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Abstract 

Microplastics (MP) are ubiquitous within the environment, but the analysis of this contaminant is 

currently quite diverse, and a number of analytical methods are available. The comparability of 

results is hindered as even for a single analytical method such as Fourier transform infrared 

spectroscopy (FT-IR) the different instruments currently available do not allow a harmonized 

analysis. To overcome this limitation, a new free of charge software tool, allowing the systematic 

identification of MP in the environment (siMPle) was developed. This software tool allows a 

rapid and harmonized analysis of MP across FT-IR systems from different manufacturers 

(Bruker Hyperion 3000, Agilent Cary 620/670, PerkinElmer Spotlight 400, Thermo Fischer 

Scientific Nicolet iN10). Using the same database and the automated analysis pipeline (AAP) in 

siMPle, MP were identified in samples that were analyzed with instruments with different 

detector systems and optical resolutions, the results of which are discussed . 
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Introduction 

Small plastic particles, called microplastics (MP) are currently recognized as a potential risk for 

environmental and human health.1,2 The near-ubiquitous contamination of the environment, from 

terrestrial soils and air to the freshwater, and marine environments has raised the profile of this 

topic in recent years, leading to a wealth of methods and approaches for sampling and analyzing 

MPs in environmental matrices.3–11 In general, these particles are defined as <5 mm in size while 

a lower size limit and a standard definition of MP has yet to be agreed on.7,12 Subcategories 

distinguishing between large MP (5 mm–500 µm) and small MP (500–1 µm)13 are often used, 

reflecting practical considerations during the full analytical procedure.  

 The analytical procedure to identify particles can be divided into three steps, starting with 

sampling for MP, followed by sample extraction and finally, identification and quantification. 

Each of these steps has its challenges (cf. Lusher et al.,3 Brander et al.,4 Primpke et al.,6  Cowger 

et al.14). Additionally, there is an increasing awareness for quality assurance and quality control 

(QA/QC) to successfully and reliably identify MP in environmental samples.15,16 Individual steps 

for QA/QC are currently discussed within this overarching special issue.4 While QA/QC is 

important for the quality of the results, the intercomparison of studies is further hampered by a 

missing harmonization of the three steps sampling, sample extraction and identification. 

Especially for the chemical analysis, a plethora of different methods and software are used to 

interpret generated data.5,6,14 Among the spectroscopy-based techniques, Fourier transform 

infrared spectroscopy (FT-IR) is considered most suitable to analyze MP from 5 mm to ~10 µm, 

even if it requires different acquisition modes according to the particle size.6 Micro-FT-IR (µFT-

IR) imaging17–20 permits scanning of the whole sample, avoiding the manual sorting/point-and-

shoot steps that are otherwise necessary, which are a source of bias as the analysis becomes 

operator dependent.2122 On the other hand, FT-IR imaging for MP analysis produces a huge 

amount of data (large areas are scanned at a very high spatial resolution) which are difficult to 

manage using the commercial software provided by the instrument manufacturers.4 The difficult 

data handling, together with the lack of a suitable software tool, impedes not only a reliable 

workflow, but also makes difficult, if not impossible, comparison between studies performed 

using FT-IR Imaging.14 While initial studies comparing various analytical methods have been 

conducted,23 a comparison between studies using the same analytical technique but on different 

instruments is missing for MP research. One reason is the lack of a suitable software tool to 
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perform such a comparison. Such a study, however, is essential to reproduce and compare results 

within meta-studies. Moreover, it allows the harmonized analysis of MP in the future, as the 

advantages and disadvantages of the currently available high throughput analysis pipelines for 

individual systems can be determined. 

 To achieve this goal, a new software tool is presented and intercalibrated with existing 

studies.24 Its performance is evaluated via the analysis against existing reference data sets and 

comparison of the achieved results. Furthermore, the tool allows the analysis of data generated 

by different FT-IR imaging techniques from various manufacturers. This is demonstrated 

through the application of the software to datasets from state of the art instruments from four 

major manufacturers, namely Agilent, Bruker, PerkinElmer, and ThermoFisher Scientific, with 

different types of detection modes ranging from focal plane array (FPA), linear arrays to single-

element detectors. This analysis is followed by a short performance evaluation of the assigned 

spectra. The software and corresponding reference spectra databases24 are available free of 

charge via the internet and can be used by everyone for the analysis of FT-IR data. 

 

Materials and Methods 

Sample Extraction and Analysis Using the Agilent System 

Sample preparation started with an effluent sample (Ryaverket wastewater treatment plant, 

WWTP, Götheborg, Sweden) as collected using filtration with a custom filtration device 

containing a Ø100 mm stainless steel filter (10 µm mesh size). 

 The material collected on the steel filter mesh was treated to extract MP using a method 

derived by Löder et al.13 and modified by Liu et al.22 The filter was sonicated into filtered Milli-

Q water containing 5% (w/v) sodium dodecyl sulphate (SDS) to detach the solids and left stirring 

(100 rpm) at 50 °C for 48 hours. The resulting suspension was then filtered onto a 47 mm steel 

filter (10 µm mesh). The particles trapped were re-suspended and first incubated with proteolytic 

enzymes (Alcalase, Novozymes, Denmark) in a Tris buffer (pH 8.2, stirring at 100 rpm, and 50 

°C for 48 hours), filtered onto a 47 mm steel filter, and the solids were then removed from the 

filter surface. A second enzymatic treatment was performed using cellulolytic enzymes 

(Cellulase blend and Viscozyme, Sigma-Aldrich) in acetate buffer (pH 4.8, stirring at 100 rpm 

and 50 °C for 48 hours) to eliminate the majority of the organic fraction of the sample matrix. 

The remaining undigested matter was filtered onto a 47 mm steel filter, and the solids were again 
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removed from the filter surface. The gathered solids were oxidized using Fenton reaction 

(hydrogen peroxide catalyzed by Fe(II) at ~20 °C for 24 hours. After a further filtration on a 47 

mm steel filter, the solids were removed from the filter surface and recovered . MP were further 

separated from the inorganic particles in a zinc chloride solution (1.7 g cm−3) using a glass 

separatory funnel. After discharging the settled material, the supernatant was filtered (47 mm 

steel filter) and the material was recovered following the same procedure described for the 

previous steps using 50% (v/v) ethanol. The extracted MP were transferred in 10 mL glass 

headspace vial, the liquid was evaporated at 55˚C, and finally, 5 mL 50% (v/v) ethanol solution 

were added to obtain a known volume in the vial. 

 In order to minimize MP contamination deriving from the equipment used for sampling 

and sample preparation, all lab tools were flushed with filtered (1.2 µm) Milli-Q water three 

times before use. Tools made of glass or metal or which were coated with PTFE were used 

instead of plastic whenever possible. Sample containers were covered with aluminum foil to 

reduce airborne contamination, and steel filters were muffled at 500 °C before usage. 

 The µFT-IR analysis was performed using a focal point array (FPA)-based µFT-IR 

imaging technique provided by a Cary 620 µFT-IR microscope from Agilent Technologies 

(USA) coupled with a Cary 670 FT-IR spectroscope. The instrument was equipped with a 

128×128 FPA/mercury–cadmium–telluride (MCT) imaging detector (FPA-MCT-imaging 

detector). The analysis was carried out in transmission mode, using a 15× Cassegrain (visible IR) 

objective-condenser system which produces 5.5 µm pixel resolution on the FPA detector. An 

aliquot of the sample (600 µL) was deposited onto a ⌀13 mm x 2 mm-thick zinc selenide (ZnSe) 

transmission window. A background scan was collected before each sample scan on a clean 

window at 8 cm−1 spectral resolution, using 120 co-added scans in the spectral range of 3750–

850 cm−1. Subsequently, an area of 14×14 tiles was scanned on the samples window, using 30 

co-added scans, and the same settings as for the background scan. The analyzed area covered the 

entire active surface of the windows (diameter of 10 mm, area 78.5 mm2), recording the spectra 

of all deposited particles. 

 

Sample Extraction and Analysis Using the PerkinElmer System 

The sample represents a composite sample taken at 30-minute intervals across a 24-hour period, 

directly sampling from the effluent of a WWTP. The auto-sampler filtered this water through a 
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woven stainless steel cylindrical filter cartridge (27.8 cm long, nominal pore size 10 µm, 

~500 cm2 filter area; Wolftechnik Germany). The concentrated sample was transferred from the 

filter into dispersion for processing in the lab. Processing in order to “clean” the sample in 

preparation for µFT-IR analysis consisted of two steps: a Fenton’s reaction to chemically 

degrade organic material and enzyme digestion to remove cellulosic and proteinaceous material.  

The Fenton’s reaction used a Fe(II) solution (0.05 M FeSO4°7 H20, Fischer Scientific, USA, 

>98% purity) acidified with 0.2% sulfuric acid (H2SO4, AnaTaR, 98.07% purity) and 30% 

hydrogen peroxide (H2O2, Fisher Scientific). The reaction was allowed to exhaust itself 

overnight before the sample was filtered and re-dispersed for enzymatic digestion. The enzyme 

digestion steps utilized cellulase in a pH 5, phosphate-buffered saline solution (MP Biomedicals, 

USA) incubated at 50 °C for 48 hours and trypsin at 37 °C for 30 minutes (Sigma-Aldrich, 

Germany). The final concentrated sample was dispersed and stored in 50% ethanol (Sigma-

Aldrich, Germany) before depositing onto 25 mm diameter 5.0 µm pore size silver membrane 

filters (Sterlitech, USA) for µFT-IR analysis. All reagents were filtered through a 1.2 µm glass-

fiber filter before use, and all processing took place in the Microflow Biological Safety Cabinet, 

fitted with HEPA filters to control for airborne microplastic contamination during the processing 

of samples. 

 For the µFT-IR analysis, a PerkinElmer Spotlight 400 FT-IR microspectrometer with 

MCT detector was used for the analysis of the sample. The silver filter containing the processed 

sample was mounted on a glass slide and held in place with a clamped stainless steel O-ring. The 

spectrometer collected spectra in the range between 4000 and 700 cm−1 in reflectance mode. A 

background spectrum was collected for each sample from a blank area of the silver filter at a 

spectral resolution of 8 cm−1 and pixel size of 25 µm. A total of 90 scans were taken per pixel 

with an interferometer speed of 2.2 cm s−1. An optical image was first collected by tiling single 

field of view images together to cover an area of approximately 13 mm x 13 mm. A smaller 

mapping area for the FT-IR spectrum of 11.6 mm x 11.6 mm was selected (92 % of the filter 

area), due to constraints on the file size that could be generated by the PerkinElmer 

SpectrumIMAGE software. The FT-IR mapping was performed with the same parameters as that 

of the background scan, but at four scans per pixel. Atmospheric correction was performed on 

the resulting .fsm file. 
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Sample Extraction and Measurement Using the ThermoFisher Scientific System 

The sample was taken by filtering water at the effluent of a WWTP over a stainless sieve 

(ø20 cm, ThermoFisher Scientific) having a mesh size of 20 µm. The concentrated sample was 

exposed successively to sodium dodecylsulphate (one day, 5%, Serva Electrophoresis GmbH, 

Germany), potassium hydroxide (five days, 10%, Carl Roth GmbH, Germany), and hydrogen 

peroxide (two days, 32%, Carl Roth GmbH, Germany). During all steps, the sample was 

incubated in an oven with a temperature set at 35 °C. In between steps the sample was filtered 

over a ø47 mm stainless steel filter with a mesh size of 20 µm. Inorganic particles were removed 

by performing a density separation using a zinc chloride (ZnCl2, Carl Roth GmbH, Germany) 

solution with a density of 1.6 g cm−3. Subsequently, sample residues were filtered on an 

aluminum oxide filter (Anodisc 25 mm, Whatman, UK) which was then dried at 35 °C for 

several days.  

 In order to minimize MP contamination, all chemicals were filtered through stainless 

steel filters with a mesh size of 10 µm. Additionally, all lab equipment was thoroughly rinsed 

before usage, and the lab surfaces cleaned with ethanol (30%, Carl Roth GmbH and Co. KG, 

Germany) and Milli-Q water. Whenever possible plastic equipment was reduced by tools made 

of glass or metal, and when finishing sample handling these were immediately covered with 

aluminum foil to reduce airborne contamination. 

 For the µFT-IR analysis, an FT-IR microscope equipped with a single MCT detector 

(Nicolet iN10, ThermoFisher Scientific, USA) was used. For the measurements, an Anodisc 

filter was placed on a calcium fluoride crystal (EdmundOptics, Germany). About one third of 

each filter was mapped in transmission mode, with one scan recorded per pixel, the aperture size 

set at 50 x 50 µm, the spectral resolution as 16 cm−1, and the spatial resolution at 20 µm. A 

background scan using the same settings was conducted on a blank area of the same filter.  

 

Sample Extraction and Measurement Using the Bruker System 

For this comparison study, a dataset of a sample investigated in previous studies25,26 was chosen. 

The sample was from the effluent of the WWTP Holdorf. Sample location and further sampling 

information are available within the previous studies.25,26 Briefly summarized, the sample was 

directly taken from the effluent of the WWTP. The sample was processed by the enzymatic 

digestion protocol of Löder et al. 201713 and subsequently concentrated onto an Anodisc filter 
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(25 mm diameter, 0.2 µm pore size, GE Whatman). The sample was placed and covered by a 

BaF2 window prior to measurement on a custom made sample holder as described in detail in 

Primpke et al. 2019.25 

 The µFT-IR measurement was performed using a Bruker TENSOR II spectrometer, 

which is connected to a Hyperion 3000 µFT-IR-microscope (Bruker Optics GmbH, Ettlingen, 

Germany). The spectra were collected using a 64 x 64 FPA MCT detector as described in 

literature.19 Prior to measurement, a visual image of the sample surface was recorded. The FT-IR 

measurements were performed using 15x Cassegrain objective, in the spectral range of 3600–

1250 cm−1 with 4x4 binning at a spectral resolution of 8 cm–1 and six coadded scans. With this 

setup, a pixel size of 11.1 × 11.1 µm per spectra was achieved. All data were collected using 

Bruker software OPUS 7.5 (Bruker Optics GmbH, Germany). 

 

Sample Preparation of Algae Samples 

Ecotoxicity tests were carried out with the microalga Raphidocelis subcapitata with 

modifications according to "Water Quality–Freshwater Algal Growth Inhibition Test with 

Unicellular Green Algae, ISO Standard 8692, 2004". The test included five replicates of the 

control sample, in which algae were not exposed to the toxicant, and  triplicates of algae exposed 

to five different concentrations of the tested toxicant. The replicates were combined after the 

toxicity test, and algae from all treatments were preserved with Lugol’s iodine solution for their 

infrared analysis. 

 For the infrared analysis described in Kansiz et al.,27 2 mL of the preserved control 

sample was prepared. The cells were centrifuged, and the residues of the preservative and growth 

media were washed off to prevent interference with algae spectra. The purified cells were 

resuspended in 200 µL deionized water, and the entire volume was deposited on a 13 mm 

diameter, 1 mm-thick CaF2 transmission window, and dried in a vacuum desiccator. 

 A Cary 620 µFT-IR microscope from Agilent Technologies (USA) coupled with a Cary 

670 FT-IR spectroscope was used for the FPA-based µFT-IR imaging analysis of the algae cells. 

The analysis was carried out in transmission mode using the 15X Cassegrain objective in high 

magnification mode to create a mosaic with 1.1 μm pixel resolution on the FPA. A background 

scan was collected on a clean window in the range of 3750–850 cm−1 with an 8 cm−1 spectral 

resolution applying 256 co-added scans. An area of 6 x 6 tiles was scanned on the sample 
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window following the background scan with the same parameters applying 240 co-added scans 

per pixel. 

 

Software and Database 

The software siMPle is the combination of the software MPhunter presented in Liu et al.22 and 

the automated analysis of Primpke et al.21 It is written in Delphi using Windows 10 as the 

operating system, which is available at www.simple-plastics.eu, where reference databases for 

FT-IR and Raman spectroscopy are also provided (Figure 1).  

 

 

Figure 1. The software graphical user interface with a loaded reference (blue) and a sample 

spectrum (orange) using the Match single spectrum function of siMPle on a spectrum assigned as 

polyvinylchloride using ESM1.csv. In this work, the database for automated analysis24 and the 

release version (1.0.0) of siMPle were used to analyze all datasets. Prior to analysis, all spectra 

were converted from the original file format (Agilent: .dmd and PerkinElmer: .fsm) or JCAMP-

DX files (Bruker and Thermo Fisher Scientific) into two siMPle file formats, namely .spe and 

.wno files, allowing fast data access (see How to use siMPle.pdf Supplemental Material file for 
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further instructions). These file formats are accompanied by an extra file, the MaschineData.ini, 

which contains all necessary information for size calculations and data handling. In all cases the 

mosaic structure is either kept or newly generated, allowing faster data handling. After loading 

the data and reference spectra, the spectral fit between the two was calculated by Pearson 

correlation for the untreated data, the first derivative and the second derivative, resulting in their 

correlation factors r0, r1, r2, respectively. If not further specified the following settings were 

used: Omit CO2 peak (upper wavenumber: 2420 cm−1, lower wavenumber: 2200 cm−1), suppress 

negative correlations and include second order derivatives. 

 To investigate the performance between Bruker OPUS and siMPle, the calculation times 

were measured using a HP KP719AV computer (Intel Core 2 Duo Processor, 8 GB RAM, AMD 

Radeon HD 5450 graphic card, extra USB 3.0 Controller card and SANDISK Extreme 64 GB 

USB-Stick) which is the same as used in previous studies.21,24-26,28-34 Further calculations were 

performed on a HP Z440 workstation (Intel Xeon E5-2630 v.3 CPU, 64 GB RAM, NVidia 

Quadro M2000 graphics card) for all other purposes. 

 The automated analysis pipeline (AAP) pipeline21 identifies the recorded spectra based 

on the results of the Pearson correlation factors (r) calculated for the respective untreated spectra 

r0 and the first derivatives r1. Only if maximum values of r0 and r1 are assigned to the same 

polymer entry then the spectra are counted as identified and the polymer type added to the list of 

analyzed pixels together with the x,y coordinates and the summarized hit quality index (HQI, Eq. 

1): 

 

𝐻𝑄𝐼 =  (𝑟1 + 𝑟2 ) × 1000    (1) 

 

 This type of data represents a false colour image which was then in silico treated by 

Image Analysis as described in Primpke et al.21 by a pixel hole closing mechanism prior to the 

size determination and particle quantification. For further calculations, the data thresholds 

described in Lorenz et al.32 were used. To avoid confusion for the reader, we did not apply the 

second analysis pipeline1,22,35 available in siMPle for the scope of this study.  

 The siMPle software allows rapid quality control and quality assurance (QA/QC) for the 

assigned polymer hits. During image analysis, a designated file is generated named “_forqc.csv”, 

which contains x,y coordinates of the measured spectra together with the hit quality, the assigned 
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polymer type, and a reference spectrum identifier. Via the button “Load Pipeline Results” the 

QA/QC process will be started (Figure 2).  

 

 

Figure 2. Quality assurance/quality control for siMPle for results of the image analysis of sample 

RefEnv124 via the AWI pipeline allowing a direct comparison (a) between sample spectrum 

(orange) and database spectrum (blue) by clicking on the determined pixel (c). The process 

allows checking other spectra by clicking on another database entry as well as the ind ividual 
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Pearson correlation factors. The heatmap (b) allows the user to locate the assigned spectra on the 

map. Using a designated window, each spectrum can be individually assessed and rated from a 

perfect assignment down to a full misassignment with values ranging from 1 to 0.01. Following 

the approach of Primpke et al.,21 the spectra were rated with five different values (1.00, 0.75, 0.5, 

0.25, and 0.01) ranging from best match to a full misassignment, respectively. To screen the data 

of the different instruments and evaluate the successful assignment of polymer identify to 

particles, a randomly selected number (n = 100) of spectra were manually reanalyzed for each 

instrument dataset. 

 For matching single spectra:, the score used within siMPle was first described in Liu et 

al.22 In short, prior to the quantification of particles the score (Sd) for the identification of the 

polymer type was calculated using the following Eq. 2:22 

 

𝑆𝑑 =  𝑘0𝑟0
2 +𝑘1𝑟1

2 +𝑘2𝑟2
2

𝑘0+𝑘1+𝑘2
   (2) 

 

Each result (r0,r1,r2) was squared and multiplied by a weight (k0,k1,k2, respectively) for the 

respective correlation factor, which can be assigned by the user.  

 

Results and Discussion 

The software allows two types of data analyses, first the matching of single spectra and secondly 

the analysis of large filter areas. To interpret a single spectrum, the reference database must first 

be loaded and then a single spectrum in a defined file format (Paragraph S1; ESM1.csv, 

Supplemental Material) must be loaded (Figure 1). In this example, the spectrum was assigned to 

polyvinylchloride (PVC) with a Sd of 0.7246 using the default options of siMPle (k0=0, k1=1, 

k2=1). By assigning weights, the user can decide which correlation method should be represented 

by Sd, e.g., for comparison with studies using Bruker OPUS28,30–33 where only the first derivative 

was used for single spectrum analysis. For the chosen example, values of k0=k2=0, k1=1 (first 

derivative only) were used. In this case the Sd decreased to 0.6689. If the user decides to include 

all correlation results (k0=k1=k2=1) the Sd was further decreased to 0.6435. Therefore, it is 

mandatory to state the weights k0, k1, k2 within the material and methods section for comparison 

of studies if siMPle is used. In general, this analysis is independent from the instrumental source 

of the data. All types of data in the described file format (see Paragraph S1) can be processed 
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independently from manufacturer and measurement method. An example of this using pre-

processed Raman spectra is shown in Figure S1. Future data processing steps for single spectra 

or lists of spectra will be introduced in future releases. All releases will be accompanied via a 

change log and a living manual on the website. 

 During this process, QA/QC is easily available, because the spectrum with the highest hit 

is indicated at the end of the analysis together with a hit list for all other database entries (Figure 

1). Together with this, the hit result can be exported for further use. 

 

Analysis of Chemical Imaging Files 

For larger datasets, the siMPle software allows a time-efficient loading of data using a 

harmonized file system for data storage which is independent from the original file format. The 

file formats introduced were optimized for the fast use within the software. The commonly 

shared file format by the International Union of Pure and Applied Chemistry (IUPAC) J-

CAMPdx file format was limited to the import of data, due to long loading times of such text 

type based files. Currently, siMPle is able to convert native data from Agilent and PerkinElmer 

systems using the file import function while for Bruker and ThermoFisher Scientific systems 

extra steps are necessary (see How to Use siMPle.pdf, Supplemental Material).  

 To validate the performance of siMPle, it was tested against existing reference datasets 

from literature. These reference sets consist of materials of known origin (Ref7P) or from 

environmental samples (RefEnv1 and RefEnv2). These three samples were analyzed using 

siMPle and the results compared to the automated analysis via Bruker OPUS. Starting with 

Ref7P we started to analyze the performance on an artificial sample only containing MP 

(polyethylene (PE), polyester (PEST), polyamide (PA) and polyurethane (PU)), cellulose, quartz, 

and diatomaceous earth. Out of these seven particle types, only diatomaceous earth could not be 

detected within the wavenumber range of Anodisc. In comparison to OPUS, siMPle identified 

almost twice the number of spectra on the specific polymer types (Figure 3). Especially cellulose 

(plant fiber in the database), and polycaprolactone (PCL, not originally introduced as a material) 

were affected by factors larger than four (Figure 3, Ref7P 9Points and OPUS).  
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Figure 3. Assigned polymer types for sample Ref7P24 using different smoothing factors by 

siMPle (3 to 13) versus OPUS with an unknown fixed value for polyethylene (PE), polyamide 

(PA), polyester (PEST), acrylates/polyurethanes/varnish (APV), cellulose, quartz and 

polycaprolactone (PCL). This difference was rather striking and the main difference 

between both kinds of software was found in the data handling for the calculation of the first 

derivative. In the default settings siMPle adds a nine data points smoothing to reduce the noise. 

For Bruker OPUS it is not documented if smoothing is applied. To test for a better comparison of 

the results, a range of this value from three to 13 data points was investigated for siMPle (Figure 

3).  

 By screening the number of data points for smoothing, it was found that an optimal hit 

was reached with nine data points for most polymer type assignment (Figure 3). Only cellulose 

kept an increase in assigned polymer hits while PCL reached a constant level. The data 

determined by OPUS could not be assigned to a smoothing factor applied by siMPle. Still, for 

this particular sample, the high number of assignments to PCL started using this number of data 

points for smoothing. To avoid any misassignment issues a manual reanalysis on the assigned 

spectra to PCL was performed. 

 Through quality assurance, it was found that the spectra assigned to PCL were caused by 

a misinterpretation of the measured PEST spectrum. This spectrum has a high similarity with 

PCL in transmission, which was not visible by using Bruker OPUS during cluster performance 

analysis.24 In Figure S2, one of the assigned spectra from Ref7P is plotted against the assigned 

reference spectrum and the spectra of the original material. The original database states this 
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material as a pure PEST, but via an extended material research, it was found that the material 

was meanwhile relabeled to copolyester by the manufacturer. Due to these differences, the 

material could not be assigned to the original PEST cluster, as no pure PEST spectrum was 

yielded. This issue will be addressed in the future by a database update including more materials 

and using siMPle for cluster performance analysis. All samples in the following were analyzed 

using the default nine data points smoothing. 

 The datasets RefEnv1 and RefEnv2 were also analyzed using siMPle and OPUS. The 

siMPle analysis required only two hours for RefEnv1 and three hours for RefEnv2, which is 

twelve times faster than the analysis with OPUS using spectral correlation only for raw and 

first derivative data. With a look at the polymer composition (see Table S1 for details) it was 

found that siMPle was more sensitive and identified higher numbers of polymers and also larger 

sized polymer particles (Figure 4) in comparison to OPUS.  
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Figure 4. MP size classes derived from the automated image analysis21 for the reference datasets 

(a) RefEnv124and (b) RefEnv224 analyzed using Bruker OPUS and siMPle. Both analyses found a 

strong trend toward smaller MP sizes. Especially striking was the higher identification rate for 

cellulose (plant fiber) during the analysis with siMPle (see RefEnv2, TableS1). Sample RefEnv2 

also showed the largest differences in the size distribution and showed a better particle 

assignment compared to the data derived via OPUS (Figure S3). 

Here, it was found that larger particles were identified more accurately with siMPle in 

comparison to OPUS, which missed areas of larger particles yielding in a separation into two 

particles. Furthermore, the analysis using siMPle improved closing holes, which is important for 

morphological analysis of the particles, see for example the large PP particle on the rightmost 

edge of the filter. In summary, these results show that data determination with siMPle is better 

suited for the analysis of imaging data due to transparent data handling and easy data validation.  

To test the ability for a harmonized analysis of MP, the performance of siMPle was assessed for 

the FT-IR imaging data from instruments from the four mentioned manufacturers. In this case, 

the computation of a full spectral analysis based on Pearson correlation for the untreated data, the 

first derivative and the second derivative were performed.22 The calculation time was determined 

on the same computer systems applied for the automated analysis via the OPUS software of the 

Bruker dataset. This allows a comparison of calculation times with existing studies using 

OPUS.26,28 The determined calculation times are summarized in Table I together with further 

information on the datasets, such as pixel size on the filter area, the size of the analyzed area and 

the number of spectra recorded. 

 As mentioned previously, the calculation time on the Bruker datasets was reduced 

considerably when applying siMPle (five hours, in comparison to 48 hours using OPUS) which 

also included the second derivative (it was omitted during OPUS analysis). When the calculation 

time was normalized to the number of analyzed spectra, the spectra from Thermo Fisher 

Scientific were correlated twice as fast compared to the other data sets. The reason is the spectral 

resolution of 16 cm−1 instead of 8 cm−1. Still, one has to keep in mind that the Bruker system and 

the Thermo Fisher Scientific system need an additional transformation step within their 

respective software which increases the overall handling and calculation times independent from 

siMPle. In Figure 5 the false colour images of the analyzed samples are shown. 
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Figure 5. Overview images of the measured filters using the automated analysis pipeline for the 

(a) Agilent, (b) Bruker, (c) PerkinElmer, and (d) Thermo Fisher Scientific samples. Sample (d) 

was measured in a rectangular shape and the area of on the right side was left blank to avoid 

irritations. Qualitatively, it can be observed from the images that the samples are similar in 

nature, containing a large proportion of natural materials (Figure 6, gray colors), amongst which 

a number of artificial polymers are successfully identified, irrespective of the manufacturer of the 

instrument or the various sampling and extraction methods employed prior to analysis (see 

ESM2.xslx, Supplemental Material, for details). Due to the varying nature of the WWTP 

sampled from, and the variety of sampling and extraction methods utilized between samples, 

commentary on any differences in enumeration of MP between the samples is beyond the scope 

of this study. However, application of the software on these real-world example datasets 

demonstrates promising consistency in the proportion of particles identified which are of 

synthetic origin (3–25%) and of the major polymer types which are identified across the samples 

(see ESM2.xslx for details). Compared to existing commercial software solutions the 

harmonized analysis via siMPle saves working time and computational costs. Current computers 

can run several instances of the software unattended, allowing the data analysis of up to 16 

samples per day compared to OPUS (2 days) for 1.8 million spectra per file. Still, it is possible 

also to use low-cost office computers which normally can calculate up to three samples per day 

containing 1.8 million spectra. As a minimum requirement, a processor speed of 3 GHz is 

advised with 8 of RAM. To assess the performance of siMPle on these datasets, a QA/QC 

analysis on the overall result was performed (Figure 6).  
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Figure 6. Assignment rates of correct and misidentified spectra for the different instruments 

based on manual reanalysis similar to Primpke et al.21 

 In all cases, correct assignment rates >90% were reached, for three systems 

(PerkinElmer, Bruker, and Agilent) these were even >95% (Figure 6). Those correct assignment 

rates were exceedingly high, independently from instrument and sample preparation, proving the 

high potential of siMPle as a harmonized tool for MP analysis. Still, it is suggested and 

recommended that each study conducts an own QA/QC analysis for each sample series for each 

polymer type identified as demonstrated, e.g., in Lorenz et al.32 Further questions, such as a 

comparison between existing analytical pipelines, their harmonization and a full QA/QC analysis 

will be addressed in a later detailed study. 

 To conclude it is noteworthy that the siMPle software is not limited to MP analysis, it 

also allows the analysis of other types of data like the spectral comparison of nano-FT-IR data36 

or the analysis of single algae species (Figure S4).  

 Using siMPle single cells can be selected, or specific characteristics can be highlighted 

(Figure S4). Here, the data shows a strong Halo effect (Figure S4b) mainly caused by 

interference between the sample and the surface of the CaF2 window, which is not visible using a 

heatmap (Figure S4a). In the future, Heatmaps based on the integration of specific regions will 

be introduced to allow even more control over the data. Further, additional functions are 

currently planned to be introduced, and new possibilities can be determined by contacting the 

authors to explore its application in a broader scope for future research. 

 

Conclusion 

With siMPle we present a freeware data analysis tool for the harmonized and systematic analysis 

of spectroscopic data, with application for example, in the identification of MP in the 

environment. It allows data determination and interpretation in a transparent manner and 

reproducible manner. In addition, it provides a simpler quality QA/QC compared to existing 

commercial software tools like Bruker OPUS and shows an increased identification rate. 

Furthermore, it allows the analysis independently from the instrument manufacturer for a single 

spectrum but also for large fields generated by imaging techniques. In particular, the field of FT-

IR imaging benefits greatly, as the data calculation time is reduced from several days to five 

hours using this software tool. Compared to other techniques, all spectra are correlated via three 
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different data treatments with the database yielding high-quality results for all investigated 

instrument systems. This new tool improves the application of FT-IR imaging in monitoring 

studies for MP, as it is accessible for most types of spectrometers, free of charge and reduces the 

human bias during manual data analysis. 
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Table I. Calculation times of the different datasets measured on systems of four different 

manufacturers using siMPle. 

Data Set Size 

.spe 

Spectra Pixel 

Size  

Calculation 

Time  

Calculation 

performance 

Filter area 

measured 

 GB N µm s spectra/s mm 

Agilent 9.01 3211264 5.5 29979 107 10 × 10  

Bruker 4.14 1806336 11.05 16464 110 14.9 × 14.9  

PerkinElmer 0.66 215296 25 2877 75 11.6 × 11.6  

ThermoFisher 

Scientific 

0.25 221184 20 1129 195 11.5 × 7.2  
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Paragraph S1: File format for Single Spectra Correlation 

The file must be saved as .csv file containing the entries WaveNumber (in cm−1) and Spectrum 

(absorbance value at the assigned WaveNumber) separated by a “,”. Please keep in mind that the 

format is currently case sensitive. Afterwards follows the spectrum starting from the lowest 

wavenumber and the measured absorbance for (FTIR) or counts (for Raman). 

Example: 

WaveNumber,Spectrum 

1249.5058,0 

1251.43405,0.00269 

1253.3623,0.02026 

1255.29055,0.03502 

etc. 
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Figure S1. Exemplary processed Raman spectrum identified using siMPle Sd = 0.8292 for 

polyethylene. 
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Figure S2. Comparison between a measured spectrum assigned to polycaprolactone (PCL), 

the polyester (PEST) added to the sample from the manufacturer Schaetti and the 

spectrum of PCL causing the assignment measured in transmission. 

 

 

 

 

 

 

 

Table S1. Spectrum based polymer type identification rates using OPUS and siMPle on 

sample RefEnv1.  

Polymer type 
 

RefEnv1 

OPUS 

RefEnv1 

siMPle 

RefEnv2 

OPUS 

RefEnv2 

siMPle* 
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Polyethylene 45 46 7114 7579 

Polyethylene oxidized  0 0 7 0 

Polyethylene-chlorinated  0 0 47 93 

Polypropylene 753 794 54934 54965 

Polystyrene 152 170 4 3 

Polycarbonate 1 2 2 0 

Polyamide 33 33 65 80 

Polyvinylchloride 30 32 1 6 

Cellulose chemical modified  0 0 163 163 

Polyester 4 4 179 198 

Acrylates/polyurethanes/varnish 430 450 3001 3860 

Animal fur/natural polyamides 126 180 685 1151 

Plant fibers/ cellulose 4520 13750 82563 141833 

Sand 10 1 7348 6808 

Polysulfone 495 508 2 1 

Polychloroprene 1 0 401 105 

Chitin 10 7 3756 4382 

Polycaprolactone 0 0 180 285 

Ethylene-Vinyl-Acetate 1 2 522 334 

Polyoxymethylene 3 1 12 20 

Rubber type 1 0 1 26 0 

Charcoal 0 1 1 1 

Coal 0 11 1 6 

Rubber type 3 112 302 683 1067 

 

*Please note that the export for siMPle could only be performed for a fieldsize of 85*85 FPA 

fields by combing 2 x 2 FPA fields to a larger one, an export of each field was not possible 

because the Marco stop working due to unknown reasons. The dataset misses 42910 spectra and 

mainly PP assignments as it was part of the outer region also visualized in Figure XY. 
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Figure S3. False color overview images from the analysis of the sample RefEnv2 via OPUS 

(a) and siMPle (b). Please note that the export for siMPle could only be performed for 
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RefEnv2 (field size of 85*85 FPA fields) by combing 2 x 2 FPA fields to a larger one, an 

export of each field was not possible because the Marco stop working due to unknown 

reasons. The dataset misses 42910 spectra visible as white area at the top and right side. 

 

 

 

 

Figure S4. Algae cells (Raphidocelis subcapitata) placed on CaF2 measured using the 

Agilent system. (a) General Heatmap based on the highest Peak in the spectrum. (b) 

Visualization of the particles using spectral comparison against the database entry algae 

fucus serratus. 
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How to use siMPle? 

 

This document is based on the current HowTos available on: http://simple-

plastics.eu/howto.html 

 

 

Overview of the interface: 

 

 

 

 

 

 

 

 

 

 

 

http://simple-plastics.eu/howto.html
http://simple-plastics.eu/howto.html
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Converting Bruker and ThermoFisher Scientific Data into files suitable for siMPle. 

Bruker OPUS 

Conversion of get OPUS Data to siMPle  

1. Load the respective file into OPUS: (This description is using the fullAccess.ows) 

 

2. Go to Macro/Makro: 

 

3. Choose the macro from the GoogleDrive 

(https://drive.google.com/open?id=1O3vtsb963KoGwsTTGvDZgo8KUqjGjNAD) (Choose as 

file type OPUS Macro (binary)) and open it. 
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4. Choose your target field size (simple support 16,32,64,128 datapoints  (will read in as 16 x 16, 

etc.) and click Weiter/Proceed. This case uses a value of 64. 
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5. Data extraction starts, it is beneficial to minimize OPUS for performance: 

 

6. These numbers should now increase: 

  

7. Depending on the hard drive this process is rather slow or fast and one will find a new file 

and a folder generated: 

 

The folder Single Fields contains the generated .dx files. Depending on the file size this process may 

be instable. If problems occur please inform the corresponding authors. 

In this case the extraction of 1 million spectra in 256 single fields took 121 minutes. These values may 

change for different field sizes. Currently .dx files larger 128 datapoints are currently not supported 

by siMPle. 

 

The files are ready to be converted via simple via BRUKER .DX INTO .SPE FILES by selecting all dx files. 

 

 

 

 

 

 

 

 



5 
 

THERMO µ-FTIR data 

 

OMNIC PICTA 

Preparation of map files that have been generated using the Thermo (single MCT) FTIR. Using 

Thermo software Picta to transform maps in a file type that can be read by the MPHunter (single jdx 

files). 

 

 

1. Open the .map file in Omnic Picta 

2. Note the dimensions of the mapped area (in measuring points). As can be seen in above 

scheme the dx files might be larger than the original map. Rows will be ‘filled up’ by 

repeating the result of the last pixel, this needs to be corrected (see below * ). 

3. Create a .txt file with the bold text below. In Omnic, click ANALYZE (left bar) – SHOW MAP 

INFO, copy following information (bottom) in the .txt file and save this in a folder as “Map 

info.txt”. 

 

MAP DESCRIPTION 

  Tile name: MyTiles 

  First map location:    -40.0,  -5474.5 

  Last map location:   6880.0,   4845.5 

  Mapping stage X step size:     20.0 micrometers 

  Mapping stage Y step size:     20.0 micrometers 

 

4. In Omnic, click ANALYZE – SPLIT MAP: Select path (created folder), choose jdx file and then 

OK. Splitting the data can take > 45 min (depending on the map size).  
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siMPle 

1. Click CONVERT – CONVERT NICOLET SPECTRA .JDX INTO .DX FILES: A window will open, then 

choose the created folder and click on the generated .txt file (map info). This will take a few 

minutes.  

NOTE: the .jdx files must be in the same directory as the map info file, the names/ numbering done 

during the splitting cannot be changed! 

2. Click CONVERT – CONVERT BRUKER .DX INTO .SPE FILES by selecting all dx files (This will take 

also few minutes) 

3. LOAD .SPE FILES 

 

How to use the AWI pipeline: 

 

1. Load .spe files or convert (.dx, .dmd, .jdx or .fsm) files into .spe, files. 

 

2. Load the file containing reference spectra, for AWI analysis choose: 

siMPle_database_Version1.0.txt 



7 
 

 

Please keep in mind that the reference spectra were measured in absorbance, press OK. 

3. siMPle should now look like this: 
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4. Under User setup -> Options,  values and options for the search can be checked and 

adjusted. Proceed by pressing OK. 

 

Proceed by clicking okay. 

5. Start the calculation by pressing:  The program will ask you to 

generate a project file (.ini), here called howto.ini, then click Save. The file will be saved 

automatically when the analysis is completed.  

6. Wait until the calculations are finished. 

7. Afterwards, click on the button:  

8. Choose a file name (here howto.txt). Take care not to rename the database file (currently 

this is the default name generated by siMPle). Depending on the amount of identified MP 

this may take some time.  
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APA.exe or MPAPP.exe 

1. Depending on the pipeline you want to use, open the APA.exe or MPAPP.exe (both filenames 

contain the current version number, e.g. APAv1.01.exe, which may differ due to updates). 

2. After a short while the user interface shows up (here AAP): 

 

3. Set the pixel size to the value of your system, here 11.03, and press Set Pixelsize (otherwise 

11.14 will be used as default). 

4. By pressing “file name” you can choose the previously generated file (here HowTo.txt in the 

“MPhunter Agilent” folder). 

5. Chose a result folder by pressing “result dir” (here called APA in the “MPhunter Agilent” 

folder). Important, this folder needs to be in the same folder as the executable, currently no 

sub folders are allowed (know bug, work in progress). 

 

6. After folders and files are selected, and settings are set, press “Analyse from MPhunter” to 

start the analysis of generated data followed by an image analysis. 

The start should look like this:  

 

 

7. When the analysis is finished it will look like this:   
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8. Per samples various files are produced, all including data and images generated during image 

analysis. These are: 

a. A histogram for polymer type hits based on spectra. 

b. The combined (_closed_image.csv) and the individual (_closed_imageID.csv, ID = 01, 

etc.) image files. 

c. The number of particles found for each pixel area (_particle_histogramID.csv) 

d. All individual particle information (which number has which size) as _individualID.csv. 

e. A histogram for polymer type hits based on particle (_particles_perpolymer.csv) 

f. The size classes used in various publication:  

_sizeclassesID.csv for individual particles types,  

_bio for natural materials,  

_polymer for plastic materials,  

_other for all other materials,  

_bulk (bio, polymer and other combined),  

_forcalculations (all individual sizeclasses for all polymers in one file): 
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Data reads as followed: The first column labeled with s does not contain data and should be deleted 

before starting further calculations. Subsequent columns contain numbers per polymer cluster (# 1- 

32): 

 

 

_forstatistics (all individual sizeclasses in one file):) 

g. Greyscale image of the raw and final images. 

 

Analysis is finished! Welcome to the data Jungle! 
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Note, using an FTIR system without an FPA detector, e.g. The Thermo system Nicolet iN10 

simPLe 

- Convert .jdx into .dx files, then convert .dx into .spe. While doing so MPHunter combines 

individual .jdx  files into the shape of a 64x64 FPA format. At the right and upper edge, the last 

spectrum is repeated to fill up rows/ column. Do all steps with the MPHunter as indicated above. 

Before starting the APA/ MPAPP analysis remove these artefacts.  

 

- This could be done using the software Origin, for this:  

- Open – File – Import Wizard 

- Choose file (howto.forqc.csv) – ‘Add file’  - ‘Ok’  

- Mark column 3 and 4, right click ‘set as Z’ 

 

QA/QC 

1. Load the file labeled “_for_qc” via the Load pipeline results function from Image Analysis: 
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2. Activate “Link listbox to show spectra”: 

 

3. Start QA/QC as described in the main document. 

  

4. Click on “Save to file” so reassess the data later or for further evaluation. 
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Troubleshooting: 

Error Messages (Traceback): 

a. Missing the threshold.csv file in the folder with the executable for APA/MPAPP: 

 

 

Please copy the provide threshold_database.csv into the folder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

The AAU pipeline: 

The second pipeline uses the following user setting prior to spectral fit (see above for the procedure). 

 

 

1. After spectral fit click on run MP detection 

You can setup the probability thresholds before that: "Modify -> Modify loaded parameters 

for reference spectra" 

 

 

 

2. Click on Run MP detection and afterwards Find particles in the following window: 
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3. This results in a false color image (here RefEnv1):  
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4. All particles are listed via Show MP table containing all results which can be exported 

to .csv files for future analysis. 

 

5. The particles can either be selected by clicking on the entry or on the MP map for 

QA/QC (Activate “Update spectra maps when clicking on MP map”) 
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Spectrum of the selected pixel of the identified particle. 

 

 

 

 

 

 


