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ABSTRACT 9 

Seasonality of food supply is a major driver of physiological and ecological adaptations of marine 10 

zooplankton. High latitude marine copepods accumulate lipids for maintenance and reproductive maturation 11 

during the food-depleted winter period. The relationship between latitude and lipid storage in copepods is 12 

well established, but it is influenced by many factors, such as trophic position, sex and depth distribution. In 13 

this study, the influence of latitude and collection depth, trophic level, sex and the presence or absence of 14 

dormancy on the relative amount and composition of lipids stored was assessed by analysing published data. 15 

Our analyses confirmed higher lipid contents (expressed as % dry weight) in high latitude species, and in 16 

deep-dwelling tropical copepods compared to shallow-living ones. Contrary to our original hypothesis, 17 

carnivorous and herbivorous copepods had similar lipid levels. Copepod species that undergo dormancy had 18 

higher levels of wax ester, and were more common at polar and temperate latitudes. Lastly, adult male and 19 

female copepods did not significantly differ in the amount of lipids they store, suggesting that the portion of 20 

male reproductive investment which may depend on lipid stores has been underestimated. Taken together, 21 

these results both confirm some previously reported trends, and refute others.   22 
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INTRODUCTION 23 

Copepods are among the most abundant animals on Earth, with some estimates in the order of trillions 24 

globally (Humes, 1994). Their ecological importance is due to their trophic position, where they provide a link 25 

between their microplanktonic prey species and higher consumers. Copepods make up a major fraction of 26 

the diet of fish larvae (Helle, 1994; Turner, 2004; Buckley and Durbin, 2006; Llopiz, 2013; Robert et al., 2014) 27 

and planktivorous fish (Dommasnes et al., 2004). In this sense, their role is analogous to that of planktonic 28 

protozoans, which link bacterioplankton to metazoan micro- and mesoplankton through “trophic 29 

repackaging” (Gifford, 1991). Other copepod predators include chaetognaths (Oresland, 1987), jellyfish 30 

(Graham and Kroutil, 2001), baleen whales (Pendleton et al., 2009; Baumgartner et al., 2013) and seabirds 31 

(Springer and Roseneau, 1985). Indeed, copepod abundance is a good predictor of the endangered North 32 

Atlantic right whale’s distribution (Pendleton et al., 2009; Baumgartner et al., 2013). Copepods also 33 

contribute to the biological carbon pump, by both active and passive processes, namely vertical migration 34 

and faecal pellet production, respectively (reviewed in Turner, 2015). Copepods’ input to the biological pump 35 

is realised by the utilisation of storage lipids at depth, during periods of diapause (Jónasdóttir et al., 2015). 36 

Jónasdóttir et al. (2015) quantified the contribution of lipid-replete, diapausing Calanus finmarchicus CV 37 

copepodids to carbon export in the North Atlantic (“lipid pump”), showing that it is of a similar magnitude to 38 

passive sinking processes. This contribution is primarily dependent on copepod stocks at depth, respiration 39 

rate and mortality (Jónasdóttir et al., 2015). Therefore, knowledge of the annual lipid accumulation patterns, 40 

life cycle and physiology (in particular, metabolic rate at depth) of seasonally migrating copepods is important 41 

for assessing their contribution to the biological pump through active carbon transport. In turn, this could be 42 

estimated by integrating information on the intrinsic and extrinsic drivers of lipid storage patterns in marine 43 

copepod species other than C. finmarchicus. 44 

Seasonality of food supply is a major factor affecting biological processes in polar marine species (Clarke, 45 

1988; Arntz et al., 1994; Peck et al., 2006; Peck, 2018). It is considered a major ecological driver of lipid 46 

accumulation in high-latitude herbivorous copepods (Conover and Huntley, 1991; Lee et al., 2006). 47 

Furthermore, it has been proposed as the main factor limiting growth in polar waters, not just in copepods 48 



4 
 

(Clarke, 1988; Peck, 2018). Seasonality of predation risk has also been proposed as an underappreciated 49 

factor potentially shaping high-latitude copepod life cycles (Kaartvedt, 2000; Varpe, 2012), however its 50 

influence on lipid storage has not been investigated. At high latitudes, phytoplankton blooms provide a 51 

relatively short window of opportunity for foraging, during which early developmental stages of copepods 52 

typically grow at fast rates (Clarke and Peck, 1991; Søreide et al., 2016). At the onset of autumn/winter, late 53 

copepodid stages of herbivorous species typically migrate to the deep layers, where they undergo post-54 

embryonic dormancy (or diapause) until the following spring (Lee et al., 2006). Dormancy is characterised by 55 

a termination of feeding activity and a marked decrease in metabolic and growth rates (Baumgartner and 56 

Tarrant, 2017). There can be substantial deviation from this generalised life cycle, with some species 57 

reproducing multiple times a year during the warmer months (multigeneration life cycle), others only 58 

reproducing once per life cycle (annual life cycle) and others needing two or more years to complete their 59 

life cycle (multiyear cycle, characteristic of some polar herbivorous species), following Conover (1988)‘s 60 

categorisation. Species with a broad geographical distribution also display considerable intraspecific variation 61 

in their life cycles and lipid accumulation patterns. For instance, the life cycle duration of the arctic and 62 

subarctic copepod Calanus hyperboreus lasts between one and four years, depending on the location (Hirche, 63 

1997 and references therein).  64 

Lipids are used up over the winter period for maintenance and reproductive maturation (Hirche, 1996; 65 

Evanson et al., 2000), and copepods start migrating from shallow depths only when they have stored 66 

sufficient lipid reserves (the lipid accumulation window hypothesis: Schmid et al. (2018)). Mobilised storage 67 

lipids also fuel the activity of lecithotrophic early larval stages (nauplii) (Lee et al., 2006). A distinction should 68 

be made between species whose life history is characterised by capital breeding on one end of the 69 

continuum, where reproduction is fuelled by stored “capital” (Stephens et al., 2009), such as energetic 70 

reserves in the form of lipids, and income breeding on the other end, where reproductive costs are met by 71 

day-to-day foraging during the reproductive season (Jönsson, 1997; Stephens et al., 2009). Mathematical 72 

modelling evidence predicts that for capital breeders, the “sufficiency” of lipid reserves is dependent on the 73 

trade-off between predation risk during the foraging season and the benefit of continued feeding for 74 
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reproductive maturation and/or maintenance during dormancy, while income breeders would store just 75 

enough lipids for maintenance (Varpe and Ejsmond, 2018). For omnivorous and carnivorous species, the 76 

adaptive significance of lipid storage is less clear, as their food supplies are expected to be less seasonally 77 

variable (Clarke, 1988). Nonetheless, some omnivorous and carnivorous copepods have been shown to store 78 

large amounts of lipids (Auel and Hagen, 2005), despite not undergoing dormancy and actively feeding 79 

throughout winter. For some opportunistic omnivores, such as Metridia longa, the phytoplankton bloom still 80 

represents the period of maximal prey quality and quantity (Båmstedt and Ervik, 1984). Thus, they are 81 

believed to store lipid, albeit to a lesser extent than their herbivorous counterparts, to cope with suboptimal 82 

foraging conditions during the winter (Båmstedt and Ervik, 1984). It has been hypothesised that seasonality 83 

should contribute less to the life cycle of omnivorous and carnivorous species (Clarke, 1988). However, 84 

annual variation in the availability of herbivorous copepods in surface waters may in turn impose a resource 85 

limitation for carnivorous species preying on them. This is the case for the planktivorous Atlantic herring 86 

Clupea harengus, which rapidly increases in body mass (Varpe et al., 2005) and relative lipid content 87 

(Stoddard, 1967; McGurk et al., 1980) after a short intensive feeding period in the spring and summer 88 

months, when its main prey C. finmarchicus is in surface waters.  89 

The two main storage lipid classes in marine copepods are wax ester (WE) and triacylglycerol (TAG). Wax 90 

esters are long-chain esters (C28-C42) of diet-derived fatty acids and de novo synthesised fatty alcohols 91 

(Sargent, 1978), while triacylglycerols are triesters of glycerol and three fatty acid chains. Because dietary 92 

fatty acids are generally unmodified, they provide a chemical signature of the different prey taxa consumed 93 

by copepods (Graeve et al., 1994; Kattner and Hagen, 1995). Wax esters are the main long-term storage lipids 94 

of deep sea and polar marine copepods, while triacylglycerols make up a lesser proportion of the total storage 95 

lipids and fuel short-term metabolic needs (Lee and Barnes, 1975; Lee et al., 2006). The Antarctic calanoid C. 96 

propinquus represents an exception to this, as it stores mainly high-energy triacylglycerols, containing de 97 

novo elongated fatty acids (Hagen et al., 1993; Kattner et al., 1994). The adaptive significance of wax ester 98 

synthesis and storage in most copepod species, as opposed to triacylglycerols, is unclear. According to one 99 

hypothesis, wax esters could be synthesised more quickly than triacylglycerols (Bauermeister and Sargent, 100 
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1979), however there is no evidence supporting this. Triacylglycerols, on the other hand, are utilised 101 

preferentially during short-term starvation, however it is not clear whether this is because they can be 102 

catabolised more quickly, as it has been suggested (Lee et al., 2006). Because they are less dense than TAGs 103 

(Bauermeister and Sargent, 1979), WEs have been suggested to be important for buoyancy regulation, 104 

however several studies have provided evidence against this hypothesis (see Discussion). 105 

The hypothesised key role of seasonality of food supply in shaping polar organisms’ life cycles and growth 106 

dynamics (Clarke, 1988) allows the following predictions to be made, concerning lipid accumulation in marine 107 

copepods. 108 

P1. Total lipid and wax ester contents will be higher with increasing latitude (Lee et al., 1971; Clarke and 109 

Peck, 1991). 110 

P2. Upwelling systems at lower latitudes are also highly seasonal (García-Reyes and Largier, 2012; Vidal 111 

et al., 2017; Walter et al., 2018; Pinochet et al., 2019), and several copepod species inhabiting them 112 

undergo ontogenetic vertical migration and/or dormancy in winter (Peterson, 1998). These species 113 

store lipids to an extent comparable to that of their high-latitude counterparts (Verheye et al., 1992; 114 

Lee et al., 2006). For this reason, we predict that copepods sampled from areas characterised by 115 

upwelling will have a higher lipid and wax ester content than copepods sampled at similar latitudes, 116 

but from areas not affected by upwelling.  117 

P3. Lipid and wax ester contents will increase with depth of occurrence, particularly in tropical species 118 

(Lee and Hirota, 1973). This is driven not only by seasonality of food supply (i.e. seasonal migrators 119 

to the deep sea), but also by the general food limitation of deep sea habitats (Harding, 1974; Smith 120 

et al., 2008), which would make lipid storage beneficial for deep-sea copepods (Lee et al., 1971). 121 

Although metabolic rate decreases with depth in several taxa (Childress, 1975; Seibel and Drazen, 122 

2007), this does not seem to be the case for copepods (Thuesen and Miller, 1998). Within-species, 123 

however, dormant stages typically have a reduced metabolic rate compared to non-dormant ones 124 

(Baumgartner and Tarrant, 2017), allowing a slow utilisation of the stored lipids. 125 
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P4. Lipid content will be highest in herbivorous species and lowest in omnivorous and carnivorous 126 

species, as food supplies for herbivorous species are predominantly restricted to the short summer 127 

productive season at high latitudes (Clarke, 1988; Clarke and Peck, 1991) or during upwelling events 128 

at lower latitudes (Verheye et al., 1992). 129 

P5. A) In species which undergo dormancy, lipid content will be higher than in non-dormant species, due 130 

to the adaptive significance of lipid depots to many polar and temperate species for maintenance 131 

during dormancy and reproduction during or after  dormancy (Hagen and Auel, 2001). Moreover, 132 

wax ester content will also be higher in species undergoing dormancy, given that many of these 133 

species are found in high latitude environments and store large amounts of wax esters (Lee et al., 134 

1971). B) Dormancy will be most prevalent at higher latitudes because of the progressively stronger 135 

environmental seasonality. 136 

P6. Lipid content may be the same in adult females and males, due to the underappreciated magnitude 137 

of spermatophore production costs (Bjærke et al., 2016). Previous laboratory experiments showed 138 

that in some species spermatophore production is dependent on food availability (Bjærke et al., 139 

2016), which would suggest a limited dependence on stored lipids. However this is not the case for 140 

other species (Burris and Dam, 2015). Studies comparing energetic investment into gametes of male 141 

and female copepods are lacking, however male gametogenic investment is known to be equal to or 142 

higher than females’ in some other marine invertebrates (Tyler et al., 2003; Grange et al., 2004). 143 

Zooplankton lipid dynamics literature is characterised by a multitude of standalone reports, focussed on 144 

single or selected few species (see Supplementary Table 1), with some notable exceptions (e.g. Lee, Hirota 145 

and Barnett, 1971; Lee and Hirota, 1973). Despite this, some authors have comprehensively reviewed 146 

zooplankton lipid accumulation drivers and features (e.g. Hagen and Auel, 2001; Lee, Hagen and Kattner, 147 

2006). The present review aims to expand their work by quantitatively analysing  published lipid content data 148 

for marine copepods, including almost 100 species. We specifically aim to assess whether lipid content data 149 

support the aforementioned predictions, and to explore how various environmental, ecological and intrinsic 150 

drivers may shape lipid storage and accumulation strategies in marine copepods.  151 
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MATERIALS AND METHODS 152 

Data selection 153 

On July, 31st 2018, a literature search in Web of Science (All Databases) was performed, with the following 154 

queries: “copepod* AND (lipid storage OR storage lipid*)” and “zooplankton* AND (lipid storage OR storage 155 

lipid*)” (i.e. copepod/zooplankton lipid storage/storage lipids). The results were screened for relevant 156 

primary sources, and other references were retrieved from the literature cited in the primary articles. 157 

Three copepod lipid content measures were compiled from the published literature: total lipid (TL) as % dry 158 

weight, triglyceride/triacylglycerol (TAG) and wax ester (WE), both expressed as % TL. Additionally, absolute 159 

TL content (expressed as µg/individual) was also retrieved from the sources reporting it, however it was not 160 

used in the analysis, as it would be expected to change with body size. Where necessary, data were extracted 161 

from plots using WebPlotDigitizer 4.1 (Rohatgi, 2018). Only studies where lipids were extracted by chemical 162 

methods (i.e. chloroform/dichloromethane:methanol extraction and chromatography-based lipid class 163 

analysis) were included in the analysis, therefore excluding lipid sac area/volume-based estimations of lipid 164 

content. A list of lipid isolation and lipid class analysis methods used in the selected primary sources is 165 

available in Supplementary Table 6. Furthermore, sources which did not report the developmental stage of 166 

the sampled copepods were excluded from the dataset. 167 

The following data, when available, were also recorded: collection period, location, depth and sex of the 168 

sampled copepods. Species included were further classified into different “feeding guilds” (herbivorous, 169 

omnivorous or carnivorous), based on published accounts of their feeding behaviour (from gut content 170 

analyses, mouth-part morphology-based assessments, feeding experiments, isotope and marker fatty 171 

acids/alcohols analyses). Similarly, information on seasonal (post-embryonic) dormancy (i.e. presence or 172 

absence of dormancy in the life cycle) was compiled. For the purpose of this review, dormancy was defined 173 

as a period spent at depth below the photic zone without feeding. 174 

Data analysis 175 
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For the comparisons among latitudinal zones (P1, see Introduction), feeding guilds (P4), between species 176 

undergoing dormancy and those which do not (P5), and between sexes (P6), lipid content measurements of 177 

adult females were averaged across studies for each species, without first averaging multiple measurements 178 

obtained from the same study (Supplementary Table 2). For species where data were derived from a single 179 

source, multiple measurements were averaged for that source where applicable. For the comparison 180 

between copepods sampled from upwelling and non-upwelling areas (P2), lipid content measurements of 181 

adult females were averaged for each species, but the distinction between upwelling and non-upwelling 182 

areas was maintained. Thus, for some species two average values were present, one for samples collected 183 

from upwelling areas, one for samples collected from non-upwelling areas (Supplementary Table 3). Similarly, 184 

for the comparison among depth classes (P3), lipid content measurements of adult females were averaged 185 

for each species, but the distinction between depth classes was maintained. Thus, some species presented 186 

more than one average value, e.g. one for samples collected from epipelagic depths and another for samples 187 

collected from mesopelagic depths (Supplementary Table 4; see below for definitions of each depth class). 188 

Data were not partitioned based on the collection period (i.e. season), so average values include all available 189 

data for any one species, regardless of the time sampling. In all instances, the average measure was either 190 

the mean or the median TL/TAG/WE content, depending on whether the distribution of the data was normal 191 

or not normal, respectively. Data distribution was assessed by inspection of normal Q-Q plots in R (R Core 192 

Team, 2018). 193 

The following broad latitudinal categorisations were made: Polar (66.5-90° N or S), Temperate (23.5-66.5° N 194 

or S) and Tropical (23.5° N – 23.5° S). Collection depth data in published articles were often reported as 195 

ranges. For the purpose of this analysis, depths were therefore categorised as either epipelagic (0-200 m), 196 

mesopelagic (201-1000 m) or bathypelagic (1000-4000 m).  197 

Because TAG and WE contents were expected to be negatively correlated, a Spearman’s correlation test was 198 

performed on the subset of species where data were available for both measures. Adult female lipid content 199 

(TL, TAG and WE) was compared among latitudinal classes, feeding guilds and between species that undergo 200 

dormancy and those that do not. Lipid content (TL, TAG and WE) of adult female copepods from tropical 201 
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latitudes was also compared between upwelling vs non-upwelling areas, and among depth classes. The 202 

datasets were restricted to adult females for consistency, mainly because data for adult males were relatively 203 

scarce in the literature. Moreover, lipid content was compared between sexes, restricting the analysis to 204 

adult stages of species where data for both sexes were available. Lastly, lipid content measures (TL, TAG and 205 

WE) of copepodid V (CV) stages were compared among latitudinal zones, feeding guilds and between species 206 

that undergo dormancy and those that do not. One-way ANOVAs or two-sample t tests were performed if 207 

the assumptions of normal distribution and homoscedasticity were met, whereas Kruskal-Wallis or Wilcoxon 208 

signed-rank/rank sum tests were performed when they were not. Such assumptions were assessed by 209 

Shapiro and Levene’s tests respectively, and in some instances the data were transformed (loge or square 210 

root) to achieve normal distribution and/or homoscedasticity. Posthoc tests (Tukey’s test or Dunn’s test with 211 

Benjamini-Hochberg correction) were performed where applicable, following ANOVA and Kruskal-Wallis 212 

tests respectively. The relationship between dormancy and latitude (P5 B) was investigated by performing a 213 

two-way Chi-square test, scoring each species as either dormant or not, and assigning it to its respective 214 

latitudinal zone.  A summary of the analyses performed is presented in Table 1. 215 

All analyses were performed in R, version 3.5.0 (R Core Team, 2018).  216 



11 
 

RESULTS 217 

A dataset of TL, TAG and WE content measures of 99 species of marine copepods (Supplementary Table 1) 218 

was collated from published literature. The data was obtained through database searches yielding a total of 219 

433 sources, of which 40 were selected according to the criteria outlined in the Materials and methods 220 

section (Supplementary Table 1). Adult female WE and TAG contents were inversely correlated (Table 1), 221 

therefore only the analyses on TL and WE contents are reported. Whilst WE and TAG contents were not 222 

correlated in CV stages (Table 1), the analyses were also limited to TL and WE contents for consistency and 223 

ease of comparison. TAG content data is available in Supplementary Tables 1-4. 224 

Copepod lipid content changes with latitude, but not between upwelling and non-upwelling areas 225 

Average lipid content values for each species were compared among latitudinal classes representative of 226 

where they were collected. Significant differences in total lipid content of adult females were identified 227 

among latitudinal zones (Table 1). In particular, polar copepods had significantly higher TL content than 228 

temperate and polar ones (Figure 1A). On the other hand, there were no significant differences in WE 229 

contents of adult females among latitudinal zones (Table 1), however polar copepods also appeared to have 230 

the highest WE content (Figure 1B). TL and WE contents of CVs were not significantly different among 231 

latitudinal zones (Table 1; Supplementary Figure 1).  232 

Lipid content measures were also compared between copepods collected from upwelling vs non-upwelling 233 

areas at tropical latitudes. There was no significant difference in TL or WE contents of adult female tropical 234 

copepods collected from upwelling areas compared to those collected from non-upwelling areas (Table 1; 235 

Supplementary Figure 2). 236 

Tropical deep-sea copepods have higher lipid content than shallow-living ones  237 

The influence of collection depth on tropical copepods’ lipid content was investigated. TL content of adult 238 

females was significantly different among depth classes (Table 1), with copepods sampled from the 239 

bathypelagic zone having a significantly higher TL content than those sampled from the epipelagic zone 240 

(Figure 2A). This was not the case for WEs (Table 1; Figure 2B). The analysis was repeated including only 241 
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tropical copepods sampled from non-upwelling areas, to minimise the effect of dormancy and ontogenetic 242 

vertical migration on copepod lipid storage in upwelling areas. In this subset, there were no significant 243 

differences in TL or WE contents among depth classes (Table 1; Supplementary Figure 3). 244 

Carnivorous copepods store more lipids than omnivorous ones 245 

In order to determine whether diet may affect the amount of stored lipid in copepods, lipid content measures 246 

were compared among herbivorous, omnivorous and carnivorous species. TL and WE contents were 247 

significantly higher in carnivorous species compared to omnivorous ones (adult female subset, Table 1; Figure 248 

3). The same did not hold true for CVs (Table 1; Supplementary Figure 4). 249 

Copepods undergoing dormancy store more wax esters than those which do not 250 

Lastly, the effect of dormancy on copepod lipid storage strategies was assessed, by comparing species which 251 

undergo dormancy with those that do not. Moreover, the relationship between the occurrence of dormancy 252 

and latitude was investigated. While there was no significant difference in TL content between species 253 

exhibiting and not exhibiting dormancy (Table 1; Figure 4A), the difference was clearly significant for WE 254 

content (Table 1; Figure 4B), which was higher in the former group (Figure 4B). On the other hand, CV 255 

copepod TL and WE contents did not vary significantly between species exhibiting or not exhibiting dormancy 256 

(Table 1; Supplementary Figure 5). There was a significant relationship between the occurrence of dormancy 257 

and latitudinal zone (Table 1). Species exhibiting dormancy were almost entirely restricted to polar and 258 

temperate latitudes, with only one tropical species out of 61 undergoing dormancy in its life cycle (Figure 259 

4C). 260 

Female and male copepods do not differ in the amount of stored lipids  261 

Lipid content measures were also compared between sexes, in species where data were available for both 262 

sexes. Adult male and female copepods did not differ significantly in their TL or WE contents (Table 1; 263 

Supplementary Figure 6).  264 



13 
 

DISCUSSION 265 

The present study aimed to quantitatively assess the influence of environmental, life cycle and biological 266 

factors on lipid accumulation patterns in marine copepods. In particular, six predictions (P1-6, see 267 

Introduction), were tested by analysing copepod lipid content data retrieved from the primary literature. 268 

Our analyses demonstrated that TL content in copepods increased with latitude (Figure 1) in an expected 269 

fashion (P1), however tropical species sampled from upwelling areas did not store more TL or WE than those 270 

from non-upwelling areas, as hypothesised (P2). The results confirmed our initial prediction (P3) that tropical 271 

deeper-living copepods would have higher lipid content than shallow-living species (Figure 2A). This was not 272 

the case, however, for WEs (Figure 2B). Contrary to expectations (P4), carnivores had higher TL and WE 273 

contents than omnivorous species, and their TL and WE levels were similar to herbivores’ (Figure 3B). Species 274 

exhibiting dormancy had higher WE contents than those that did not (Figure 4B), as expected (P5). Lastly, 275 

male and female copepods did not store significantly different amounts of lipids (Supplementary Figure 6), 276 

as was expected from P6. These points are dealt with in more detail below. CV stages broadly showed the 277 

same lipid accumulation trends as adult females (Supplementary Figures 1, 4 and 5), however none of the 278 

factors analysed (latitude, depth and life cycles including dormancy) had a significant effect on TL or WE 279 

contents (Table 1). Given the considerably smaller sample sizes of the CV analyses (Table 1), this is likely a 280 

result of lower statistical power compared to the analyses restricted to adult females. 281 

Lipid storage data compiled in the present study were uneven across latitudinal regions: north temperate 282 

and tropical copepods comprised 72 out of 94 species where data were available (adult females subset, see 283 

Supplementary Table 1). Of these, 44 were tropical and 28 were north temperate, which aligns with the trend 284 

of relatively high diversity of copepods in tropical regions, that gradually decreases in north temperate and 285 

north polar regions, reported by Rombouts et al. (2009). South temperate copepods however, despite being 286 

relatively diverse (Rombouts et al., 2009), only comprised 6 out of 94 species in the present dataset 287 

(Supplementary Table 2). This suggests that a sampling bias may be, at least partially, responsible for the 288 

latitudinal imbalance of lipid content data available in the literature, and highlights a paucity of data and 289 

research in the southern hemisphere. 290 
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Influence of latitude and upwelling on lipid content and composition 291 

Polar and temperate copepod species have previously been reported to have higher TL and WE contents than 292 

tropical species (Lee et al., 1971; Lee and Hirota, 1973). Hence, TL and WE contents were expected to increase 293 

with latitude (P1, see Introduction). The present analysis broadly confirmed this prediction for adult females 294 

(Figure 1), but not for CVs (Supplementary Figure 1). Copepods store lipids primarily for overwintering and/or 295 

reproduction in seasonal environments (Hagen and Schnack-Schiel, 1996; Varpe et al., 2009; Maps et al., 296 

2014). Indeed, seasonality shapes many aspects of polar and temperate species’ life cycles (Arntz et al., 1994; 297 

Peck et al., 2006; Peck, 2018), as exemplified by the high incidence and adaptive value of capital breeding at 298 

these latitudes (Varpe et al., 2009). Wax esters followed the same trend (Figure 1B), which is not surprising, 299 

considering that most species primarily use WEs for storage (Supplementary Table 2). In fact, of the species 300 

where data were available for TAG and WE contents, only 27  out of 67 primarily stored TAGs, of which 16 301 

were tropical and with low TL levels (mostly < 20 % of dry mass). Nevenzel (1970) proposed two hypotheses 302 

to explain the function of wax ester accumulation: to aid buoyancy and as an energy reserve. The role of WEs 303 

in buoyancy regulation has been the subject of ongoing debate in the scientific literature since then. Evidence 304 

from theoretical models and empirical data suggests that accumulation of WEs alone cannot be responsible 305 

for prolonged periods of neutral buoyancy at depth (Campbell, 2003). Instead, Campbell (2003) proposed 306 

that ionic buoyancy regulation may be employed by vertically migrating copepods, as is the case for many 307 

other pelagic marine invertebrates (Barnes et al., 2001). Although high haemolymph ammonium 308 

concentrations have been recorded in Antarctic copepod species, these do not appear to change with depth 309 

(Sartoris et al., 2010) or season (Schründer et al., 2013), suggesting that other factors may be at play. More 310 

recently, copepods have been hypothesised to control their buoyancy by modulating WE fatty alcohol 311 

saturation level, which would in turn affect the depth at which neutral buoyancy is achieved (Pond, 2012). If 312 

this was the case, there would be a clear advantage in storing WEs over TAGs, perhaps explaining the high 313 

incidence of WE as the main storage lipid in copepods (Pond, 2012), and the prevalence of WEs at high 314 

latitudes (Figure 1B). However, WEs are also major constituents of many non-diapausing tropical copepods’ 315 

storage lipids (e.g. Paraeuchaeta spp., Gaussia princeps, Megacalanus princeps, Gaetanus pileatus, etc., see 316 
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Supplementary Table 2), raising questions on whether the adaptive significance of this lipid class in these 317 

species is in fact related to buoyancy. 318 

In contrast to WEs, triacylglycerols (TAGs) are believed to provide for short-term energy needs in most 319 

copepods, and they are preferentially utilised during starvation (Lee and Barnes, 1975; Mauchline, 1998; Lee 320 

et al., 2006). However, there are exceptions, i.e. species which use TAGs as storage lipids (e.g. Calanus 321 

propinquus, Euchirella rostromagna, Paralabidocera antarctica, etc., see Supplementary Table 2). In 322 

particular, Calanus simillimus, Eucalanus bungii and E. californicus not only primarily store TAGs, but also 323 

undergo dormancy at depth (Supplementary Table 2). Considering the relatively minor contribution of WEs 324 

to their TL content, it is likely that these species do not rely on WEs for buoyancy regulation (see above). The 325 

molecular and physiological mechanisms underpinning preferential TAG utilisation during short-term 326 

starvation are largely unknown. The evolutionarily conserved 3-hydroxyacyl-CoA dehydrogenase enzyme is 327 

central to fatty acid β-oxidation, and its activity is often used as a general biomarker for lipid catabolism 328 

(Hassett, 2006; Freese et al., 2016). However, it is unclear how lipid catabolic pathways are regulated in short-329 

term TAG breakdown as opposed to long-term WE utilisation. 330 

Tropical copepods in upwelling regions such as the Benguela and Humboldt upwelling systems are 331 

characterised by high relative lipid content, comparable to high latitude species (Lee et al., 2006). Despite 332 

this, our analysis showed that copepods sampled in upwelling areas at tropical latitudes did not significantly 333 

differ in the amount of TL or WE they accumulated compared to ones sampled in non-upwelling areas 334 

(Supplementary Figure 2). It should be noted, however, that this analysis was based on a limited number of 335 

sources (Table 1), which presented lipid content data for only a small number of geographical regions, and 336 

thus these data should be interpreted with care. The timing of dormancy and stage succession dynamics of 337 

tropical copepods in upwelling areas are not well understood, and the life-cycle information available has 338 

been described as “rudimentary” (Peterson, 1998). Lipid content data from a wider range of locations and 339 

with a higher temporal resolution will be needed in order to definitively rule out a difference in lipid 340 

accumulation strategies between copepods found in upwelling vs non-upwelling areas at tropical latitudes. 341 

Influence of depth on lipid storage in tropical copepods 342 
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The intraspecific differences in lipid content between depth zones are well established in ontogenetic 343 

migrants (Lee et al., 2006), reflecting a need to store lipids for overwintering at depth. Interspecific 344 

differences in lipid content between shallow- and deep-dwelling species have been observed in copepods 345 

(Lee et al., 1971) and zooplankton in general (Clarke and Peck, 1991), especially from tropical and subtropical 346 

latitudes. These observations are supported by our analysis, as there was a trend of increasing TL and WE 347 

contents from the epipelagic to the bathypelagic zone (Figure 2), and a significantly higher TL content in 348 

copepods collected from bathypelagic vs epipelagic depths (Figure 2A). There was a large variability in WE 349 

content (Figure 2B), with values ranging from 0.1 to 91 % of TL (Supplementary Figure 4). In an attempt to 350 

reduce this variability, an additional analysis restricted to tropical species collected from non-upwelling areas 351 

was performed (Table 1). The differences seen between depth zones were less clear in this subset 352 

(Supplementary Figure 3), likely due to the much smaller sample size. It should be noted that, in the vast 353 

majority of studies compiled, copepods were collected by vertical hauls to the surface, thus making depth 354 

comparisons difficult. Future studies should use higher resolution stratified sampling to facilitate wider scale 355 

interspecific comparisons of lipid storage patterns and other traits that may vary with depth of occurrence 356 

in copepods. 357 

The effect of diet on lipid content and composition 358 

Herbivorous copepods from high latitudes rely on a highly seasonal food supply, especially in polar zones, 359 

while omnivorous species often stay active during the winter (Graeve et al., 1994; Hagen and Auel, 2001). 360 

Likewise, carnivorous species tend to feed all year round (Øresland and Ward, 1993). Winter feeding in 361 

omnivorous and carnivorous species not only translates to lower lipid reserves than in herbivorous species  362 

(Clarke and Peck, 1991; Graeve et al., 1994; Mauchline, 1998), but also to slower lipid turnover in conditions 363 

of high prey abundance (Boissonnot et al., 2016). Whether the slower incorporation of diet-derived lipids 364 

into storage depots in omnivorous/carnivorous copepods is caused by fundamentally different physiological 365 

mechanisms of lipid utilisation between omnivorous/carnivorous species and herbivorous ones is not known. 366 

Because omnivorous and carnivorous copepods continue feeding during the winter, it was predicted that 367 

they would have lower lipid content than herbivorous species (P4, see Introduction). Surprisingly, in the 368 
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present analysis TL and WE contents were not significantly different between herbivorous and carnivorous 369 

copepods (Figure 3). On the other hand, carnivorous copepods had significantly higher TL and WE contents 370 

than omnivorous species (Figure 3).  Lipid-rich carnivorous species are well known, and lipid storage patterns 371 

are particularly well documented in Paraeuchaeta spp. (Auel and Hagen, 2005). Despite the fact that 372 

Paraeuchaeta spp. seem to continue feeding throughout the winter (Øresland and Ward, 1993), TL levels 373 

change seasonally and peak in the summer/autumn in epi-mesopelagic species (Auel and Hagen, 2005) such 374 

as P. antarctica (Figure 5). However, this seasonal trend is considerably less pronounced than in some 375 

herbivorous species (e.g. Calanoides acutus, see Figure 5). The seasonal trend in TL levels may be driven by 376 

sub-optimal feeding conditions during the winter, however the stark ontogenetic pattern of TL accumulation 377 

suggests that a large fraction of the stored lipids is invested into eggs and early developmental stages, which 378 

do not start feeding until CIII-IV (Auel and Hagen, 2005). If other carnivorous copepods were characterised 379 

by a comparably high reproductive investment, this could explain their relatively high TL and WE contents 380 

(Figure 3). High lipid content in carnivorous copepods may also be explained by the potential limitation 381 

imposed by the seasonal fluctuations in prey abundance, e.g. herbivorous copepod “standing crop” (Clarke, 382 

1988). Nonetheless, the adaptive significance of a high lipid content in carnivorous copepods remains 383 

unresolved. Most seasonal studies have focussed on diapausing herbivorous species, while carnivorous 384 

copepods have been assumed to stay active during the winter and to feed throughout. Future investigations 385 

should assess the seasonal patterns of lipid storage, feeding patterns and depth distribution of carnivorous 386 

copepods, with a particular focus on reproductive investment and energy use during winter. 387 

A higher lipid content in carnivorous zooplankton would have potential implications for bioaccumulation (and 388 

possibly biomagnification) of lipophilic pollutants. Indeed, bioaccumulation potential increases with lipid 389 

content (LeBlanc, 1995), which in turn, as shown here, increases with trophic level in copepods. Moreover, 390 

bioaccumulation has been shown to be greater for pollutants taken up via feeding than passively through the 391 

surrounding water (Magnusson and Tiselius, 2010), although this was not the case for less recalcitrant 392 

pollutants such as polycyclic aromatic hydrocarbons (Arias et al., 2016). This suggests that the trophic link 393 

between herbivorous and carnivorous copepods would potentially be a prime route for the bioaccumulation 394 
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of lipophilic compounds. Indeed, field evidence supports this hypothesis, as organic pollutant concentrations 395 

in carnivorous zooplankton and ice-associated fauna are higher than in herbivorous species in the Arctic 396 

(Borgå et al., 2002; Hallanger et al., 2011). However, laboratory experiments taking into account lipid content 397 

and composition of zooplankton are needed to identify the exact mechanisms of bioaccumulation between 398 

different trophic levels. 399 

The relationship between lipid storage and the occurrence of dormancy in copepods from different 400 

latitudinal zones 401 

It was predicted that species undergoing dormancy in their life cycles would have a higher lipid content than 402 

ones not exhibiting dormancy (P5 A, see Introduction). Our data did not have sufficient temporal resolution 403 

to allow differentiation between seasons, but time of sampling is expected to influence lipid content 404 

measures, e.g. in the pre- vs post-dormancy periods. Nonetheless, the present analysis supported our 405 

prediction, especially when considering WE content (Figure 4B). Only one tropical species undergoing 406 

dormancy was identified: Rhincalanus nasutus in the Red Sea (Schnack-Schiel et al., 2008). Because of vertical 407 

mixing effects this species has a highly seasonal food supply (Farstey, 2001). All other species exhibiting 408 

dormancy were from polar or temperate latitudes (Figure 4C), and species from these latitudes were 409 

significantly more likely to exhibit dormancy in their life cycle (Table 1). In support of our result, a recent 410 

modelling study determined food availability (i.e. phytoplankton bloom dynamics) and temperature to be 411 

two major factors influencing seasonal vertical migration timing in high latitude environments (Bandara et 412 

al., 2018). In the North Atlantic, phytoplankton blooms initiate later and are shorter with increasing latitude 413 

(Friedland et al., 2016). However, a recent analysis of satellite-obtained chlorophyll concentration data 414 

collected between 1997 and 2007 reported that the relationship between bloom duration and latitude was 415 

not linear (Sapiano et al., 2012). On the contrary, bloom duration was demonstrated to vary zonally rather 416 

than latitudinally on a global scale (Sapiano et al., 2012). This could potentially explain the higher number of 417 

temperate species undergoing dormancy compared to polar ones (Figure 4C). The relationship between 418 

dormancy duration, lipid storage and latitude (or phytoplankton bloom duration) remains to be determined, 419 
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especially when comparing temperate and polar species (Figure 4C). Modelling approaches (e.g. Maps et al., 420 

2014; Bandara et al., 2018), coupled with high quality field and satellite data, hold great promise.  421 

Lipid storage and reproductive cycles 422 

There is a wealth of studies highlighting the relationship between lipid storage and gonad maturation in 423 

female copepods (e.g. Hirche and Kattner, 1993; Hagen and Schnack-Schiel, 1996; Hirche, 1996), which have 424 

traditionally been thought to invest more energy than males in sexual maturation (Gatten et al., 1980). Male 425 

copepods generally have a higher mortality rate than females (Kiørboe, 2006), serving the “brief function” of 426 

reproduction (Conover, 1988). In some species, this is due to males having a naturally shorter lifespan than 427 

females. For instance, virgin Oithona davisae males live almost half as long as virgin females (Ceballos and 428 

Kiørboe, 2011). Many studies investigating changes in gonad mass upon spawning in other marine 429 

invertebrates show little or no difference between males and females (Grange et al., 2004, 2007) and some 430 

studies reported higher reproductive investment by males than females, for example in the Antarctic scallop 431 

Adamussium colbecki (Tyler et al., 2003). Male reproductive investment in copepods is not well-characterised 432 

(Titelman et al., 2007), and recent studies suggest that it could be higher than previously thought (Bjærke et 433 

al., 2016). In Calanus glacialis and C. finmarchicus, males develop earlier than females and before the 434 

phytoplankton bloom, suggesting that their gonad maturation is entirely reliant on lipid stores (Tande and 435 

Hopkins, 1981; Kosobokova, 1999). Kosobokova (1999) argued that the production of spermatozoa may be 436 

relatively more expensive in energy terms than ova on a unit mass basis, as they contain more energetically-437 

costly proteinaceous material. There were no significant differences in lipid content between adults of the 438 

two sexes in the present analysis (Supplementary Figure 6), indicating that overall energy cycles are very 439 

likely similar, and that male reproductive investment, if dependent on lipid stores, could bear a similar 440 

energetic cost to females. However, making general conclusions should only be done with great care, 441 

considering that lipid content information for adult males was only available for 22 out of 99 species 442 

(Supplementary Table 2). 443 

Summary and outlook 444 
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The present analysis provides support for the well-established trend for higher lipid content with increasing 445 

latitude in copepods, confirming Clarke and Peck (1991)’s observed trend for zooplankton in general. This is 446 

likely due to the larger effect of seasonality, as lipid-rich diapausing species tend to inhabit polar and 447 

temperate basins (Figure 4C). However, the effect of seasonality is modulated by the life cycle and feeding 448 

habits of copepods, as exemplified by the seasonal lipid dynamics of four sympatric Antarctic copepods 449 

(Figure 5). Carnivorous copepods, unexpectedly, had higher lipid content than omnivorous species, and some 450 

species were influenced by seasonality, though to a lesser extent than herbivorous species (see Figure 5). 451 

Lipid content was not statistically different between male and female copepods, suggesting that the portion 452 

of male reproductive investment which may depend on lipid stores has been underestimated (Bjærke et al., 453 

2016). The results presented here highlight a need for further research in several areas. Firstly, annual field 454 

surveys should be conducted to elucidate carnivorous species’ life cycles: their high lipid content cannot be 455 

assumed to be constant throughout the year (see Figure 5). In general, field surveys should include depth-456 

stratified sampling, in order to pinpoint the role of depth in shaping copepods’ lipid storage patterns. 457 

Secondly, male reproductive investment and lipid storage patterns, which have also been neglected in the 458 

literature, need to be quantified by field and experimental studies. Thirdly, exact sample sizes (n) for each 459 

sample used to determine lipid content or composition should be clearly reported instead of ranges, as this 460 

will allow more rigorous analyses of available data. Lastly, our dataset revealed a striking sampling imbalance 461 

against south temperate species, despite copepods being very diverse in this region (Rombouts et al., 2009). 462 

Thus, there is a compelling need for more field surveys south of the Equator.  463 
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SUPPLEMENTARY MATERIAL 464 

The following supplementary material is available at ICESJMS online: ICES_Supplementary_Tables (Excel file). 465 

Supplementary Table 1 contains the raw lipid content data, as extracted from the literature. Supplementary 466 

Table 2 contains the average lipid content data used for the latitudinal, feeding guild, dormancy and sex 467 

analyses (P1, P4, P5, P6, see Introduction). Supplementary Table 3 contains average lipid content data used 468 

for the comparison between copepods sampled from upwelling vs non-upwelling areas (P2). Supplementary 469 

Table 4 contains average lipid content data used for the depth analysis (P3). Supplementary Table 5 contains 470 

high temporal resolution lipid content data of four sympatric species (see Figure 5). Supplementary Table 6 471 

contains a breakdown of the lipid extraction methods used. 472 
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FIGURE LEGENDS 714 

Figure 1. Total lipid content (A) and wax ester content (B) of adult female copepods across latitudinal 715 

zones. The boxplots show the medians and interquartile ranges, while the open circle represents an outlier. 716 

Significant differences between latitudinal zones (p < 0.05) are denoted with an asterisk, and sample sizes 717 

are reported below latitudinal zone names. Data were derived from primary literature listed in 718 

Supplementary Table 2. 719 

Figure 2. Total lipid content (A) and wax ester content (B) of tropical copepods sampled from epipelagic, 720 

mesopelagic and bathypelagic depths. The boxplots show the medians and interquartile ranges, while the 721 

open circles represent outliers. Significant differences between feeding guilds (p < 0.05) are denoted with 722 

an asterisk, and sample sizes are reported below latitudinal zone names. Abbreviations: E = epipelagic, M = 723 

mesopelagic, B = bathypelagic. Data were derived from primary literature listed in Supplementary Table 4. 724 

Figure 3. Total lipid content (A) and wax ester content (B) of herbivorous, omnivorous and carnivorous 725 

adult female copepods. The boxplots show the medians and interquartile ranges, while the open circles 726 

represent outliers. Significant differences between feeding guilds are denoted with one (p < 0.05) or two (p 727 

< 0.01) asterisk(s), and sample sizes are reported below feeding guild names. Data were derived from 728 

primary literature listed in Supplementary Table 2. 729 

Figure 4. Total lipid content (A) and wax ester content (B) of adult female copepods undergoing 730 

dormancy in their life cycle vs non-dormant ones. Number of copepod species undergoing and not 731 

undergoing dormancy across latitudinal zones (C). The boxplots show the medians and interquartile 732 

ranges, while the open circle represents an outlier. Significant differences (p < 0.05) between non-dormant 733 

and dormant species are denoted with an asterisk, and sample sizes are reported below the group names. 734 

Data were derived from primary literature listed in Supplementary Table 2. 735 

Figure 5. Seasonal changes in total lipid content of four representative copepod species belonging to 736 

different feeding guilds, sampled from the Weddell Sea. Data were derived from primary literature listed 737 

in Supplementary Table 5. Jan-Feb months correspond to the summer period, while Apr-May, Jul-Aug and 738 
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Oct-Nov correspond to the early, mid- and late winter periods. The boxplots show the medians and 739 

interquartile ranges, while the open circles represent outliers. A line connecting the medians was added to 740 

highlight seasonal changes. For Calanoides acutus, the dormancy period is denoted by the dashed line. 741 



 

Supplementary Figure 1. Total lipid content (A) and wax ester content (B) of copepodid V (CV) copepods 

across latitudinal zones. The boxplots show the medians and interquartile ranges, while the open circle 

represents an outlier. Sample sizes are reported below latitudinal zone names. Data were derived from 

primary literature listed in Supplementary Table 2. 

 



 

Supplementary Figure 2. Total lipid content (A) and wax ester content (B) of tropical copepods (adult 

females only) sampled from upwelling (“Tropical-Upwelling”) and non-upwelling (“Tropical”) areas. The 

boxplots show the medians and interquartile ranges, while the open circles represent outliers. Sample sizes 

are reported below the plots. Data were derived from primary literature listed in Supplementary Table 3. 

 



 

Supplementary Figure 3. Total lipid content (A) and wax ester content (B) of tropical copepods (adult 

females collected from non-upwelling areas only) sampled from different depth classes. The boxplots 

show the medians and interquartile ranges. Sample sizes are reported below the plots. Abbreviations: E = 

epipelagic, M = mesopelagic, B = bathypelagic. Data were derived from primary literature listed in 

Supplementary Table 4. 



 

Supplementary Figure 4. Total lipid content (A) and wax ester content (B) of herbivorous, omnivorous 

and carnivorous CV stage copepods. The boxplots show the medians and interquartile ranges. Sample sizes 

are reported below feeding guild names. Data were derived from primary literature listed in Supplementary 

Table 2. 



 

Supplementary Figure 5. Total lipid content (A) and wax ester content (B) of CV stage copepods 

undergoing dormancy in their life cycle vs non-dormant ones. The boxplots show the medians and 

interquartile ranges, while the open circle represents an outlier. Sample sizes are reported below the plots. 

Data were derived from primary literature listed in Supplementary Table 2. 



 

Supplementary Figure 6. Total lipid content (A) and wax ester content (B) of adult female and male 

copepod species where data was available for both sexes. The boxplots show the medians and 

interquartile ranges. Sample sizes are reported below the plots. Data were derived from primary literature 

listed in Supplementary Table 2. 

 

 



Table 1 Summary of the analyses performed. Sample sizes (n) refer to the number of species in each factor 
level, except for the upwelling vs non-upwelling and depth comparisons, where some species had more 
than one average lipid content measure (e.g. one for samples collected from epipelagic depths and one for 
samples collected from mesopelagic depths), see Methods section.  

Analysis Subset Number 
of data 
sources 

Lipid 
content 
measure 

Sample sizes Effect 

WE and 
TAG 
correlation 

Adult females, 
species where 
both WE and TAG 
data were 
available 

25 TAG and 
WE (% TL) 

n = 66  Spearman’s 
correlation 
rs = -0.508, 
p = 1.314 x 10-5 

CV, species where 
both WE and TAG 
data were 
available 

17 TAG and 
WE (% TL) 

n = 21 Spearman’s 
correlation 
rs = -0.407, 
p = 0.067 

Latitude Adult females 39 TL (% 
DW) 

Polar: n = 16 
Temperate: n = 32 
Tropical: n = 41 

Kruskal-Wallis test 
Χ2 = 8.661, df = 2, 
p = 0.013 

32 WE (% TL) Polar: n = 13 
Temperate: n = 29 
Tropical: n = 40 

Kruskal-Wallis test 
Χ2 = 5.531, df = 2, 
p = 0.063 

CV 31 TL (% 
DW) 

Polar: n = 12 
Temperate: n = 18 
Tropical: n = 5 

ANOVA 
F2,32 = 0.108, 
p = 0.898 

25 WE (% TL) Polar: n = 10 
Temperate: n = 17 
Tropical: n = 4 

Kruskal-Wallis test 
Χ2 = 1.514, df = 2, 
p = 0.469 

Upwelling 
vs non-
upwelling 

Tropical species, 
adult females 

6 TL (% 
DW) 

Upwelling: n = 27 
Non-upwelling: n = 
28 

ANOVA 
F1,53 = 0.368, 
p = 0.547 

7 WE (% TL) Upwelling: n = 30 
Non-upwelling: n = 
25 

Kruskal-Wallis test 
Χ2 = 0.064, df = 1, 
p = 0.800 

Depth Tropical species, 
adult females 

4 TL (% 
DW) 

Epipelagic: n = 17 
Mesopelagic: n = 28 
Bathypelagic: n = 4 

ANOVA 
F2,46 = 3.666, 
p = 0.033 

5 WE (% TL) Epipelagic: n = 18 
Mesopelagic: n = 27 
Bathypelagic: n = 4 

Kruskal-Wallis test 
Χ2 = 4.833, df = 2, 
p = 0.089 

Tropical species 
from non-
upwelling areas, 
adult females 

2 TL (% 
DW) 

Epipelagic: n = 6 
Mesopelagic: n = 12 
Bathypelagic: n = 2 

ANOVA 
F2,17 = 0.583, 
p = 0.569 

3 WE (% TL) Epipelagic: n = 9 
Mesopelagic: n = 12 
Bathypelagic: n = 2 

ANOVA 
F2,20 = 1.589, 
p = 0.229 

Feeding 
guild 

Adult females 40 TL (% 
DW) 

Herbivorous: n = 13 
Omnivorous: n = 42 
Carnivorous: n = 27 

ANOVA 
F2,79 = 4.201, 
p = 0.018 

33 WE (% TL) Herbivorous: n = 10 
Omnivorous: n = 40 

ANOVA 



Carnivorous: n = 24 F2,71 = 4.800, 
p = 0.011 

CV 32 TL (% 
DW) 

Herbivorous: n = 10 
Omnivorous: n = 16 
Carnivorous: n = 7 

ANOVA 
F2,30 = 0.660, 
p = 0.524 

25 WE (% TL) Herbivorous: n = 8 
Omnivorous: n = 16 
Carnivorous: n = 5 

ANOVA 
F2,26 = 0.973, 
p = 0.391 

Sex Adults, species 
with data for both 
sexes 

23 TL (% 
DW) 

Females: n = 20 
Males: n = 20 

Paired two-sample t-
test 
t19 = -0.849, 
p = 0.406 

16 WE (% TL) Females: n = 15 
Males: n = 15 

Wilcoxon singed-
rank test 
V = 25, p = 0.090 

Dormancy Adult females 40 TL (% 
DW) 

Dormancy present: n 
= 14 
Dormancy absent: n 
= 49 

Two sample t-test 
t23.39 = 2.057, 
p = 0.051 

32 WE (% TL) Dormancy present: n 
= 14 
Dormancy absent: n 
= 42 

Wilcoxon rank sum 
test 
W = 421.5, p = 0.016 

CV 30 TL (% 
DW) 

Dormancy present: n 
= 15 
Dormancy absent: n 
= 17 

Two sample t-test 
T27.68 = 1.271, 
p = 0.214 

23 WE (% TL) Dormancy present: n 
= 14 
Dormancy absent: n 
= 15 

Wilcoxon rank sum 
test 
W = 147, p = 0.070 

Relationship 
between 
dormancy 
and latitude 

Species with 
information about 
both dormancy 
and collection 
zone 

41 N/A Dormancy present: n 
= 14 
Dormancy absent: n 
= 47 
Polar: n = 15 
Temperate: n = 24 
Tropical: n = 22 

Chi-squared test 
Χ2

2 = 6.592, 
p = 0.037 
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