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On the temperature dependence of oceanic export efficiency
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Abstract Quantifying the fraction of primary production exported from the euphotic layer (termed
the export efficiency ef ) is a complicated matter. Studies have suggested empirical relationships with
temperature which offer attractive potential for parameterization. Here we develop what is arguably the
simplest mechanistic model relating the two, using established thermodynamic dependencies for primary
production and respiration. It results in a single-parameter curve that constrains the envelope of possible
efficiencies, capturing the upper bounds of several ef-T data sets. The approach provides a useful theoretical
constraint on this relationship and extracts the variability in ef due to temperature but does not idealize out
the remaining variability which evinces the substantial complexity of the system in question.

1. Introduction

The export of organic carbon out of the upper ocean is an important component of the climate system,
driving the “biological pump” which reduces the partial pressure of atmospheric carbon dioxide and fuels the
ecosystems of the deep ocean and benthos [Archer et al., 2000]. The efficiency with which limiting resources
(usually nutrients) are exported, relative to local recycling, is often termed the ef ratio, here defined as the
ratio of the sinking flux of particulate organic carbon across a defined depth horizon and the integrated
primary production Pp above that horizon, e.g., Laws et al. [2000]. Eppley and Peterson [1979] identified a
simple, empirical relationship between ef and integrated primary production, but it has been difficult to
establish a clear theoretical basis for the controls on ef due to the myriad physical and biological processes at
play [de la Rocha and Passow, 2007].

Laws et al. [2000] examined a relatively detailed numerical model of the planktonic ecosystem, which sug-
gested that ef is shaped by Pp and mixed layer temperature T . A compilation of self-consistent observations
of export efficiency ef along with local physical and biogeochemical factors, from the Joint Global Ocean
Flux Study (JGOFS) Process Study data, supported this interpretation. Both model and data suggested an
approximately linear, negative correlation between ef and mixed layer temperature, T , and that the temper-
ature dependence of the ecosystem processes which shape export production provide a dominant control
on ef . Indeed, the temperature variation explained far more of the variance in ef than Pp in that data set.
A series of subsequent studies [e.g. Laws et al., 2011; Henson et al., 2011; Dunne et al., 2005, Maiti et al., 2013]
have explored the validity and possible forms of temperature-ef relationships, and there has been a significant
increase in the empirical data constraints over the past 15 years. The simple correspondence between ef and
T of Laws et al. [2000] is not clearly supported with a much expanded data set. Consequently, recent models
and interpretations of these data sets have not lead to a consistent, simple relationship between ef and T .

However, Laws et al. [2011] revisited the ef-T relationship from an empirical perspective, showing that the
upper bound of ef declines as temperature increases. Here we consider this upper bound from a mechanistic
perspective. At the heart of the temperature dependence in the Laws et al. [2000] model is the differential
temperature sensitivity of phototrophic and heterotrophic metabolism [e.g., López-Urrutia et al., 2006; Huntley
and Lopez, 1992; Eppley, 1972] (clearly characterized by Rose and Caron [2007]). We develop a highly idealized
framework which reflects this key element. We argue that while finding a simple relationship between ef and
T will be confounded by many other factors in real systems, there is a predictable mechanistic relationship
between the maximum export ratio, efmax and T which reflects situations where all other limitations and
constraints (e.g., nutrients) are relaxed, analogous to the interpretation of the Eppley Curve [Eppley, 1972]
(see Figure 1a). There the simple parameterization relates to the upper bound of growth rate: in any given
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Figure 1. Temperature sensitivity for phytoplankton and copepod growth rates, adapted from (a) Eppley [1972] and
(b) Huntley and Lopez [1992]. The temperature scaling prefactor is larger for the copepods, the key thermodynamic
relation that drives this model. Another key difference is that copepod growth clusters along, while phytoplankton
growth lies under, their respective curves; copepod growth appears to deviate significantly from this curve near
T = 24∘C. These predictions from the above pictured original data sets have been additionally tested and verified in,
e.g., Rose and Caron [2007]. Note the x axes of each subplot cover different limits. The prefactor is the value which
multiplies temperature in the expressions 𝜇 ∝ e.063T , 𝜆 ∝ e.11T .

circumstance other factors such as nutrient limitation might restrict growth and so only the maximum of the
observed data points represents the effect of temperature clearly.

Hence, we seek to characterize an envelope bounding export efficiency based on thermodynamic constraints.
To do so, we will write the simplest model which captures the essential dynamics (section 2). Starting with
an ordinary differential equation describing the time rate of change of autotrophic biomass, we derive a pre-
dicted curve for maximum export efficiency as a function of temperature. In section 3 we show that this simple,
mechanistic model captures the trends in a compilation of empirical data with global coverage [Laws et al.,
2000; Dunne et al., 2005; Henson et al., 2011; Buesseler and Boyd, 2009] and discuss the value and limitations of
the framework.

2. Methods: Model and Data

We first write a simple ordinary differential equation for the phytoplankton biomass density (p) in the upper
ocean (the mixed layer, or euphotic zone, or above the thermocline):

ṗ = 𝜇p − 𝜆p − 𝜆′p − wp (1)

where 𝜇 is a linear growth rate, 𝜆 represents loss due to grazing, and 𝜆′ represents losses from other processes
including, e.g., viral lysis, senescence, and detrainment. w represents the rate of export as sinking particles; all
coefficients have dimensions of inverse time. Assuming steady state and dividing through by𝜇p, (1) becomes

0 = 1 −
(
𝜆 + 𝜆′ + w

𝜇

)
(2)
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Export efficiency is defined as the ratio of export production and primary production: ef∶= wp∕𝜇p [Laws et al.,
2000], so (2) becomes

ef = 1 − 𝜆 + 𝜆′

𝜇
(3)

The key element of the model will be the differential temperature dependence of autotrophic and
heterotrophic metabolism [Laws et al., 2000]. We draw upon empirically established temperature dependen-
cies for photosynthetic growth rates 𝜇 [Eppley, 1972; Rose and Caron, 2007] and zooplankton grazing rates 𝜆
[Huntley and Lopez, 1992; Rose and Caron, 2007] which are illustrated in Figure 1:

𝜆 ∝ e0.11T 𝜇 ∝ e0.063T (4)

Such temperature dependencies result from the different activation energies for photosynthesis and
respiration, thus constrain growth thermodynamically [López-Urrutia et al., 2006]. Loss processes represented
by𝜆′ may have their own temperature dependencies [e.g., Danovaro et al., 2011]; we test for effects of possible
𝜆′ temperature dependence in section 3. After substituting these expressions for 𝜆 and 𝜇 into equation (3)
the export ratio can now be expressed as

ef = 1 − 𝛼e0.047T − 𝜆′∕𝜇 (5)

where 𝛼 is a constant and𝜆′∕𝜇 represents reductions in ef due to loss processes other than grazing. The above
expression highlights an important asymmetry; while there is only one way for biomass to increase, there
are multiple pathways by which biomass p is lost. Thus, setting 𝜆′ ≡ 0 in equation (5) results in an expres-
sion for the upper bound on the export efficiency ratio when loss is comprised only of sinking and processes
related to grazing. It is an upper bound because the copepod growth rates cluster around a compact curve
in temperature space, and phytoplankton growth rates are spread beneath a maximum growth rate versus
temperature [Huntley and Lopez, 1992; Eppley, 1972; Rose and Caron, 2007]. We note that the temperature scal-
ing for autotrophic processes is valid up to 40∘C, but the temperature dependency for zooplankton growth
rate (thus grazing rate) is only an reasonable fit for up to 24∘C, after which the temperature scaling breaks
down and appears to flatten out, possibly indicative of a more complicated predator physiological response
to temperature. This cutoff near 24∘C is observable both in the original Huntley and Lopez [1992] paper and
in the significantly expanded data of Rose and Caron [2007]: one possible hypothesis for this cutoff is that
the decreased solubility of oxygen at higher temperatures begins to constrain heterotrophic processes, e.g.,
Deutsch et al. [2015].

There is no clear theoretical constraint with which to set 𝛼, so we may leave it as a parameter. To set 𝛼, we use
one point from each data set described below, so that the remaining data can be used to test the prediction.
We let𝛼 set the intercept, because efmax(T = 0) = 1−𝛼. This is done by setting𝛼 so efmax(T = 0) corresponds to
the weighted average of the maxima of the data sets analyzed, leaving 𝛼 = .24. The formula used to compute
𝛼 is

𝛼∶= 1 − 1
N

4∑
i=1

max(ef )i

ni

where i is an index of each dataset used, N is the total number of data points, and ni is the number of data
points in each data set. The slope/curvature of the prediction itself is set by the temperature dependencies.
In general, a larger 𝛼 would correspond to a lower possible efmax(T) for all values of T , with larger differ-
ences at lower temperatures. However, changing 𝛼 by ±10% yielded no effect on the results described in the
following section.

3. Results

In Figure 2 we compare the predicted upper bound on ef from equation (5) with four empirical data sets
compiled from recent publications: Laws et al. [2000], Dunne et al. [2005], Henson et al. [2011], and addi-
tional data available from the Biological and Chemical Oceanography Data Management Office database
[Buesseler, 2004]. The data sets are described in more detail in the cited sources; they include either sea surface
or mixed layer temperature data, and export efficiency is evaluated using a variety of approaches, including
estimates of export production based on carbon, oxygen, nitrate and other nutrients, and estimates of particle
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Figure 2. Model prediction for maximum export efficiency as a function of temperature, compared with data from
sources described in Methods. The four points enclosed by diamonds were those taken to fix parameter 𝛼 = .24. The
model agrees well with data in its applicable temperature range—vertical dashed line indicates the cutoff at 24∘C
observable in Huntley and Lopez [1992] and Rose and Caron [2007]. Remaining dashed lines indicate possible
extrapolations of the model prediction above 24∘C.

export based on sediment trap sinking fluxes or thorium isotopes. While the eclectic nature of the compila-
tion introduces some comparative uncertainty, the number of data sources provides a large time window and
global spatial coverage. Given the challenging nature of measuring and quantifying export, only recently has
a sufficiently large body of data emerged with which to test such theories.

Over the temperature range for which the model is applicable, 0–24∘C, the predicted upper bound and the
maximum observed ef show very good agreement. There is only one significant outlier at 23∘C, and the
data points span the entirety of the domain beneath as expected. The spread reflects the influence of other
loss processes (𝜆′) that reduce ef , as well as constraints other than temperature on phytoplankton growth
rates—i.e., the spread that underpins the Eppley 𝜇-T relationship (see Figure 1 and equation (3)). Above 24∘C
the exponential extrapolation of the prediction does not capture the maximum extent of the empirical data.
We attribute this to a breakdown of the exponential relationship between zooplankton growth rates and tem-
perature above this threshold (Figure 1b). However, the mechanisms underlying that breakdown are not clear
and may be the result of either metabolic or environmental constraints.

The variability in the distribution of the data in Figure 2 is indicative of the natural variability and complexity
of carbon export and is likely due to a number of compounding effects, e.g., sampling difficulties [Buesseler
et al., 1994], growth intermittency, eddy subduction [Omand et al., 2015], and the number of different rem-
ineralization pathways available to the community (i.e., in the 𝜆′ term) which this model ignores. Indeed, this
complexity indicates the intractability of a simple mechanistic description of export, which suggests the utility
of mechanistic approaches for establishing constraints rather than parameterizations.

Here our central hypothesis is that the difference in temperature dependencies of autotrophic and
heterotrophic growth controls the envelope of variations in ef . This implies that the temperature depen-
dence of the unresolved loss processes, 𝜆′, is relatively weak. This assumption can be tested by rescaling all
ef data points by the predicted efmax curve and asking if the distribution changes as temperature increases.
If the mean ēf or normalized variance 𝜎2∕ēf varies with temperature, this suggests 𝜆′ has some temperature
dependence. In turn, this would demand to be incorporated into a relationship between ef and T . However,
when all data is normalized by the efmax = 1 − 𝛼.047T curve, i.e., the predicted influence of temperature is
removed, we see no change in ēf or 𝜎2∕ēf with temperature. This demonstrates that the model captures all
systematic temperature dependence in the data (Figure 3) and that the remaining variability is attributable to
other factors.
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Figure 3. Mean and normalized variance of the data after being binned at width 1∘C and rescaled by predicted
maximum export efficiency. Binned values are best explained by a constant line; the best fit regression line computed
with ordinary least squares has a negative adjusted r2; thus, after the model’s prediction for temperature dependence
has been removed, no variation in the binned values can be explained by temperature.

4. Discussion

The model prediction described here shows good agreement with data, yielding an upper bound on potential
export efficiency guided by thermodynamic constraints. This envelope, in the spirit of the Eppley curve, hinges
on the asymmetry between the number of pathways for primary production (one) and loss (several). Despite
the variety of methods used to estimate export efficiency from field data [Henson et al., 2011] all data sets
approach and fall within the upper bound suggested by the model.

Limitations of the model include the strong assumption of steady state. The implications of this could be
examined in time-dependent models. The assumption is more applicable in regions where upper ocean
phytoplankton biomass density is slowly varying and least applicable in bloom forming regions. Collecting
further metabolic data for grazers growth rates above 24∘C, and an exploration of the mechanisms controlling
metabolism at warmer temperatures could improve the foundation of the model.

Using this model to extract the temperature dependence of ef provides a foundation for investigating depen-
dencies of ef on other variables including primary productivity [e.g., Laws et al., 2011; Maiti et al., 2013],
opening the door for further development of mechanistic models of ocean carbon export [e.g., Siegel et al.,
2014]. There is a longstanding history of relating primary production and export [Eppley and Peterson, 1979;
Laws et al., 2011], though the relationship may be complex and regionally varying [Maiti et al., 2013]. Clearly,
understanding and mechanistically modeling the relationship to primary production would be a valuable
extension to this model [see Laws et al., 2011]. An interesting avenue for extension of this model would be to
incorporate an allometric component since cell size has been empirically related to export rates [Guidi et al.,
2009] and the theoretical foundations have been explored [e.g. Laws, 1975].

We show that this model describes all systematic temperature dependence of the ef data (Figure 3) and that
this is due to the difference in temperature dependencies of autotrophic and heterotrophic metabolisms.
A significant inference of the model is that independent of other factors, a warming ocean should lead to
a weakened export efficiency and biological carbon pump, by a quantifiable extent. Of course this may not
be the dominant factor since other, indirect effects of warming such as changes in stratification and primary
productivity will also be at play.

In summary, we present a model that provides a mechanistic constraint on the range of potential export
efficiency values, based on empirically established temperature dependencies and differential equation
approaches fundamental to marine ecology. The prediction is quite general, reinforced by a collection
of data sets and the simplicity of its derivation. While this approach moves away from predictions or
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parameterizations which expect a tight relationship between export efficiency and temperature, it provides a
potentially useful framework by linking metabolic theory and the biological carbon pump and acknowledges
the substantial complexity of the flow of carbon in the upper ocean.
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