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A B S T R A C T

Substantial perfluoroalkyl acids (PFAAs) production still occurs in China, and the consumption of aquatic
products is a critical exposure pathway of PFAAs in humans. In this study, specimens of 16 freshwater and 40
marine species were collected in the river-estuary-sea environment affected by a mega fluorochemical industry
park in China in 2015, and the edible tissues of these organisms were analyzed for PFAA levels.
Perfluorooctanoic acid (PFOA) was the dominating contaminant with an overall contribution of more than 90%,
and concentrations as high as 2161 ng/g wet weight (measured in the freshwater winkle). All species with the
greatest PFOA levels were benthic. The trophic magnification factor (TMF) of PFOA was 1.10 for freshwater
species and 1.28 for marine species, indicating that PFOA was slightly magnifying. Analysis of carbon source
indicated that freshwater species were more benthic feeding, while marine species were more pelagic feeding.
Aquatic food consumption screening values of PFOA were modified according to estimated daily intake (EDI)
values, which generated recommendations for limited meal categories and the do-not-eat category. Thus, this
study provides recommendations for mitigating the health risks of PFAA-contaminated aquatic food, ranging
from food selection to consumption frequency and proper food processing.

1. Introduction

Among per- and polyfluoroalkyl substances (PFASs), perfluoroalkyl
acids (PFAAs) have a wide array of industrial applications. They consist
of a fully fluorinated carbon chain (CnF2n+1-) and a charged functional
group, which gives them enhanced properties, such as strong acidity
and high surface activity at very low concentrations, compared to non-
or partially fluorinated alkyl compounds (Wang et al., 2017). Earlier
research indicated that the eight-carbon (C8) perfluoroalkyl-derived

surfactants have the best activity, making perfluorooctanoic acid
(PFOA)- and perfluorooctane sulfonic acid (PFOS)-related compounds
among the most applied PFAAs. However, more recently, their appli-
cations have been restricted due to concerns over their persistent,
bioaccumulative, and toxic properties and their presence in wildlife
(Betts, 2007). The C4 compound perfluorobutane sulfonic acid (PFBS)
was developed by a major producer to replace PFOS (3M, 2002). This
development assisted efforts to control PFOS production and emission
at a global scale (Stockholm Convention, 2009). But for PFOA, the

https://doi.org/10.1016/j.envint.2020.105621
Received 19 September 2019; Received in revised form 26 February 2020; Accepted 27 February 2020

Abbreviations: PFASs, per- and polyfluoroalkyl substances; PFAA, perfluoroalkyl acid; PFCA, perfluoroalkyl carboxylic acid; PFSA, perfluoroalkyl sulfonic acid;
PFOS, perfluorooctane sulfonic acid; PFOA, perfluorooctanoic acid; PFBA, perfluorobutanoic acid; FIP, fluorochemical industry park; ww, wet weight; TL, trophic
level; TMF, trophic magnification factor; BW (bw), body weight; AA-EQS, annual average environmental quality standards; TDI, tolerable daily intake; EDI, estimated
daily intake; MDHHS, Michigan Department of Health and Human Services; FCSV, fish consumption screening value; ACSV, aquatic food consumption screening
values

⁎ Corresponding author at: Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen
University, Fujian 361102, China.

E-mail addresses: wonpy122@gmail.com (P. Wang), yllu@rcees.ac.cn (Y. Lu).

Environment International 138 (2020) 105621

0160-4120/ © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2020.105621
https://doi.org/10.1016/j.envint.2020.105621
mailto:wonpy122@gmail.com
mailto:yllu@rcees.ac.cn
https://doi.org/10.1016/j.envint.2020.105621
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2020.105621&domain=pdf


restrictions brought more of a shift in production location rather than
elimination. For example, the 2010/2015 PFOA Stewardship Program
claimed that the goals were met, yet only eight leading companies
joined the program (USEPA, 2015); In the EU, it is estimated that the
annual import of textiles could contain 1000–10,000 tons of PFOA-re-
lated substances (ECHA, 2018). Thus, the production and use of PFOA
is expected to continue until effective alternatives are available to the
majority of the fluorochemical industries. The occurrence of PFOA re-
mains a major concern that requires global control, and thus, PFOA, its
salts, and PFOA-related compounds were listed in Annex A of the
Stockholm Convention with specific exemptions (decision SC-9/12) as
of May 2019 (Stockholm Convention, 2019).

The widespread presence of PFAAs in the aquatic environment is
linked to their water solubility, especially as salt or free acid (USEPA,
2017), and the use of aqueous forms in industrial applications, such as
the ammonium salt of PFOA (APFO) in the production of fluor-
opolymers by emulsion polymerization (European Commission, 2010).
Thus, aquatic organisms can accumulate PFAAs, leading to human ex-
posure through consumption of aquatic species. Past estimates of the
biomagnification factor (BMF) and trophic magnification factor (TMF)
of PFAAs were inconsistent, with values ranging over several orders of
magnitude from ≪1 to ≫1 (Franklin, 2015). Apparently, PFOS has a
higher bioaccumulation potential than PFOA in aquatic biota, and PFOS
displays relatively clear biomagnification along the food chain, espe-
cially for top predators like water birds and marine mammals, while
there are no clear trends for PFOA among species from different trophic
levels (TLs) (Houde et al., 2011; Ahrens and Bundschuh, 2014), which
might be due to the faster elimination of PFOA than PFOS. Hence,
because TLs or positions in a food chain cannot be used alone as gui-
dance for categorizing aquatic food according to PFAA contamination
levels, more factors should be taken into consideration following

exposure under natural conditions.
Animal studies indicate that PFAA uptake can lead to many adverse

outcomes, including metabolic disorders, endocrine perturbations, and
immune and developmental toxicity (Krafft and Riess, 2015). Human
health studies also suggest that PFAAs are associated with certain
problems like adverse immune outcomes and dyslipidemia, as well as
cancer for residents living in manufacturing locations (Sunderland
et al., 2019). These concerns have led to stricter regulations of PFAAs
for drinking water safety (USEPA, 2016). For food safety, several
countries have already published tolerable daily intake (TDI) as health-
based guidance values for PFAAs (EFSA, 2008; Danish EPA, 2015;
FSANZ, 2017; USEPA, 2017; ATSDR, 2018). These values are critical
not only for assessing the human health risk of PFAAs, but also for
providing more practical suggestions to reduce the risk. In this case, the
calculated TDI values may be improved by considering individual dif-
ferences in dietary habits.

Despite environmental and health concerns, PFOA production is still
ongoing in China. According to the China Fluorosilicon Organic
Materials Industry Association, until 2015, the annual production ca-
pacity of PFOA was approximately 200 tons. A majority of the PFOA
was used as processing aids to produce fluoropolymers with an annual
capacity of up to 130,000 tons, with only minor amounts being ex-
ported to foreign companies. We are aware that high amounts of PFAAs
are emitted from a mega fluorochemical industry park (FIP) located in
the Xiaoqing River catchment of North China (Wang et al., 2014; Wang
et al., 2016). Continued PFAA emissions have led to local contamina-
tion of the surface and groundwater (Liu et al., 2016), indoor and
outdoor dust (Su et al., 2016), and plants and animals produced locally
for human consumption (Liu et al., 2017; Su et al., 2017). The PFOA
that is discharged as waste from the FIP is transported via the river to
the adjacent sea (Wang et al., 2016), where an intensive fishery exists.

Fig. 1. Sampling sites (marked in red) in the Xiaoqing River catchment and Laizhou Bay. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The objectives of this study included investigating the impact of
high PFAA emission on the aquatic organisms in the river-estuary-sea
system of the Xiaoqing River catchment of North China. We also aimed
to analyze factors that influence the bioaccumulation of PFAAs among
different aquatic species, and explore strategies to mitigate human
health risks via advice on the selection and consumption of aquatic
foods.

2. Materials and methods

2.1. Research design

This study examined the water transportation pathway of PFAAs,
starting from the emission source (the FIP). Freshwater and marine
aquatic organism samples were collected along this transport route
(Fig. 1). In the minor tributary receiving waste from the FIP, limited
aquatic organisms were observed. Sites DY1 and DY2 located upstream
and downstream of the FIP, respectively, were selected for monitoring
PFAA emission. Sites XQ1–XQ8 were distributed from upstream of the
Xiaoqing River to its estuary, and two fish species, along with one crab
species, were collected to evaluate the transport of PFAAs through the
river-estuary-sea environment. The greatest effort in collecting the
widest range of freshwater species was focused on site XQ4 located
downstream of the confluence point where the tributary meets the
Xiaoqing River. Site XQ-S was located in the Laizhou Bay within an
intensive fishery area where the widest possible range of marine or-
ganisms was collected. Further description of these sampling sites can
be found in Wang et al. (2016).

2.2. Sample collection and preparation

The sampling campaign was conducted in October 2015, after the
start of the oceanic fishing season (closed from May to September).
Fixed fishing nets combined with cast fishing nets were used to catch
freshwater organisms, whereas local fishing boats were hired to catch
marine organisms (from shore to site XQ-S). We collected common local
species at their normal (adult) sizes for analysis. Non-local species that
can be bought from local markets were not included. The aquatic or-
ganisms were maintained in clean water for a short period (minutes to
hours, benthic species took longer time) after being caught to reduce
the effect of in-situ water. All aquatic taxa were identified to species
level. A few individuals of each species (depending on size and avail-
ability) were homogenized to generate the sample material before ex-
traction. To assess the human health risk, only the edible parts were
used for PFAA measurements, depending on the dietary habit (muscle,
whole body without shell, or whole body, etc.) (Table S1). All aquatic
samples were freeze-dried and ground for quantitative extraction.
Water samples (XQ1–XQ8, XQ-S, DY1–DY2) were collected in pre-
rinsed 1 L polypropylene (PP) bottles at< 20 cm depth, excluding the
surface microlayer. Water parameters, including temperature, pH, dis-
solved oxygen, and salinity, were measured in situ using an HQd
Portable and Benchtop Meter Configurator (HACH Company, USA).

2.3. PFAA measurement and QA/QC

A total of twelve linear PFAAs, including nine perfluoroalkyl car-
boxylic acids (PFCAs) with carbon numbers from C4 to C12 and three
perfluoroalkyl sulfonic acids (PFSAs), were quantified in this study
(Table S2). The extraction procedures were mostly consistent with
previous studies. Briefly, for water samples, 400 mL were extracted
using Oasis WAX 6 cc Vac cartridges (Waters Corp., Milford, MA)
(Wang et al., 2016). For aquatic organisms, approximately 0.5 g of dry
samples were extracted by ion-pair extraction, followed by cleanup
with Supelclean™ ENVI-Carb™ cartridges (Sigma-Aldrich Co., St. Louis,
MO) and Oasis WAX 6 cc Vac cartridges (Loi et al., 2011). Detailed
information on the standards, reagents, and extraction is provided in

the supplementary material. Concentrated 1 mL extracts were loaded
on an Agilent 1290 Infinity HPLC System coupled to an Agilent 6460
Triple Quadrupole LC/MS System (Agilent Technologies, Palo Alto, CA)
(Table S3). Quantification of PFAAs in all samples was conducted using
10-point internal quantification curves of PFAA standards with con-
centrations ranging from 0.01 to 1000 ng/mL and 10 ng/mL internal
standards. The regression coefficients (R2) were>0.99 in all batches.
LOD and LOQ were 0.01–0.10 ng/g and 0.04–0.50 ng/g dry weight
(dw) for aquatic organisms, and 0.01–0.06 ng/L and 0.06–0.22 ng/L for
water samples, respectively. Matrix spike recoveries (mean value ±
standard deviation, n = 4) ranged from 94 ± 4% to 114 ± 6% for
aquatic samples and from 78 ± 3% to 125 ± 6% for water samples
(Table S2). Extracts with PFAA concentrations above 1000 ng/mL were
adjusted in weight or volume and extracted again to ensure that the
sample concentrations were within the calibration ranges. Field,
transport, procedure and solvent blanks were prepared with every
sample batch to monitor potential interference,

2.4. Natural stable isotope analysis

The nitrogen and carbon stable isotope ratios of the test organism
tissues were analyzed using a DELTA V Advantage Isotope Ratio Mass
Spectrometer coupled with a Flash 2000 HT Elemental Analyzer
(Thermo Fisher Scientific, Inc., USA). The natural nitrogen and carbon
stable isotope contents are denoted as δ15N and δ13C (‰), expressing
the per mil deviation from international standards, the atmospheric 15N
and the 13C content of Vienna Pee Dee Belemnite (VPDB), respectively
(Table S8).

Results of the δ15N were used to determine the trophic level (TL) of
individual species using the following equation (Eq. (1)):

= + −TL δ N δ N2 ( )/3.8consumer consumer zooplankton
15 15 (1)

The hypothesis is that the TL of zooplankton is 2 and the enrichment
factor constant is 3.8 (Loi et al., 2011). We analyzed the community
composition and richness of the phytoplankton and zooplankton in the
Xiaoqing River. Forty-one phytoplankton and twenty-seven zoo-
plankton species were identified. But the richness was not sufficient for
the stable isotope analysis. Instead, we used the mean value of 6.14 as a
constant for δ Nzooplankton

15 derived from Wan et al. (2005) that was
conducted near this study area.

Then trophic magnification factor (TMF) of PFAAs was calculated
using the following equations (Eqs. (2) & (3)) (Tomy et al., 2004):

= + ×PFAA concentration a b TLln( ) ( ) (2)

= eTMF b (3)

where the unit of PFAA concentration was ng/g, wet weight (ww). Only
PFAA concentrations in muscle of the aquatic organisms were used. The
value b in Eq. (3) was the slop of Eq. (2). A TMF of> 1 implies that a
chemical is biomagnifying.

Results of the δ13C were normalized using the carbon-to-nitrogen
ratio (C:N) in the following equation (Eq. (4)):

= − + ×δ δ C NC C 3.32 0.99 :normalized untreated
13 13 (4)

In the study by Post et al. (2007), C:N was proved to be sufficient to
normalize the untreated δ13C for lipid content, which is specifically
applicable for aquatic organisms.

The normalized δ13C was further used to determine the carbon
source of the aquatic species in the following equation (Eq. (5)):

= −

− + −

−

δ δ δ TP TP
δ δ

Carbon source

1
C C Δ C( )

C C
zooplankton consumer consumer zooplankton

zooplankton benthic

13 13 13

13 13

(5)

The hypothesis is that the zooplankton represent the pelagic source,
δΔ C13 is the trophic enrichment factor for consumers analyzed using
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muscle tissues, which is set as a constant of 1.3‰ (McKinney et al.,
2012). The benthic source in this study is presented using the benthic
species with the lowest δ Cbenthic

13 values, which were Eriocheir sinensis
(−27.1) for the freshwater species and Zoarces slongatus (−25.0) for
the marine species. Carbon source values closer to 0 indicate more
benthic feeding and values closer to 1 indicate more pelagic feeding.

2.5. Screening values of PFOA

Aquatic food consumption screening values (ACSV) of PFOA (ng/g;
ww) were calculated using the following equation (Eq. (6)):

= ×ACSV FCSV RPFOA PFOS PFOA PFOS/ (6)

The FCSVPFOS (ng/g, ww) is the fish consumption screening value
(FCSV) of PFOS determined by the Michigan Department of Health and
Human Services (MDHHS) (State of Michigan, 2016), which includes a
series of concentration ranges of PFOS that provide guidelines for fish
consumption frequency. The RPFOA/PFOS is the PFOA-to-PFOS ratio from
published health guidelines that is a measure for co-occurrences of
PFOA and PFOS in the same subject. Because the MDHHS guidelines do
not provide the FCSV for PFOA, we hypothesized that the RPFOA/PFOS

could be used as a measure for the difference between PFOA and PFOS,
and thus, the ACSVPFOA could provide guidance for the consumption of
aquatic food with PFOA contamination.

2.6. Estimated daily intake of PFOA

The estimated daily intake (EDI) of PFOA (ng/kg/day) based on the
high end of the ranges for ACSVPFOA was further calculated with the
following equation (Eq. (7)):

= × ×EDI ACSV F RPFOA PFOA IR BW/ (7)

where F is the consumption frequency (converted to a daily basis) of the
aquatic food that is derived from the meal category of the FCSVPFOS.
RIR/BW (g/kg) is the ratio of the ingestion rate (IR) per meal (g) to the
body weight (BW; kg) of consumers. There are differences in IR and BW
among different populations. However, the IR and BW values provided
by the MDHHS are divided into age groups and in one-to-one corre-
spondence, which generates a constant ratio (0.10 oz/kg converted to
2.84 g/kg).

2.7. Statistical and spatial analysis.

The PFAA concentrations in aquatic organisms were converted from
the dry weight basis to wet weight basis using the moisture content
values that were measured during lyophilization (Table S1). Statistical
analysis was performed with Microsoft Excel 2016 (Microsoft Corp.,
Redmond, WA), SPSS Statistics V20.0 (SPSS Inc. Quarry Bay, HK), and
OriginPro 2018 (OriginLab Corp., Northampton, MA). Tests of nor-
mality on the concentrations of PFAAs were conducted to ensure that
data met the assumptions used for further analysis. Spatial distributions
of sampling were illustrated using the Arcmap module in ArcGIS V10.0
software (ESRI, Redland, CA) with the actual recording of the co-
ordinates combined with other detailed geographical information
(river, tributary, topography of land and sea, etc.).

3. Results and discussion

3.1. PFAAs in aquatic organisms

PFAAs were detected in all freshwater and marine aquatic organ-
isms (Table 1 and Table S4). PFOA was the only compound with a
detection ratio of 100%. All long-chain PFAAs had detection ratios over
90%, whereas the short-chain PFAAs had relatively low ratios, except
for perfluorobutanoic acid (PFBA) (93%). PFOA concentrations (in-
cluding mean, median, and maximum values) were several orders of

magnitude higher than those of other PFAAs, indicating that PFOA was
the dominating PFAA in the aquatic organisms analyzed in this study.

Previous studies on PFAAs in aquatic organisms affected directly by
fluorochemical emission provided limited information for a comparison
with our data. PFOS has received the most attention in the monitoring
of contaminants in aquatic animals (Houde et al., 2011; Ahrens and
Bundschuh, 2014; Taylor and Johnson, 2016; Pan et al., 2018; Fair
et al., 2019). In this study, the PFOS concentrations (max: 3.55 ng/L) in
the Xiaoqing River water were relatively low (Table S4), but in aquatic
organisms, the maximum PFOS concentration was 9.73 ng/g (ww). This
disparity is due to the high bioaccumulation potential of PFOS (Ahrens
and Bundschuh, 2014). The tissues of aquatic animals had low con-
centrations and detection ratios of short-chain PFAAs, which were
likely related to their low bioconcentration factors (BCFs) (Martin et al.,
2003) and possibly to depuration during the short period when the
freshly caught aquatic animals were maintained in clean water (to re-
duce the effect of in-situ water) (Cerveny et al., 2018; Zhong et al.,
2019). In contrast, freshwater plant species affected by fluorochemical
industry emissions accumulated substantially higher amounts of short-
chain PFAAs than the aquatic animals analyzed in this study (Wang
et al., 2019). According to an earlier study on terrestrial animals col-
lected in the emission impact zone of the same FIP described our report
(Su et al., 2017), the PFBA-to-PFOA ratio in home cultured eggs was
0.18, which was much higher than the respective ratio in the aquatic
animals with the highest concentrations of ΣPFAAs in this study
(4.70e−3). These results may indicate that the consumption of aquatic
animals is a more important source of long-chain PFAAs in humans than
that of terrestrial animals. Thus, the following sections are mostly fo-
cused on PFOA.

3.1.1. PFOA in freshwater species
Concentrations of PFOA in the crucian carp (Carassius auratus) were

only 0.33 and 0.38 ng/g (ww) at the upstream sites XQ2 and XQ3,
respectively, but 99.0 ng/g (ww) at XQ4 downstream of the FIP. Among
sixteen freshwater species monitored at site XQ4, the highest PFOA
concentration was found in a mollusk, the winkle (Cipangopaludina
chinensis) (2161 ng/g, ww), followed by a fish, the loach (Misgurnus
anguillicaudatus) (340 ng/g, ww), and a crustacean, i.e., a crayfish
species (Procambarus clarkii) (241 ng/g, ww), which belong to three
different phyla. The nine fish species showed relatively high PFOA
concentrations, ranging from 7.04 to 340 ng/g (ww). The two amphi-
bians, a toad (Bufo raddei) and a turtle (Trionyx sinensis), had the lowest
PFOA concentrations of 0.42 ng/g and 0.41 ng/g (ww), respectively)

Table 1
Summary of PFAA concentrations (ng/g, ww) in aquatic organisms (n = 43,
freshwater species; and n = 42, marine species).

Analytes Carbon number Concentration, ng/g, ww Detection ratio, %

Min Median Mean Max

PFCAs
PFBA 4 nd 0.55 1.32 11.1 93
PFPeA 5 nd 0.11 0.21 1.20 25
PFHxA 6 nd 0.20 0.77 9.46 29
PFHpA 7 nd 0.09 0.54 6.35 55
PFOA 8 0.11 5.58 64.6 2161 100
PFNA 9 nd 0.18 0.42 5.02 91
PFDA 10 nd 0.71 1.51 12.3 91
PFUnDA 11 nd 0.69 0.86 4.64 99
PFDoDA 12 nd 0.36 0.66 3.20 91

PFSAs
PFBS 4 nd 0.03 0.09 0.51 16
PFHxS 6 nd 0.06 0.06 0.29 20
PFOS 8 nd 1.16 2.16 9.73 98

ΣPFAAs 0.24 14.6 71. 8 2196 100

Note: nd, indicates below LOQ.
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(Fig. 2).

3.1.2. PFOA in marine species
Because the seawater in the Laizhou Bay dilutes the river water

PFOA levels through the freshwater-saltwater interface, the forty
marine aquatic species at the XQ-S site had lower PFOA concentrations
than the freshwater species. The highest PFOA concentration was found
in a mollusk, the fur clam (Scapharca subcrenata) (642 ng/g, ww), fol-
lowed by a fish, the fang goby (Odontamblyopus rubicundus) (349 ng/g,
ww), and a macroinvertebrate sea worm (Urechis unicinctus) (167 ng/g,
ww). Similar to the findings with the freshwater species, the distribu-
tion of PFOA concentrations among the species was not associated with
their phylum or type. Fourteen out of eighteen fish species had PFOA
concentrations of less than 1.00 ng/g (ww) (Fig. 3).

3.2. Factors affecting the bioaccumulation of PFOA in aquatic organisms

3.2.1. PFOA levels in the aquatic environment
The emission from the FIP was the main source of PFOA in the

aquatic environment of the Xiaoqing River (from sites XQ4-XQ8) (Table
S5). Compared with our previous studies, the water PFOA levels re-
mained very high in recent years, at mean values from 3100 ng/L in
September 2011 (Wang et al., 2014), to 17,361 ng/L in June 2013
(Wang et al., 2016) and 40,368 ng/L in October 2015, measured at sites
XQ6 to XQ8, respectively. This trend was corroborated by other studies
conducted in the same area in 2014 (Heydebreck et al., 2015; Shi et al.,
2015a). Moreover, a study by Chen et al. (2016) on PFASs in the Bohai
Sea also suggested broad dissemination of PFOA in the entire Laizhou
Bay area, indicating a continued influence of PFOA on local aquatic
organisms.

3.2.2. The river-estuary-sea environment
The river-estuary-sea system involves frequent mixing of freshwater

and saline water (Table S6). Three common species, including the
crucian carp, river crab, and sea bass, were selected to evaluate the

influence of the aquatic environment. In the section of the Xiaoqing
River with heavy PFOA pollution (sites XQ4–XQ8), the crucian carp had
the highest mean PFOA concentration (mean: 90.4 ng/g, ww, range:
33.0–156 ng/g, ww), followed by the river crab (muscle tissue of males,
mean: 38.9 ng/g, ww, range: 3.98–150 ng/g, ww) and sea bass (mean:
10.2 ng/g, ww, range: 4.19–15.1 ng/g, ww). Fluctuations of PFOA
concentrations were observed throughout the river-estuary-sea en-
vironment (Fig. 4a). However, despite the river PFOA concentration
decreasing almost 10-fold from site XQ7 (78.0 µg/L) to site XQ8
(8.56 µg/L) (Table S5), PFOA concentrations in the three species col-
lected from estuary (site XQ8) were substantially higher than those
from upstream sites, especially in the river crab.

We further analyzed the pairwise correlations between PFOA con-
centrations in the three species and PFOA concentrations in water,
along with four water parameters (temperature, pH, salinity, and dis-
solved oxygen) (Table S6). There were no strong correlations, except
that there was a significant negative correlation (p < 0.05) between
PFOA concentrations in sea bass and water pH (Table S7). Typically,
the water pH is positively correlated with salinity and cation con-
centrations (the reaction of cations with dissolved CO2 produces OH−

through hydrolysis and hence increases water pH), but the increasing
cation content (e.g., Ca2+ and Na+) in water could decrease the BCF of
PFOA in aquatic organisms (Xia et al., 2015).

3.2.3. Sex and tissue differences in PFOA levels of crabs
There are sex-specific differences in the accumulation of PFASs

within the same species (Cerveny et al., 2018), but these differences
may not be comparable with those between species (Babut et al., 2017).
In our study, sex was not a critical factor in most aquatic species used
for human consumption, except in crabs. Specifically, we measured
PFOA concentrations in the edible parts of crabs, i.e., in muscle and fat
samples of male crabs and in muscle and roe samples of female crabs
(Table S4, Fig S2). In river crabs, PFOA accumulation was generally
higher in males than in females. Among male river crabs, PFOA con-
centrations were slightly higher in muscle samples (mean: 38.9 ng/g,

Fig. 2. PFOA concentrations (ng/g, ww) in the freshwater species at site XQ4 (the value for the river crab (Eriocheir sinensis) was obtained from muscle tissue of
males).
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ww) than in fat samples (mean: 31.5 ng/g, ww), even in crabs from site
XQ8 with much higher PFOA concentrations. The same trend was also
observed in male sea crabs. But the trend was the opposite in female
river crabs, in which PFOA concentrations were slightly higher in roe
(mean: 8.14 ng/g, ww) than in muscle samples (mean: 6.07 ng/g, ww).
A portion of the PFOA burden is likely disseminated into the eggs,
which requires further detailed studies.

3.2.4. Influence of TL
The TLs ranged from 2.21 to 5.57 among freshwater species

(3.85 ± 0.8) and from 2.35 to 4.83 among marine species
(3.45 ± 0.6) (Table S8). The most contaminated species had relatively
low TLs; in freshwater species, the TL was 4.02 for winkle, 2.29 for
loach, and 3.62 for crayfish; and in marine species, the TL was 2.38 for
fur clam, 3.35 for fang goby, and 2.60 for a sea worm. The TMF of PFOA
was 1.10 (p = 0.60) for freshwater species and 1.28 (p = 0.29) for
marine species. This indicated that PFOA was biomagnifying among the
tested aquatic species, but the trend was not significant, which was a

limitation of using field-derived biomagnification factors and trophic
magnification factors as indicators of the bioaccumulation potential
(Franklin, 2015). Among the three monitored species of the river-es-
tuary-sea environment, the sea bass had the highest TL, followed by the
crucian carp and river crab. This trend was similar among the con-
taminated section of the Xiaoqing River (from site XQ4 to XQ6),
whereas their TLs did not differ greatly at the estuary site (XQ8)
(Fig. 4b). The freshwater winkle had the highest PFOA level in this
study. According to its biology, the winkle grazes on algae and lives on
the sediment, perhaps even inside the sediment. PFOA has a high
sorption coefficient from water to particles and sediment (Ahrens et al.,
2010), and high PFOA levels have been recorded in Xiaoqing River
sediments (Shi et al., 2015a; Wang et al., 2016). Furthermore, Robinson
et al. (1984) found that the lipids of aquatic organisms can merge with
the sediment, generating sediment with an increased nutritive value
that is ingested by some aquatic species. This phenomenon could ex-
plain the observation that the TL of the winkle (4.02) was comparable
to that of some predator fishes.

Fig. 3. PFOA concentrations (ng/g, ww) in marine species collected between the shore and site XQ-S (values for the two sea crabs (Portunus trituberculatus and
Charybdis japonica) were obtained from muscle tissue of males).
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3.2.5. Influence of carbon source
The carbon source of the aquatic organisms is related to their food

and habitat (Borgå et al., 2012). In this study, the carbon source was
0.30 ± 0.23 for freshwater species, and 1.11 ± 0.37 for marine
species (Table S8). This indicated that freshwater species were more
benthic feeding, while marine species were more pelagic feeding.
Comparing the TL with carbon source, it seemed that benthic feeding
would lead to higher TLs than pelagic feeding. The three species of the
river-estuary-sea environment displayed different trends on their TLs
and carbon sources (Fig. 4b). The crucian carp showed relatively con-
sistent trends of both TL and carbon source. However, the TL and
carbon source of the river crab showed opposite trends, and there were
limited sex-specific difference. This might be related to the habitat of
the river crab, which lives on the riverbank, ingesting carbon sources
that differ from those consumed by species living in the water. The
change of carbon sources in the sea bass showed a jump from sea to
river, with carbon source altered from pelagic to benthic, and TL in-
creased. The migration of this fish is associated with its physiological
adaptations, such as the developmental status, fluid osmotic pressure,
etc. How the changing carbon sources or adaptations can affect the
bioaccumulation of PFOA in the sea bass, or how PFOA can influence
the sea bass migration may require further studies.

3.3. Ecological risk evaluation of PFOA

The exposure of PFOA in both environmental medium and organ-
isms would pose potential ecological risk to the aquatic environment. In
the study by Valsecchi et al. (2017), annual average environmental
quality standards (AA-EQS) for PFOA were derived. In this study, the
PFOA concentrations in both freshwater (XQ4 to XQ7) and estuary
(XQ8) almost all exceeded the AA-EQS for the protection of pelagic
community in freshwater (30 µg/L) and sea water (3 µg/L), respec-
tively. As mentioned above, the PFOA levels remained very high in
recent years. This might be a reason why the richness of phytoplankton
and zooplankton in the Xiaoqing River was poor.

The PFOA concentrations in water from sites XQ4 to XQ8 and XQ-S
all largely exceeded the AA-EQS for the protection of predators (0.1 µg/
L in freshwater and 0.02 µg/L in sea water, respectively). And 72% of
the PFOA concentrations in aquatic organisms exceeded the AA-EQS for
the protection of predators (0.9 ng/g, ww). Thus, more studies are
needed to investigate the influence of PFOA contamination to the local

predator species, especially avian in the estuary and wetland environ-
ment. And in such monitoring campaign, both whole fish and fillet are
necessary to obtain sufficient information on ecological risk evaluation
(Mazzoni et al., 2019).

3.4. Managing health risks of PFOA exposure via consumption of aquatic
food

3.4.1. Assessment of consumption screening values of PFOA
Previous studies have demonstrated that aquatic food consumption

is a major pathway for human exposure to PFAAs. However, the human
health risk of PFOA via consumption of contaminated aquatic food
depends not only on PFOA concentrations in the food but also on the
dietary habits (Fair et al., 2019). In the Michigan Fish Consumption
Advisory Program for PFOS by the MDHHS, the FCSV ranges were es-
tablished based on the dietary habit, which includes 1 to 16 meals per
month and 6 meals per year as limited meal categories, and a do-not-eat
meal category (State of Michigan, 2016). The TDI values for PFOA and
PFOS, as well as the PFOA-to-PFOS ratio from published health
guidelines changed greatly by different countries/regions in recent
years (Table 2). Especially, the European Food Safety Authority (EFSA)
updated the TDI values in 2018 that were much less than those set in
2008 (EFSA, 2008; 2018), but the new EFSA's TDI is not yet put in force
in EU because it is not accepted by all the EU Member States. This
indicated that with more epidemiological evidences, the toxicity of
PFOA and PFOS were more serious, and the toxicity of PFOA was higher
than that of PFOS.

To explore risk assessment and management options of dietary
frequencies for PFOA in this study, four scenarios were established,
with the ACSV calculated using Eq. (6) and EDI calculated using Eq. (7).
Then the percentage (P, %) of PFOA concentrations in aquatic organ-
isms measured in this study that fall into the corresponding ACSV
ranges were also calculated (Table 3).

Scenario 1: The RPFOA/PFOS is equal to 8 based on the TDI values for
PFOA and PFOS set by the FSANZ (2017). Results were presented as
ACSV1, EDI1 and P1.

Scenario 2: The RPFOA/PFOS is equal to 1 based on the oral non-cancer
reference doses (RfDs) for PFOA and PFOS set by the United States
Environmental Protection Agency (USEPA) (USEPA, 2017). Results
were presented as ACSV2, EDI2 and P2.

Scenario 3: The RPFOA/PFOS is equal to 0.44 based on the TDI values

Fig. 4. (a) PFOA concentrations in the three aquatic species (ng/g, ww) of the river-estuary-sea environment and in water (ng/L); (b) The change of trophic level
along with carbon source of the three species.
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for PFOA and PFOS set by the EFSA (EFSA, 2018). Results were pre-
sented as ACSV3, EDI3 and P3.

Scenario 4: The EDI was set as a constant (0.8 ng/kg·bw/day).
Results were presented as ACSV4 and P4.

The calculated EDI values were well within the corresponding TDI
values in each scenario for scenario 1 to scenario 2, but exceeded the
corresponding TDI values in scenario 3. And scenario 4 was designed to
adjust scenario 3. From scenario 1 to scenario 4, the human health risk
increased via the consumption of the aquatic food with top PFOA
concentrations (Fig. 5). More aquatic organisms fell into stricter meal
categories. Especially the do-not eat category, from zero in scenario 1,
4.71% in scenario 2, 10.6% in scenario 3, to 24.7% scenario 4. These
results brought critical challenges for human health risk assessment and
management of PFOA via consumption of aquatic food with high PFOA
residue. Stricter guidelines are better for the protection of human
health, but might be difficult for sufficient management by local gov-
ernments. The governments need to choose proper guidelines to protect
the health of local residents, and work with the manufacturers to reduce
the emission of PFOA. For aquatic food consumers, taking proper op-
tions can also mitigate the health risk.

3.4.2. Health risk evaluation of PFAAs
The aquatic organisms marked as ‘edible’ in Fig. 2 and Fig. 3 are

routinely consumed, and the species with top PFOA levels require
special attention focused on the dietary habit to mitigate the health
risk. The analysis of factors affecting the bioaccumulation of PFOA in
aquatic organisms suggested that certain benthic species accumulate
higher amounts of PFOA than other species. But if these species appear
on the list of food preferences, the ACSV of PFOA can provide detailed
suggestions on meal frequency.

It should be noted that the ACSV results are more suitable to de-
scribe the limits for a single food source. Thus, even if these values
might be within the TDI guidelines, adding other food sources with
substantial PFOA exposure might lead to PFOA overconsumption,
leading to increased health risks. Considering that other PFAAs ex-
amined in this study had much lower levels than PFOA, the ACSV of
PFOA could be considered a summary of the 12 PFAAs for health
suggestions. However, other PFASs, such as hexafluoropropylene oxide
dimer acid (HFPO-DA) and chlorinated polyfluorinated ether sulfonate
(F53B), were also detected at substantial levels in the same study area
(Heydebreck et al., 2015; Shi et al., 2015b). Although the information
on the health effects of these substances is still limited, there are rising
concerns and including them in future risk assessments would improve
the ASCV results. Furthermore, the trend to lower the values in health
guidelines indicates an increasing need for protecting human health
from PFAA pollution.

3.4.3. Treatment of aquatic food with PFAA pollution
There are additional measures for mitigating the health risk of

PFAAs, including guidelines for the proper treatment of contaminated
aquatic food, which we summarized from previous studies. Maintaining
contaminated aquatic organisms alive in clean water for a short period
before cooking would decrease the PFOA pollution to some extent;
especially, it would clean the contaminated in-situ water as it did in this
study. An extended cultivation period would benefit from the detox-
ification processes. In a study on the fate of PFASs in the food web by
Cerveny et al. (2018), the authors observed a decreasing of the PFOA
concentration in the liver of brown trout after living for six months in
water with similar PFOA levels. Moreover, treatment of edible tissues of
aquatic products with uncontaminated water could lead to the

Table 2
Calculation of the PFOA/PFOS ration based on the health-based guideline values.

Regulatory Agency Year PFOA PFOS PFOA/PFOS Reference

Danish Environmental Protection Agency
(Danish EPA)

2015 TDI = 100
ng/kg·bw/day

TDI = 30
ng/kg·bw/day

3.3 Danish EPA (2015)

Agency for Toxic Substances and Disease Registry
(ASTDR)

2015 MRLa = 30
ng/kg·bw/day

MRL = 20
ng/kg·bw/day

1.5 ATSDR (2018)

United States Environmental Protection Agency
(USEPA)

2016 RfDb = 20
ng/kg·bw/day

RfD = 20
ng/kg·bw/day

1 USEPA (2017)

Food Standards Australia and New Zealand
(FSANZ)

2017 TDI = 160
ng/kg·bw/day

TDI = 20
ng/kg·bw/day

8 FSANZ (2017)

European Food Safety Authority
(EFSA)

2008 TDI = 1500
ng/kg·bw/day

TDI = 150
ng/kg·bw/day

10 EFSA (2008)

European Food Safety Authority
(EFSA)

2018 TDI = 0.8
ng/kg·bw/day

TDI = 1.8
ng/kg·bw/day

0.44 EFSA (2018)

a MRL: provisional minimal risk level.
b RfD: oral non-cancer reference dose.

Table 3
ASCV (ng/g, ww) and EDI (ng/kg·bw/d) adjusted for PFOA.

Meal Category F Scenario 1 Scenario 2 Scenario 3 Scenario 4

ACSV1 EDI1 P1 ACSV2 EDI2 P2 ACSV3 EDI3 P3 ASCV4 P4
meals/month meals/day ng/g ng/kg·bw/d % ng/g ng/kg·bw/d % ng/g ng/kg·bw/d % ng/g %

16 0.533 72 109 82.4 9 14 56.5 4 6 43.5 0.53 18.8
12 0.400 104 118 3.53 13 15 7.06 6 7 7.06 0.70 2.35
8 0.267 152 115 5.88 19 14 11.8 8 6 4.71 1.06 7.06
4 0.133 304 115 3.53 38 14 4.71 17 6 20.0 2.11 4.71
2 0.067 600 114 2.35 75 14 2.35 33 6 4.71 4.23 11.8
1 0.033 1200 114 1.18 150 14 8.24 67 6 2.35 8.45 10.6
6 meals/year 0.016 2400 112 1.18 300 14 4.71 133 6 7.06 17.1 20.0
Do Not Eat 0 >2400 0 >300 4.71 > 133 10.6 > 17.1 24.7

Note: The meal categories match the ranges provided by the MDHHS (State of Michigan, 2016); F is the consumption frequency converted from the meal category;
ACSV1, ACSV2, ACSV3 and ACSV4 represent the upper limit of the concentration ranges; P is the percentage of PFOA concentrations in aquatic organisms measured in
this study that fall into the corresponding ACSV ranges.
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depuration of PFOA, using treatment periods of hours or days de-
pending on the species (Taylor et al., 2017).

Selecting the body parts of the contaminated aquatic animals for
consumption is also important. In a study by Fair et al. (2019), PFASs
concentrations were two to three times higher in the whole fish than in
the fillets, indicating that cooking the whole fish (or entire body parts)
would result in more PFOA consumption than cooking the fillet
(muscle). However, cooking itself cannot consistently reduce con-
tamination by PFASs. Although the concentrations might change, it is
likely due to the treatment, while the amounts of PFASs usually remain
unchanged during cooking (Bhavsar et al., 2014; Vassiliadou et al.,
2015; Taylor et al., 2019).

4. Conclusions

In this study, 16 freshwater species and 40 marine species affected
by industrial fluorochemical waste were investigated for exposure to 12
PFAAs. PFOA was dominant with an overall contribution of> 90%.
Freshwater species had generally higher PFOA concentrations than
marine species related to higher PFOA concentrations in the river
water. The winkle (Cipangopaludina chinensis) displayed the highest
PFOA concentration (2161 ng/g, ww) among freshwater species,
whereas the fur clam (Scapharca subcrenata) had the highest PFOA
concentration (642 ng/g, ww) among marine species. The species with
top PFOA levels were all benthic. The TMF of PFOA was 1.10 for
freshwater species and 1.28 for marine species, indicating that PFOA
was slightly biomagnifying among the tested aquatic species. The
carbon source was 0.30 ± 0.23 for freshwater species, and
1.11 ± 0.37 for marine species, indicating that the freshwater species
were more benthic feeding, while the marine species were more pelagic
feeding. Comparing the TL with carbon source, it seemed that benthic
feeding would lead to higher TLs than pelagic feeding. PFOA con-
centrations in water showed high ecological risk to pelagic community,
while PFOA concentrations in both water and aquatic organism showed
very high ecological risk to air-breathing predators. We established the
PFOA ACSVs and compared the derived EDI values with TDI guidelines
for providing practical suggestions on the consumption frequency of
PFOA-contaminated aquatic food based on the 1-to-16 meals-per-month
and 6 meals-per-year categories, as well as the do-not-eat category. We
also assessed studies on detoxification and depuration of aquatic or-
ganisms. Thus, this study provides a comprehensive evaluation of how
to mitigate the health risk of PFOA in aquatic food, from the food se-
lection and consumption frequency to proper treatment before cooking.

However, by analyzing so many species simultaneously, details on in-
dividual species were limited in this study, and further interdisciplinary
research is needed. Specifically, the biology of benthic species should be
considered for assessing the large differences in PFOA exposure levels
among these species. Moreover, the effect of the river-sea habitat ex-
change on PFOA bioaccumulation needs to be further examined in the
migrating species, and ecological risk of PFOA to pelagic community
and predators should be highly concerned.
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