3: high-seasonality (seasonal), using a depth-integrated net primary production
climatology from the Carbon-based Productivity Model (Westberry et al., 2008); see main text for details.

We compiled a database of 1,770 shallow (≤200 m) POC export flux measurements by trap and 234Th spanning
the global ocean; see Figure 3 (supporting information S2). The database comprises 49% 234Th measure-
ments. This database is the largest available compilation of shallow POC export flux measurements of which
we are aware. For accessibility, it is organized according to the principles of “tidy data” (Wickham, 2014)
and is available via the supporting information. Note that the f compilation is smaller than even any of the
subregions of the p compilation because f measurements are far less abundant. Because resolving a distribu-
tion with large dynamic range requires a large sample size, we include as many measurements as possible,
across two methods and multiple depths (supporting information S2); as with p, we assume that the dis-
tribution of measurement values is reflective of the distribution of the process being measured. About one
third of our f data comes from three time series—HOT (the Hawaii Ocean Time series; Karl & Lukas, 1996),

CAEL ET AL. DISTRIBUTIONAL THEORY FOR NPP & POC FLUX 959



Global Biogeochemical Cycles 10.1029/2017GB005797

BATS (the Bermuda Atlantic Time series Study; Michaels & Knap, 1996), and CARIACO (CArbon Retention In A
Colored Ocean; http://imars.usf.edu/cariaco; Thurnell, 2013)—and a large number of p samples (>1,000) are
also available from each of these time series; we therefore exclude these from the global distribution in order
to make an out-of-sample estimate for C and 𝛼 in section 4.3.

To minimize the effect of additive errors and to analyze both p and f data the same way, we compare the
lognormal distribution to the empirical distribution of f measurements above a noise threshold of 10% of
peak height in log-space, or 3.6 mg C ⋅ m−2 ⋅ day−1. As with the p data, for consistency we use the same noise
threshold for all analyses of f data throughout the manuscript, and our results were not sensitive to factor of
two changes in this threshold.

Figure 3 indicates that many of the f samples are taken at distinct locations from the p samples. As we are com-
paring collections of measurements, our approach requires the assumption that the variability sampled by a
collection of measurements is large compared to the bias generated by those measurements’ spatiotemporal
structure. This assumption is supported for large-scale sets of measurements by the robustness of p’s log-
normality (section 4.1) but means that a lognormal is not expected to emerge when this assumption breaks
down, for example, when looking at measurements from a single location or when sampling across boundary
currents and other areas with large physical gradients.

3.4. Statistical Methods
In total we have 14 sets of p measurements and one set of f measurements. We fit a lognormal distribution
to each of these, estimating the log-moments by minimizing Kuiper’s statistic, which measures deviations
between the hypothesized lognormal distribution and the empirical cumulative distribution function (CDF) of
the measurements. Kuiper’s statistic is preferred in many applications because it balances ease of interpreta-
tion with sensitivity to tails (Flannery et al., 1992), though our results are not sensitive to this choice of statistic
as compared to the Kolmogorov-Smirnov and Anderson-Darling statistics (supporting information S6).

We estimate uncertainties in the estimated moments by bootstrap sampling the p and f subsets 10,000 times
and repeating the procedure in each case (Efron, 1979). Note that this procedure underestimates uncertainty
as it only accounts for statistical errors. Systematic uncertainty including measurement errors, interpretation
errors, and nonrandomness of the sampling are not accounted for. To be conservative we use a uniform uncer-
tainty of 0.04 for 𝜇p and 0.03 for 𝜎p corresponding to the largest 95% bootstrap confidence interval across all
subsets that of the winter data.

4. Results
4.1. p and f Are Lognormally Distributed
We find that the lognormal null model is a good description of the distribution for p globally; Figure 4 shows
good correspondence between the data and hypothesized distribution. We find moments of𝜇p = 2.23±0.04
and 𝜎p = 1.63 ± 0.03. We also find that the lognormal null model is a good description of the distribution
for f globally; see Figure 4. We find moments of 𝜇f = 3.96 ± 0.07 and 𝜎f = 1.20 ± 0.05. While the distribu-
tion’s fit to the f data is less visually compelling, this is more than accounted for by sample size (supporting
information S6).

Additionally, we find that for the subregions’ p distributions, the lognormal model is a good description of the
distributions; see Figure 5. We find𝜇p ranges from 1.13 to 2.86 (±0.04), and𝜎p ranges from 1.20 to 1.69 (±0.03).
The robustness of the lognormal across the various subregions strongly supports its applicability to model-
ing p from a large-scale perspective and indicates that the lognormality of p is robust to the spatiotemporal
structure of measurements.

4.2. Log-Moments of Subregions’ p Distributions Sort Predictably
Figure 6 shows the 𝜇p and 𝜎p of the lognormal distributions shown in Figure 5. Because of the additional
uncertainties mentioned at the end of section 3.4, we restrict ourselves to the sorting of moments across
subregions. Variation in 𝜎p is 7% of the variation in𝜇p across subregions, and 𝜎p is a higher-order moment and
therefore more difficult to estimate accurately, so we focus on variation in 𝜇p.

The ordering of 𝜇p across subregions is sensible in terms of light and nutrient availability. 𝜇p is lower in the
oligotrophic biome (B1) than in the eutrophic and seasonal biomes (B2 and B3), whose 𝜇p is not significantly
different. 𝜇p is lower in the Indo-Pacific, the basin having the largest proportion of low-productivity waters
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Figure 4. Top: PDF of global p data versus lognormal fit. n = 38, 334 refers to the number of samples included
in the PDF, which excludes data from HOT, BATS, CARIACO, as well as data below the 10% of peak height threshold
<0.5 μg C ⋅ L−1 ⋅ day−1. Green curve is the probability density function of the lognormal which minimizes the Kuiper
statistic as compared to the data. Bottom: PDF of global f data versus lognormal fit. n = 1, 033 refers to the number of
samples included in the PDF, which excludes data from HOT, BATS, and CARIACO time series, as well as data below the
10% of peak height threshold of 3.6 mg C ⋅ m−2 ⋅ day−1. Green curve is the probability density function of the lognormal
which minimizes the Kuiper statistic as compared to the data. HOT = Hawaii Ocean Time; BATS = Bermuda Atlantic Time
series Study; CARIACO = CArbon Retention In A Colored Ocean time series; PDF = probability density function.

(Williams & Follows, 2011), than in the Atlantic or Southern Ocean. The large 𝜇p for the Southern Ocean
reflects that the Southern Ocean p data are dominantly sampled from, and therefore only representative of,
high-productivity times of year in that basin. 𝜇p is highest in the shallowest depth subregion, where light is
highest, and is lowest in the deepest subregion, where light is lowest.𝜇p is higher in spring and summer, when
the Northern Hemisphere experiences more sunlight.

The lognormality of p has implications for the interpretation of variability in p measurements, because mean
and variance are controlled both by𝜎 and𝜇. Note the contours in Figure 6; the mean (n.b. not the log-mean) of
a lognormal distribution is given by exp(𝜇 + 1

2
𝜎2), so the two moments can compensate to achieve the same

mean, for example, the mean for the Atlantic (𝜇p, 𝜎p) is closer to the mean for the Southern Ocean (𝜇p, 𝜎p)
than the individual moments are; the same goes for summer and autumn. Variance (n.b. not the log-variance)
of a lognormal is given by (exp(𝜎2)−1)(exp[2𝜇+𝜎2]), so two distributions with the same 𝜎 can have different
variances; for example, 𝜎p = 1.50 ± 0.03 for both the Indo-Pacific and the Southern Ocean, but because 𝜇p is
larger for the Southern Ocean, its variance is also higher, the difference driven by 𝜇.

The sorting of 𝜎p is also consistent with intuition. 𝜎p is largest in the seasonal biome (Biome 3) and lowest
in the oligotrophic biome (Biome 2). 𝜎p is largest in the Atlantic, the basin with the most pronounced sea-
sonality (Silsbe et al., 2016). 𝜎p is larger in boreal autumn and spring, when broadly speaking the Northern
Hemisphere’s oceans experience larger changes, than in boreal winter and summer. However, because under-
standing variability in log-space is no trivial matter, and these variations are small compared to those in
𝜇p, we caution against making too much of the sorting of 𝜎p barring a more quantitative theory for these
moments (section 5).

CAEL ET AL. DISTRIBUTIONAL THEORY FOR NPP & POC FLUX 961



Global Biogeochemical Cycles 10.1029/2017GB005797

Figure 5. Probability density functions (PDFs) of p data for different subregions described in the text. In each case the
green curves are the PDF of the lognormal which minimizes the Kuiper statistic as compared to the data. (𝜇, 𝜎) is
plotted in Figure 6.
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Figure 6. Log-moments for each of the p subregions, estimated as described in the main text. Error bars are 95%
confidence intervals estimated from bootstrapping; contours are lines of constant mean for a lognormal distribution,
equal to exp(𝜇 + 1

2
𝜎2).

4.3. f Scales Sublinearly With p
That f and p are well described by lognormal distributions implies the statistical scaling relationship f = eC p𝛼

(section 2.2). This suggests that estimates of C and 𝛼 should allow one to predict 𝜇f from 𝜇p (via equation (6)
and 𝜎f from 𝜎p (via equation (7). We use two procedures to estimate C and 𝛼 based on equation (6) and the
𝜇’s of independent data collections —the biomes and the time series—then compare these estimates and
evaluate (i) their ability to predict 𝜇f from 𝜇p globally and (ii) whether the estimates for 𝛼 are consistent with
those for 𝜎p and 𝜎f .

First, we subregion the global f data into the three biomes described in section 3.2. These data have the advan-
tage of being parsed into and sampled across objective biogeographic regions but are not colocalized with
the p data from the same biomes and are not independent of the global p and f data. We take the (𝜇p, 𝜎p)
values from Figure 6, and then estimate (𝜇f , 𝜎f ) by the log-mean and log-standard deviation of the f data
(above the 10% peak height threshold) rather than by fitting a lognormal distribution as for Figures 4 and 5,
though our results are not sensitive to this choice. We then estimate uncertainty in each log-moment for
each biome by bootstrap sampling as in section 3.4, repeating the procedure 10,000 times and using the 95%
bootstrap confidence interval as an uncertainty estimate. We then estimate C and 𝛼 by fitting equation (6) to
the three 𝜇f , 𝜇p pairs from the three biomes. We use type II Least Squares Cubic regression (York, 1966) of 𝜇f
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Figure 7. Histograms of time series’ p and f data and biomes’ f data. (𝜇, 𝜎) is plotted in Figure 8; p data for the biomes
are plotted in Figure 5.

on 𝜇p because each moment estimate has a different, nonnegligible uncertainty. We use the subscripts Cb

and 𝛼b to indicate the estimates derived from the biomes’ data.

Second, we make an out-of-sample estimate with the three time series’ data excluded from the global distri-
butions, which provide an alternative set of 𝜇f , 𝜇p pairs to fit C and 𝛼. These data have the advantage of being
colocalized, and independent of the global p and f data so as not to confound the prediction, but are sampled
only across three total locations. As above, we estimate (𝜇p, 𝜎p, 𝜇f , 𝜎f ) by the log-moments of the time series’
data, estimate uncertainty via bootstrap sampling, and then make estimates Ct and 𝛼t from the time series’
𝜇’s and type II Least Squares Cubic Regression in equation (6).

Figure 7 shows the histograms of the time series’ p and f data and the biomes’ f data. We note that the time
series’ p distributions are visibly (and quantitatively [supporting information S6]) not lognormal, consistent
with the idea that the lognormal holds only for large-scale variability, that is, as one considers larger and/or
more variable spatiotemporal regions and therefore samples over more variability in the processes influencing
p and f (section 5). The f data in Figure 7 are consistent with a lognormal distribution, though the statisti-
cal power to compare each collection of data with a hypothesized distribution is limited due to sample size
(supporting information S6).

Nonetheless, as each data set in Figure 7 is unimodally distributed in log-space and we focus here on the
first moment, it is sensible to approximate each distribution with a lognormal, estimating 𝜇 and 𝜎 for each
by the data’s log-mean and log-standard deviation. Probability distributions are defined by the series of their
moments, and discrepancies from this approximation will arise only for higher-order moments. That this esti-
mation procedure ultimately results in a good prediction, despite the time series’ distributions p data not
being lognormally distributed, evinces the utility and robustness of a distributional approach.

Figure 8 shows the results of the regressions, which find𝛼t = 0.64±0.13, 𝛼b = 0.65±0.14,Ct = 2.47±0.17, and
Cb = 2.59± 0.30 (where here the ± is the standard error as estimated by the regression, not a 95% confidence
interval). Thus, the parameter estimates are in good agreement. The biomes’ parameter estimates result in
a prediction for the global 𝜇f = Cb + 𝛼b𝜇p = 4.04 ± 0.43, and the time series’ parameter estimates result
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Figure 8. 𝜇f versus 𝜇p for the three time series, the three biomes, and the global ocean. Dotted blue line is the
estimated line from the regression on the biomes (𝜇f = 𝛼b𝜇p + Cb); dotted green line is the estimated line from the
regression on the time series (𝜇f = 𝛼t𝜇p + Ct); parameter estimates from the regressions are reported in the top-left of
the figure, along with their estimated standard errors. Solid black lines represent 95% bootstrap confidence intervals.
The global distributions’ log-means (yellow) are not included in the regressions that produce the dashed lines.
Inset: 𝜎f plotted versus 𝜎p for the three time series, the three biomes, and the global ocean. Dashed line is the estimate
𝜎f = 𝛼b𝜎p; gray shading corresponds to 𝛼b’s standard error. None of the 𝜎’s are included in the regressions that produce
the dashed line. HOT = Hawaii Ocean Time; BATS = Bermuda Atlantic Time series Study; CARIACO = CArbon Retention
In A Colored Ocean time series.

in a prediction of𝜇f = Ct+𝛼t𝜇p = 3.90±0.34 (where the± is the standard error from propagating uncertainty
in 𝛼 and C). Both of these compare well with the estimated value for the global distributions’ 𝜇f = 3.96±0.07.

The inset of Figure 8 shows the results of the second prediction—whether 𝜎f = 𝛼𝜎p for the time series, the
biomes, and globally. For the global distributions, the eutrophic and seasonal biomes (B2 and B3), BATS, and
CARIACO, 𝜎f∕𝜎p is within 1 standard error of both 𝛼b and 𝛼t ; 𝜎f∕𝜎p for HOT is less than 𝛼b and 𝛼t by more than
1 standard error, and 𝜎f∕𝜎p for the oligotrophic biome (B1) is more than 𝛼b by more than 1 standard error.
As the 𝜎 values are not used to estimate the 𝛼’s, and the 𝜎f values estimated from the biomes’ and the
time series’ data have larger uncertainty, this correspondence is quite good, corroborating that f ∼ p𝛼 and
therefore that 𝜇f and 𝜎f are predictable from 𝜇p and 𝜎p. Variation in 𝜎f∕𝜎p could be due to biogeochemical
differences between time series, to measurement uncertainties, or to other factors.

5. Discussion
5.1. What Are the Uses and Requirements of a More Complete Theory?
As stated previously, the objective herein is only to develop the foundations of a distributional theory, as a
more complete theory involves a good deal more sophistication and would be benefitted by more measure-
ments than are available at present, particularly for f . How to subdivide the ocean is a key question. We have
only done so coarsely here as proof of concept and to test the robustness of the lognormal to subregioning.
The refinement of this theoretical framework requires first developing a more considered subregioning of the
ocean in space and time, that is, determining an answer to the ubiquitous question in oceanography of what
spatiotemporal region a given set of observations represents.
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A predictive theory for the subregions 𝜇p and 𝜎p must also be developed. We have only attempted to
demonstrate that sorting of the 𝜇 and 𝜎 of subregions’ p distributions is consistent with oceanographic
intuition; we have not developed a quantitative theory for either. p being lognormally distributed implies
exp(𝜇p) = median(p), so it may be possible to describe 𝜇p in terms of that which controls median productivity;
𝜎p may possibly be described in terms of the variances of the subprocesses distributions. As the lognormal
distribution is controlled by these two parameters, a complete distributional theory for p requires the ability
to predict these two parameters, that is, how the distribution shifts in response to the environment. Such a
refinement could constitute a highly simplified yet accurate description of p globally.

Due to its relative sparsity, subregioning f data substantially reduces the statistical power one has to test f ’s
lognormality. While an f database of comparable size and methodological consistency to that for p compiled
by Buitenhuis et al. (2013) is far from reach, a large number of additional measurements are expected to be
available in the near future from EXPORTS (Siegel et al., 2016) and other programs, which may be leveraged
to evaluate the robustness of f ’s lognormality to subregioning and the consistency of the scaling relationship
inferred here. A distinct limitation of the distributional approach presented here is that it requires a large
number of measurements.

Finally, given that the two procedures for estimating C and 𝛼 result in very similar values despite using distinct
data, this raises the interesting question of what physical, chemical, and biological processes might control
these parameters.
5.2. Can the Probabilistic Approach Developed Here Be Used to Test Models?
Satellite ocean color models and numerical biogeochemical models of p and f do not contain spatiotemporal
information explicitly—if they use such information, it is to determine some other variable, for example, solar
irradiance. In principle, the probability distribution of a variable contains all of the nonspatiotemporal infor-
mation about that variable. Thus, the strictest possible nonspatiotemporal criterion by which one can evaluate
numerical biogeochemical models of p or f is by evaluating the probability distributions they generate. Rather
than comparing model values and data measurements pointwise, one can sample a model at the same places
and times as a data set and compare the resulting probability distributions. For models of p, the null model
described herein can be utilized as a strict test. From model output, (i) objectively generate regions based on
biogeochemically relevant parameters, (ii) determine the probability distributions of production (and export)
in these regions, and (iii) analyze the forms of the distributions and the behavior of their log-moments.
Do spatiotemporal subregions of the model produce lognormal distributions, and do the moments of these
subregions sort predictably? Such approaches are underutilized in Earth sciences and may be especially useful
in oceanic contexts because slight misfits in the locations of fronts and other features would not be overpenal-
ized. In this manuscript we have not analyzed measurements of depth-integrated production, the quantity of
most interest for satellite ocean color algorithms (Behrenfeld & Falkowski, 1997; Silsbe et al., 2016; Westberry
et al., 2008); depending on how a given algorithm incorporates depth integration, comparison may require
augmenting the lognormal null model to account for integration in depth. Nonetheless, it appears that a dis-
tributional approach could be useful not only for the analysis of p and f measurements but also as a more
rigorous methodology of model-data comparison.
5.3. What About the Spatiotemporal Structure of the Surface Ocean?
Although the processes underlying production and flux suggest a lognormal distribution, the spatiotempo-
ral structure of the surface ocean suggests otherwise. If p and f were not at all stochastic quantities and were
entirely determined by the mean state when and where they were measured with negligible variation, or if
p and f measurements were strongly correlated in space or time, variability would not necessarily be lognor-
mal; the observed distribution of p and f would then instead be wholly determined by the places and times
at which those measurements were made. Even if p and f values in the ocean were truly lognormal, available
measurements of p and f are far from a truly random sample (Figure 3), which could affect their distribution
similarly. However, given sufficient underlying complexity and variability in the processes that result in p or f ,
a lognormal distribution will emerge; 𝜇 and 𝜎 of that distribution will then be reflective of the sample loca-
tions and times, for example, p data from higher productivity areas will have a larger 𝜇. We therefore consider
the lognormal distribution to characterize large-scale variability in p and f , to hold when the spatiotemporal
region being sampled contains enough variability in the factors p and f that a lognormal distribution emerges.
The robustness of the lognormal distribution across subsets of p measurements, despite large spatial pat-
terns in p across the ocean and the highly nonrandom nature of global p sampling, suggests that substantial
multiplicative variability is a fundamental characteristic of p.
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5.4. Conclusion
Understanding the relationships between biogeochemical fluxes like primary production and export is dif-
ficult because there are many distinct subprocesses which play a role. Under some circumstances systems
become complex enough that they can become simple again if viewed through their probability distributions
rather than sets of colocalized measurements. We suggest that this is the case for primary production and
export. We demonstrate that measurements of these two quantities are lognormally distributed and that the
moments of the distributions are a linearly related to one another. With additional data and a clearer under-
standing of how to define biogeochemical provinces we believe this approach will help us build a mechanistic
understanding of these, and other biogeochemical fluxes in the sea.
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