Evidence of pathogen-induced immunogenetic selection across the large geographic range of a wild seabird

Supplementary Information

<u>Supplementary Table S1.</u> Polymorphisms and diversity indices for fourteen colonies of Gentoo penguin at three toll-like receptor loci and the mitochondrial hypervariable control region. (CR = Crozet Island; MAR = Marion Island; COU = Courbet Peninsula, Kerguelen; MO = Pointe du Morne, Kerguelen; CB = Cow Bay, Falkland/Malvinas Islands; BR = Bull Roads, Falkland/Malvinas Islands; BI = Bird Island, South Georgia; MT = Martillo Island, Tierra del Fuego; SIG = Signy Island, South Orkney Islands; COP = Copacabana (Admiralty Bay), King George Island, South Shetland Islands; SP = Stranger Point, King George Island, South Shetland Islands; BO = Bernardo O'Higgins Base, Western Antarctic Peninsula; GGV = Gabriel González Videla Base, Western Antarctic Peninsula; JP = Jougla Point, Western Antarctic Peninsula).

Locus	Colony (N)	S	H	H_d (SD)	π (SD) (X10 ⁻⁴)	UPV	AR	D	Fs
TLR4	CR (7)	5	4	0.6593 (0.1203)	5.86 (1.9)	3	3.802	-0.17122	0.48000
	MAR (8)	5	4	0.7667 (0.0573)	9.80 (1.2)	4	3.858	2.17212*	2.06630
	COU (7)	8	7	0.6923 (0.1366)	8.32 (2.4)	4	5.286	-0.59171	-1.89341
	MO (15)	9	14	0.9034 (0.0362)	11.01 (0.8)	8	7.033	0.73200	-5.86857*
	CB (19)	2	2	0.0526 (0.0492)	0.41 (0.4)	1	1.263	-1.49106*	-0.61060
	BR (7)	0	1	0	0	1	1.000	0	0
	BI (18)	0	1	0	0	1	1.000	0	0
	MT (5)	0	1	0	0	1	1.000	0	0
	SIG (5)	4	3	0.5111 (0.1643)	6.01 (2.3)	1	3.000	0.32418	1.35813
	COP (22)	5	5	0.6342 (0.0511)	7.46 (0.7)	1	3.246	1.63019	1.71487
	SP (5)	4	3	0.5111 (0.1643)	6.45 (2.1)	1	3.000	0.62589	1.51568
	BO (6)	5	3	0.5455 (0.1436)	5.94 (2.3)	2	2.970	-0.31291	1.59874
	GGV (7)	4	2	0.2637 (0.1360)	4.14 (2.1)	1	1.934	-0.53129	2.69666
	JP (24)	4	3	0.0824 (0.0541)	1.12 (0.7)	1	1.417	-1.56204*	-0.73409
	Total (155)	13	21	0.478 (0.035)	6.1 (0.5)	9	3.446	-0.58350	-10.018
TLR5	CR (7)	1	2	0.4396 (0.1120)	1.66 (0.4)	2	1.999	0.84228	0.94377
	MAR (8)	1	2	0.1250 (0.1064)	0.47 (0.4)	2	1.625	-1.16221	-0.70010
	COU (7)	15	8	0.8571 (0.0774)	16.09 (2.9)	7	6.275	-0.40117	-0.88654
	MO (20)	13	17	0.8731 (0.0415)	12.30 (1.3)	14	6.697	0.19907	-6.77889*
	CB (18)	11	17	0.9159 (0.0309)	17.10 (0.7)	12	7.380	2.17976	-4.88768
	BR (7)	9	6	0.7692 (0.0895)	16.09 (1.9)	5	4.856	1.92919	1.04846
	BI (12)	5	5	0.4928 (0.1165)	5.25 (1.6)	4	2.883	0.10549	-0.03412
	MT (5)	9	6	0.8444 (0.1029)	15.72 (2.9)	5	6.000	1.34084	-0.04600
	SIG (5)	5	3	0.5111 (0.1643)	4.37 (2.3)	3	3.000	-1.38818	0.76172
	COP (21)	6	6	0.6527 (0.0485)	4.54 (1.0)	6	3.462	-0.36633	-0.68391
	SP (5)	1	2	0.2000 (0.1541)	0.76 (0.6)	2	2.000	-1.11173	-0.33931
	BO (6)	5	3	0.3182 (0.1637)	3.15 (2.1)	3	2.667	-1.83094*	0.32487
	GGV (7)	2	3	0.3846 (0.1494)	1.54 (0.6)	3	2.648	-0.95919	-0.85452
	JP (24)	1	2	0.1197 (0.0612)	0.45 (0.2)	2	1.512	-0.63670	-0.38233
	Total (152)	20	46	0.781 (0.022)	14.8 (0.6)	32	5.600	0.59898	-23.918

TLR7	CR (7)	0	1	0	0	1	1.000	0	0
	MAR (8)	0	1	0	0	1	1.000	0	0
	COU (7)	3	4	0.4945 (0.1506)	2.32 (0.8)	4	2.978	-0.70770	-1.11799
	MO (18)	2	3	0.3381 (0.0919)	1.13 (0.3)	2	2.275	-0.51702	-0.49065
	CB (17)	1	2	0.0588 (0.0546)	0.19 (0.2)	2	1.235	-1.13783	-1.31506
	BR (7)	1	2	0.3626 (0.1302)	1.16 (0.4)	2	1.945	0.32440	0.64281
	BI (13)	0	1	0	0	1	1.000	0	0
	MT (4)	1	2	0.4286 (0.1687)	1.37 (0.5)	2	2.000	0.33350	0.53626
	SIG (5)	2	3	0.6000 (0.1305)	2.13 (0.6)	2	2.800	-0.18393	-0.27178
	COP (21)	3	4	0.3751 (0.0902)	1.30 (0.3)	3	2.413	-0.90151	-1.43643
	SP (5)	1	2	0.4667 (0.1318)	1.49 (0.4)	1	2.000	0.81980	0.81801
	BO (6)	2	3	0.4394 (0.1581)	1.50 (0.6)	2	2.576	-0.84971	-0.72455
	GGV (7)	2	3	0.3846 (0.1494)	1.30 (0.5)	2	2.407	-0.95919	-0.85452
	JP (23)	4	5	0.3826 (0.0881)	1.34 (0.3)	4	2.510	-1.25133	-2.59143
	Total (148)	9	10	0.296 (0.034)	1.0 (0.1)	8	2.140	-1.67798	-9.379
HVR1	CR (7)	8	4	0.8570 (0.102)	123.5 (33.0)	-	-	0.10944	0.87029
	MAR (8)	5	4	0.7860 (0.113)	68.8 (20.5)	-	-	-0.16751	0.00547
	COU (2)	0	1	0	0	-	-	0	0
	MO (20)	28	16	0.9580 (0.033)	173.2 (10.0)	-	-	-0.93073	-7.01213*
	CB (16)	12	10	0.9000 (0.062)	116.4 (15.4)	-	-	-0.50145	-3.57558
	BR (7)	5	4	0.8570 (0.102)	77.6 (18.5)	-	-	0.13210	-0.04242
	BI (17)	9	8	0.8820 (0.047)	78.2 (13.8)	-	-	-0.75716	-3.70741*
	MT (5)	4	2	0.6000 (0.175)	88.9 (26.0)	-	-	1.64070	3.02249
	SIG (5)	6	5	1.0000 (0.126)	103.7 (18.8)	-	-	-0.19092	-2.37061*
	COP (21)	22	15	0.9670 (0.024)	151.4 (18.9)	-	-	-1.27487	-6.15999*
	SP (6)	16	6	1.0000 (0.096)	227.2 (34.2)	-	-	-0.77134	-1.77289
	JP (24)	18	15	0.9420 (0.031)	127.2 (18.6)	-	-	-1.03686	-7.42519*
	Total (138)	90	79	0.986 (0.003)	744.3 (56.6)	-	-	0.53097	-22.196

S = number of polymorphic sites

H = number of haplotypes

 H_d = haplotype diversity (standard deviation)

 π = nucleotide diversity

UPV = unique protein variants of translated haplotypes

AR = allelic richness, adjusted for sample size differences

D = Tajima's D test statistic, with * indicating p <0.05

Fs = Fu's Fs test statistic, with * indicating p <0.02

<u>Supplementary Table S2</u>. Pairwise F_{ST} values (Weir and Cockerham 1984) derived from haplotype frequencies (below diagonal), and pairwise Φ_{ST} values of genetic distance (above the diagonal), calculated using the Tamura and Nei substitution model (Tamura and Nei 1993), with associated p-values, among Gentoo penguin breeding sites based on toll-like receptor sequence data (tables S2A-C). mtDNA hypervariable region I Φ_{ST} values were calculated using the Kimura 2-Parameter (K80) substitution model (Kimura 1980) with a gamma of 0.27 (table S2D). Comparisons that are significant <0.01 after correction for multiple tests using (SGOF+) are shown in bold (Carvajal-Rodriguez and de Uña-Alvarez 2011).

S2A. TLR4

Colony	CR	MAR	COU	МО	СВ	BR	BI	MT	SIG	COP	SP	BO	GGV	JP
Crozet Island	*	0.04120	0.43041	0.16276	0.84905	0.78209	0.87027	0.75072	0.54200	0.40124	0.48925	0.55826	0.60966	0.82233
(CR)		(0.17969)	(0.00079)	(0.01178)	(0.00000)	(0.00010)	(0.00000)	(0.00000)	(0.00010)	(0.00000)	(0.00109)	(0.00000)	(0.00010)	(0.00000)
Marion Island	0.00110	*	0.20483	0.0153	0.66826	0.54644	0.69000	0.50219	0.31652	0.25797	0.26514	0.33837	0.38119	0.65266
(MAR)	(0.40541)		(0.01475)	(0.24453)	(0.00000)	(0.00000)	(0.00000)	(0.00158)	(0.01049)	(0.00400)	(0.01416)	(0.00446)	(0.00228)	(0.00000)
Courbet	0.24738	0.13006	*	0.04851	0.21641	0.12661	0.25919	0.08874	0.00000	0.06705	0.00000	0.00000	0.00000	0.18573
Peninsula	(0.00158)	(0.14950)		(0.10870)	(0.00485)	(0.04010)	(0.00030)	(0.10603)	(0.41392)	(0.08405)	(0.50153)	(0.39570)	(0.35739)	(0.00911)
(COU)														
Pointe du	0.08383	0.01953	0.03074	*	0.39773	0.30278	0.41555	0.27201	0.13365	0.10606	0.08702	0.15195	0.17420	0.39423
Morne (MO)	(0.01109)	(0.18993)	(0.10365)		(0.00000)	(0.00050)	(0.00000)	(0.00307)	(0.02901)	(0.00505)	(0.06831)	(0.01366)	(0.00871)	(0.00000)
Cow Bay (CB)	0.71152	0.58202	0.28168	0.38276	*	0.00000	0.00000	0.00000	0.30157	0.31274	0.34009	0.18803	0.12601	0.00000
	(0.00000)	(0.00000)	(0.00069)	(0.00000)		(0.99990)	(0.99990)	(0.99990)	(0.01139)	(0.00010)	(0.01257)	(0.01119)	(0.07079)	(0.61390)
Bull Roads (BR)	0.61538	0.46925	0.19231	0.29735	0.00000	*	0.00000	0.00000	0.19940	0.24712	0.23125	0.10916	0.07692	0.00000
	(0.00000)	(0.00000)	(0.01554)	(0.00000)	(0.99990)		(0.99990)	(0.99990)	(0.06257)	(0.00455)	(0.05425)	(0.03168)	(0.47787)	(0.99990)
Bird Island (BI)	0.75224	0.6231	0.34289	0.40973	0.00000	0.00000	*	0.00000	0.37725	0.33222	0.41492	0.24677	0.19101	0.00997
	(0.00000)	(0.00000)	(0.00010)	(0.00000)	(0.99990)	(0.99990)		(0.99990)	(0.00743)	(0.00000)	(0.00812)	(0.00317)	(0.07247)	(0.50589)
Martillo Island	0.57055	0.42329	0.14980	0.26665	0.00000	0.00000	0.00000	*	0.14818	0.22308	0.17778	0.06971	0.04328	0.00000
(MT)	(0.00020)	(0.00020)	(0.04990)	(0.00010)	(0.99990)	(0.99990)	(0.99990)		(0.21107)	(0.01901)	(0.20889)	(0.32304)	(0.49352)	(0.99990)
Signy Island	0.34300	0.21259	0.00000	0.10256	0.27433	0.19940	0.37721	0.14815	*	0.00234	0.00000	0.00000	0.00000	0.19722
(SIG)	(0.00050)	(0.00772)	(0.42926)	(0.01049)	(0.01188)	(0.05910)	(0.00644)	(0.20602)		(0.32710)	(0.80032)	(0.67835)	(0.76676)	(0.02148)
Copacabana	0.30121	0.20420	0.05519	0.10420	0.28632	0.22873	0.31195	0.20492	0.00000	*	0.00000	0.05467	0.07275	0.28589
(Admiralty	(0.00000)	(0.00020)	(0.08088)	(0.00119)	(0.00000)	(0.00267)	(0.00000)	(0.01158)	(0.41917)		(0.48758)	(0.14523)	(0.10237)	(0.00000)

Bay), King

George Island

(COP)

Stranger Point,	0.34300	0.21259	0.00000	0.10256	0.27433	0.19940	0.37721	0.14815	0.00000	0.00000	*	0.00000	0.00000	0.24091
King George	(0.00059)	(0.00673)	(0.42679)	(0.01089)	(0.01049)	(0.05871)	(0.00911)	(0.21572)	(0.99990)	(0.41659)		(0.60539)	(0.61578)	(0.02534)
Island (SP)														
Bernardo	0.33193	0.20624	0.00000	0.09915	0.28556	0.20379	0.36842	0.15691	0.00000	0.01547	0.00000	*	0.00000	0.11697
O'Higgins Base	(0.00010)	(0.00396)	(0.36927)	(0.00980)	(0.00228)	(0.03227)	(0.00307)	(0.09583)	(0.70231)	(0.25443)	(0.71211)		(0.67538)	(0.02614)
(BO)														
Gabriel	0.47406	0.33467	0.006308	0.19909	0.10105	0.07692	0.19101	0.04328	0.00000	0.08597	0.00000	0.00485	*	0.05175
González Videla	(0.00000)	(0.00030)	(0.13523)	(0.00010)	(0.06811)	(0.45609)	(0.07613)	(0.49906)	(0.61479)	(0.06376)	(0.61608)	(0.38432)		(0.12306)
Base (GGV)														
Jougla Point	0.70966	0.58554	0.27327	0.39345	0.00000	0.00000	0.00324	0.00000	0.23112	0.28073	0.23112	0.25542	0.05560	*
(JP)	(0.00000)	(0.00000)	(0.00168)	(0.00000)	(0.99990)	(0.99990)	(0.50965)	(0.99990)	(0.02534)	(0.00000)	(0.02237)	(0.00525)	(0.12494)	

S2B. TLR5

Colony	CR	MAR	COU	МО	СВ	BR	BI	MT	SIG	COP	SP	BO	GGV	JP
Crozet Island	*	0.10463	0.19875	0.14048	0.42400	0.61731	0.81884	0.65281	0.86382	0.83274	0.93688	0.88320	0.92114	0.96416
(CR)		(0.15701)	(0.00337)	(0.00426)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)
Marion Island	0.10463	*	0.27084	0.18983	0.46395	0.66343	0.84184	0.70960	0.90057	0.84665	0.97033	0.91651	0.95016	0.97642
(MAR)	(0.15602)		(0.00030)	(0.00059)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)
Courbet	0.12961	0.27629	*	0.00000	0.17852	0.33854	0.55967	0.31502	0.50797	0.64872	0.58133	0.54190	0.60325	0.78796
Peninsula	(0.02485)	(0.00109)		(0.91209)	(0.00050)	(0.00000)	(0.00000)	(0.00000)	(0.00010)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)
(COU)														
Pointe du	0.10214	0.21189	0.00000	*	0.25438	0.42963	0.56884	0.41306	0.54117	0.63605	0.59046	0.55817	0.59835	0.72147
Morne (MO)	(0.00713)	(0.00000)	(0.56351)		(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)
Cow Bay (CB)	0.28371	0.40690	0.10025	0.09881	*	0.05018	0.36548	0.05309	0.33306	0.45208	0.37935	0.34106	0.39910	0.54574
	(0.00000)	(0.00000)	(0.00000)	(0.00000)		(0.09811)	(0.00000)	(0.11880)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)
Bull Roads (BR)	0.39560	0.56722	0.18264	0.17234	0.03011	*	0.49814	0.00000	0.44207	0.58038	0.50051	0.46193	0.53330	0.73178
	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.09910)		(0.00000)	(0.71864)	(0.00188)	(0.00000)	(0.00059)	(0.00119)	(0.00020)	(0.00000)
Bird Island (BI)	0.52955	0.66409	0.34622	0.30010	0.13386	0.22379	*	0.59937	0.00978	0.02817	0.05571	0.00778	0.06350	0.17521
	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00059)		(0.00000)	(0.31730)	(0.12860)	(0.10425)	(0.30997)	(0.10553)	(0.00000)
Martillo Island	0.37560	0.57279	0.14276	0.13905	0.04473	0.00000	0.31426	*	0.55172	0.67565	0.62473	0.57910	0.65295	0.83149
(MT)	(0.00000)	(0.00000)	(0.00079)	(0.00010)	(0.05455)	(0.81279)	(0.00010)		(0.00010)	(0.00000)	(0.00020)	(0.00010)	(0.00000)	(0.00000)
Signy Island	0.52861	0.71876	0.30275	0.26750	0.10387	0.19030	0.00557	0.27121	*	0.08135	0.00000	0.00000	0.00000	0.12682
(SIG)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00762)	(0.01574)	(0.31136)	(0.00277)		(0.07187)	(0.99990)	(0.67587)	(0.81546)	(0.06009)
Copacabana	0.42728	0.54018	0.26264	0.23785	0.11156	0.18623	0.06573	0.23511	0.09384	*	0.09581	0.08366	0.11085	0.20084
(Admiralty	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00109)	(0.03732)	(0.00990)	(0.05920)		(0.03990)	(0.04594)	(0.01465)	(0.00000)
Bay), King														
George Island														
(COP)														
Stranger Point,	0.66455	0.84565	0.43966	0.36950	0.19855	0.31769	0.01752	0.42613	0.00000	0.17399	*	0.00000	0.00000	0.00000
King George	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00020)	(0.00267)	(0.28591)	(0.00040)	(0.57499)	(0.01495)		(0.99990)	(0.99990)	(0.99990)
Island (SP)														
Bernardo	0.61772	0.79060	0.40132	0.34057	0.16943	0.27133	0.00117	0.36809	0.00000	0.14866	0.00000	*	0.00000	0.05537
O'Higgins Base	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00050)	(0.00238)	(0.37323)	(0.00040)	(0.56757)	(0.01505)	(0.99990)		(0.79764)	(0.21948)
(BO)														

Gabriel	0.58791	0.75247	0.37912	0.32380	0.15489	0.25607	0.00682	0.35394	0.00000	0.13331	0.00000	0.00000	*	0.01709
González Videla	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00010)	(0.00248)	(0.32373)	(0.00020)	(0.86714)	(0.01802)	(0.81378)	(0.99990)		(0.18543)
Base (GGV)														
Jougla Point	0.79404	0.87888	0.65499	0.52270	0.35294	0.53893	0.12200	0.65751	0.14763	0.30787	0.00000	0.00582	0.04903	*
(JP)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00257)	(0.00000)	(0.05821)	(0.00000)	(0.99990)	(0.57668)	(0.11989)	

S2C. TLR7

Colony	CR	MAR	COU	MO	СВ	BR	BI	MT	SIG	СОР	SP	BO	GGV	JP
Crozet Island	*	0.00000	0.15385	0.03575	0.00000	0.15385	0.24153	0.00000	0.21932	0.00575	0.27835	0.07738	0.05127	0.00000
(CR)		(0.99990)	(0.10049)	(0.25166)	(0.99990)	(0.2206)	(0.1199)	(0.99990)	(0.02099)	(0.41451)	(0.05821)	(0.08643)	(0.48193)	(0.62479)
Marion Island	0.00000	*	0.17066	0.04320	0.00000	0.17065	0.26718	0.00000	0.24170	0.01208	0.30218	0.09237	0.06381	0.00013
(MAR)	(0.99990)		(0.03406)	(0.12395)	(0.99990)	(0.09524)	(0.0988)	(0.99990)	(0.01584)	(0.25423)	(0.04445)	(0.06316)	(0.09049)	(0.26186)
Courbet	0.10160	0.15050		0.02.020	0.04500	0.00000	0.00000	0.000.55	0.00.510	0.00110	0.15010	0.00000	0.0.0001	0.10505
Peninsula	0.13462	0.15073	*	(0.12028)	0.24508	0.00000	(0.00000)	0.23966	(0.11008)	0.08448	0.17212	0.00000	0.06001	0.10587
(COU)	(0.09013)	(0.03073)		(0.13038)	(0.00313)	(0.91480)	(0.99990)	(0.01079)	(0.11098)	(0.02208)	(0.02287)	(0.32817)	(0.09554)	(0.00871)
Pointe du	0.06757	0.07580	0.00000	*	0.07551	0.00000	0.00000	0.06997	0.13982	0.02337	0.18981	0.00000	0.02590	0.03442
Morne (MO)	(0.16939)	(0.09940)	(0.58420)		(0.02198)	(0.59489)	(0.60311)	(0.03643)	(0.02564)	(0.11662)	(0.00812)	(0.50470)	(0.20364)	(0.04425)
Cow Bay (CB)	0.00000	0.00000	0.17804	0.08759	*	0.21440	0.30347	0.00000	0.31917	0.04066	0.35766	0.14082	0.10513	0.02675
	(0.99990)	(0.99990)	(0.01307)	(0.01653)		(0.01950)	(0.03059)	(0.99990)	(0.00099)	(0.03465)	(0.00941)	(0.02594)	(0.02277)	(0.04277)
Bull Roads (BR)	0.15385	0.17065	0.00000	0.00000	0.18657	*	0.00000	0.23965	0.11188	0.03171	0.19988	0.00000	0.03355	0.05073
	(0.21988)	(0.08841)	(0.99990)	(0.86308)	(0.0202)	0.00000	(0.99990)	(0.03346)	(0.0694)	(0.1389)	(0.01792)	(0.80804)	(0.23849)	(0.10286)
Bird Island (BI)	0.24153	0.26718	0.00000	0.00000	(0.02158)	0.00000	*	0.36906	0.08050	0.03041	0.18463	0.00000	0.02727	0.05262
Martillo Island	0.00000	(0.10019)	(0.99990)	0.10671	(0.03138)	(0.99990)	0.26006	(0.03029)	(0.21304)	(0.23809)	(0.07247)	(0.99990)	(0.34020)	(0.19100)
(MT)	(0.99990)	(0.99990)	(0.01238)	(0.03554)	(0.99990)	(0.23903)	(0.04960)	*	(0.00307)	(0.05301	(0.01673)	(0.02525)	(0.03812)	(0.13583)
(WII)	0.20744	0.22170	0.02000	0.00076	0.20145	0.05005	0.01502	0.40024	(0.00507)	0.02625	0.00000	0.00020	0.00000	0.05056
(SIC)	0.30744	(0.01445)	(0.38392)	0.09976	0.38145	(0.21335)	0.01582	(0.00267)	*	0.03625	(0.00000)	0.00039	0.00000	0.05056
(SIG)	(0.02009)	(0.01445)	(0.38392)	(0.05287)	(0.00370)	(0.21555)	(0.49480)	(0.00207)		(0.20493)	(0.99990)	(0.44204)	(0.08550)	(0.10515)
Copacabana (A dminoltry														
(Authiraty Boy) King	0.05824	0.06574	0.00000	0.00125	0.07694	0.00000	0.00000	0.09310	0.03264	*	0.05349	0.00000	0.00000	0.00000
Day), Kilig	(0.12672)	(0.10247)	(0.51431)	(0.34294)	(0.00802)	(0.47381)	(0.51579)	(0.02079)	(0.16563)		(0.14266)	(0.83318)	(0.86249)	(0.57965)
George Island														
(COP)														
Stranger Point,	0.27835	0.30218	0.03784	0.09551	0.33172	0.08347	0.05636	0.39735	0.00000	0.01031		0.06359	0.00000	0.05583
King George	(0.05693)	(0.04792)	(0.22651)	(0.04534)	(0.00931)	(0.14523)	(0.26324)	(0.01832)	(0.99990)	(0.37036)	*	(0.19364)	(0.60915)	(0.14642)
Island (SP)														
Bernardo	0.14089	0.15866	0.00000	0.00000	0.17845	0.00000	0.00000	0.23146	0.00000	0.00000	0.00000		0.00000	0.00000
O'Higgins Base	(0.08128)	(0.07019)	(0.99990)	(0.76052)	(0.02544)	(0.99990)	(0.99990)	(0.02584)	(0.57440)	(0.82398)	(0.43817)	*	(0.83586)	(0.48965)
(BO)														

Gabriel														
González Videla	0.10256	0.11742	0.00000	0.00000	0.13061	0.00000	0.00000	0.17796	0.00000	0.00000	0.00000	0.00000	*	0.00000
Gomzalez viacia	(0.21968)	(0.08841)	(0.68023)	(0.45857)	(0.03425)	(0.7821)	(0.58202)	(0.03861)	(0.58103)	(0.99990)	(0.61053)	(0.99990)		(0.85031)
Base (GGV)														
Jougla Point	0.05241	0.05952	0.00000	0.00830	0.06981	0.00696	0.00000	0.08498	0.03980	0.00000	0.01196	0.00000	0.00000	*
(JP)	(0.11712)	(0.09356)	(0.39155)	(0.22443)	(0.01099)	(0.32888)	(0.38491)	(0.01634)	(0.14929)	(0.76933)	(0.36442)	(0.70765)	(0.93100)	

S2D. HVR1

Colony	CR	MAR	COU	MO	СВ	BR	BI	MT	SIG	COP	SP	JP
Crozet Island	*	0.00000	0.98071	0.97191	0.96572	0.97018	0.97094	0.96879	0.96497	0.9557	0.94835	0.96015
(CR)		(0.56638)	(0.03178)	(0.00000)	(0.00000)	(0.00040)	(0.00000)	(0.00149)	(0.00149)	(0.00000)	(0.00010)	(0.00000)
Marion Island	0.00000	*	0.98950	0.97523	0.97019	0.97819	0.97591	0.97818	0.97557	0.96038	0.95916	0.96415
(MAR)	(0.66974)		(0.02376)	(0.00000)	(0.00000)	(0.00020)	(0.00000)	(0.00079)	(0.00069)	(0.00000)	(0.00040)	(0.00000)
Courbet	0.35052	0.39100	*	0.29453	0.94336	0.96564	0.96057	0.96480	0.95757	0.92969	0.90586	0.93788
Peninsula (COU)	(0.11405)	(0.02455)		(0.01287)	(0.00683)	(0.02673)	(0.00594)	(0.04821)	(0.04831)	(0.00475)	(0.03534)	(0.00297)
Pointe du Morne	0.08579	0.11761	0.21195	*	0.92836	0.92743	0.92721	0.92737	0.91436	0.91865	0.90576	0.92253
(MO)	(0.00238)	(0.00030)	(0.02079)		(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00010)	(0.00000)	(0.00000)	(0.00000)
Cow Bay (CB)	0.11875	0.15084	0.28772	0.07047	*	0.10968	0.7874	0.28031	0.74375	0.71836	0.70848	0.73538
	(0.00257)	(0.00099)	(0.02138)	(0.00010)		(0.03356)	(0.00000)	(0.00208)	(0.00000)	(0.00000)	(0.00000)	(0.00000)
Bull Roads (BR)	0.14286	0.17963	0.35052	0.08579	0.08636	*	0.84043	0.28029	0.82431	0.75894	0.74524	0.77946
	(0.01188)	(0.00564)	(0.10781)	(0.00248)	(0.03257)		(0.00000)	(0.03346)	(0.00158)	(0.00000)	(0.00069)	(0.00000)
Bird Island (BI)	0.12855	0.16014	0.29812	0.07930	0.10888	0.12855	*	0.84374	0.32908	0.24287	0.25257	0.22048
	(0.00653)	(0.00059)	(0.01228)	(0.00000)	(0.00010)	(0.00624)		(0.00000)	(0.00030)	(0.00000)	(0.00020)	(0.00000)
Martillo Island	0.25878	0.29433	0.55224	0.17732	0.21433	0.10862	0.22363	*	0.80733	0.74466	0.70428	0.76889
(MT)	(0.00465)	(0.00218)	(0.10375)	(0.00040)	(0.00238)	(0.12751)	(0.00168)		(0.00762)	(0.00000)	(0.00287)	(0.00000)
Signy Island	0.07667	0.11833	0.28571	0.02460	0.05851	0.07667	0.06939	0.20000	*	0.01749	0.03152	0.01385
(SIG)	(0.10969)	(0.05465)	(0.04663)	(0.19840)	(0.11118)	(0.10920)	(0.07970)	(0.07801)		(0.29324)	(0.26304)	(0.29621)
Copacabana	0.08074	0.11247	0.23804	0.03770	0.06588	0.08074	0.07469	0.17159	0.01948	*	0.00000	0.01858
(Admiralty Bay),	(0.00208)	(0.00010)	(0.01861)	(0.00000)	(0.00020)	(0.00257)	(0.00000)	(0.00030)	(0.22285)		(0.53480)	(0.15929)
King George												
Island (COP)												
Stranger Point,	0.07363	0.11346	0.26829	0.02384	0.05657	0.07363	0.06709	0.18978	0.00000	0.01097	*	0.06616
King George	(0.10019)	(0.04574)	(0.03198)	(0.16553)	(0.07574)	(0.10217)	(0.05653)	(0.00119)	(0.99990)	(0.31829)		(0.08742)
Island (SP)												
Jougla Point (JP)	0.09405	0.12503	0.25198	0.05014	0.07823	0.09405	0.06869	0.18393	0.01765	0.02247	0.03323	*
	(0.00475)	(0.00069)	(0.01376)	(0.00030)	(0.00010)	(0.00465)	(0.00050)	(0.00149)	(0.26225)	(0.04208)	(0.14088)	

<u>Supplementary Table S3</u>. Census population size (number of breeding pairs) applied to analyses related to each colony, based on best available census data for each island group or region, with census year and reference information.

Colony	Census Region	Census Population (breeding pairs)	Year	Reference / Notes			
CR	Crozet Archipelago	9,000	1994	Jouventin, 1994.			
MAR	Marion Island	600	2012/13	Crawford, et al. 2014.			
COU	Kerguelen			Weimerskirch, et al. 1988. (*Lescroel, and Bost, 2006. show significant decrease in 2002 of Kerguelen population, but was localized to the sampled			
МО	Islands	30,000	1988	population, our was recalled to the sampled portion of the archipelago, leading us to use 30,000 as the lower range number for Weimerskirch, et al. 1998's estimate of 30- 40,000)			
СВ	Falkland/	122 221	2010	Paulis at al 2012			
BR	Islands	152,521	2010	Daylis, et al. 2015.			
BI	South Georgia	98,867	1996	Trathan, et al. 1996.			
MT	Martillo Island	12	2006/07	Ghys, et al. 2008.			
SIG	South Orkney Islands	10,760	2013	Lynch 2013.			
COP	South						
SP	Shetland						
BO	Islands and	94,751	2013	Lynch 2013.			
GGV	Western Antarctic Peninsula						
JP							

<u>Supplementary Figure S1</u>. Haplotype diversity (H_d) for (a) *TLR4*, (b), *TLR5*, (c) *TLR7*, and (d) mtDNA HVR1 in relation to census population size across Gentoo penguin colonies. Census population sizes and their source publications used for analyses are found in Supplementary Table S3.

Locus	Spearman's rank correlation	р
TLR4	-0.5029245	0.06679
TLR5	0.09462364	0.7476
TLR7	-0.1380377	0.6379
HVR1	N/A	0.3263

<u>Supplementary Table S4</u>. Spearman's rank correlations and p values calculated for each haplotype diversity Hd vs. census population size comparison depicted in Supplementary Figure S1.

<u>Supplementary Table S5A.</u> Mantel Test results for Isolation by Distance for each locus, using F_{ST} (Weir and Cockerham 1984) values against a matrix of geographic distance (km), with significance evaluated using 10,000 permutations in Arlequin.

Mantel Test Locus	Correlation	P value
	Coefficient (R)	
TLR4	0.514998	0.0011
TLR5	0.592887	0.0010
TLR7	0.026662	0.3677
HVR1	0.311577	0.0153

<u>Supplementary Table S5B</u>. Pairwise geographic distances (most direct distance by sea during summer sea ice extent, in km) used for Mantel's test, derived from Google Earth v7.3.2.5776.

Colony	CR	MAR	COU	MO	СВ	BR	BI	MT	SIG	COP	SP	BO	GGV	JP
Crozet Island (CR)	0													
Marion Island (MAR)	960	0												
Courbet Peninsula (COU)	1577	2461	0											
Pointe du Morne (MO)	1565	2449	14	0										
Cow Bay (CB)	7190	6481	7850	7837	0									
Bull Roads (BR)	7185	6504	7833	7819	168	0								
Bird Island (BI)	5958	5204	6786	6773	1359	1432	0							
Martillo Island (MT)	7354	6743	7915	7903	792	639	1892	0						
Signy Island (SIG)	5955	5315	6565	6555	1282	1258	901	1437	0					
Copacabana (Admiralty Bay),	6419	5848	6978	6970	1275	1173	1501	1010	705	0				
King George Island (COP)														
Stranger Point, King George	6421	5849	6979	6971	1262	1161	1506	995	711	13	0			
Island (SP)														
Bernardo O'Higgins Base (BO)	6402	5804	6936	6928	1351	1248	1536	1085	708	130	125	0		
Gabriel González Videla Base	6705	6107	7237	7229	1522	1414	1837	1147	1009	372	360	302	0	
(GGV)														
Jougla Point (JP)	6719	6138	7264	7256	1543	1435	1861	1170	1035	400	391	328	45	0

Model	lnL	$2(lnL_1-lnL_0)$	df	p-value	
M1a	-3605.474038	8.33452799999986	2	0.015494595	
M2a	-3597.13951				
M7	-3605.717024	8.3360430000025	2	0.015482863	
M8	-3597.380981				
M8a	-3605.474029	8.09304800000018	2	0.01748304	
M8	-3597.380981				

<u>Supplementary Table S6A</u>. Log-likelihood comparisons for PAML (Yang 1997; Yang 2007) analysis of *TLR4*.

<u>Supplementary Table S6B</u>. Bayes Empirical Bayes (Yang, et al. 2005) analysis of *P. papua TLR4* sites under positive selection with posterior probability >0.90. Sites obtained from *codeml* M2a.

Amino acid pos.	Amino acid	Pr(ω>1)	Mean ω ± SE
12	V	0.932	7.669 ± 2.761
236	Ι	0.932	7.669 ± 2.761
659	А	0.933	7.671 ± 2.759

<u>Supplementary Table S6C</u>. Bayes Empirical Bayes analysis of *P. papua TLR4* sites under positive selection with posterior probability >0.90. Sites obtained from *codeml* M8.

Amino acid pos.	Amino acid	Pr(ω>1)	Mean $\omega \pm SE$
12	V	0.947	1.461 ± 0.163
82	Ν	0.936	1.485 ± 0.000
236	Ι	0.947	1.461 ± 0.163
316	С	0.936	1.485 ± 0.000
445	Q	0.936	1.485 ± 0.000
659	А	0.947	1.461 ± 0.163

Model	lnL	$2(lnL_1-lnL_0)$	df	p-value	
M1a	-3929.201728	102.078912	2	6.821e-23	
M2a	-3878.162272				
M7	-3929.323036	102.311604	2	6.072e-23	
M8	-3878.167234				
M8a	-3928.465238	100.596008	2	7.16e-23	
M8	-3878.167234				

Supplementary Table S6D. Log-likelihood comparisons for PAML analysis of TLR5.

<u>Supplementary Table S6E</u>. Bayes Empirical Bayes analysis of *P. papua TLR5* sites under positive selection with posterior probability >0.90. Sites obtained from *codeml* M2a.

Amino acid pos.	Amino acid	Pr(ω>1)	Mean ω ± SE
10	Y	1.000	9.645 ± 0.504
285	М	0.980	9.472 ± 1.320
442	А	0.998	9.631 ± 0.609
535	S	0.981	9.482 ± 1.286
667	S	1.000	9.643 ± 0.514
698	М	0.980	9.469 ± 1.329
747	L	0.985	9.518 ± 1.163
788	С	0.982	9.492 ± 1.255
845	V	1.000	9.645 ± 0.503

Amino acid pos.	Amino acid	Pr(ω>1)	Mean $\omega \pm SE$
10	Y	1.000	8.947 ± 1.200
285	М	0.989	8.855 ± 1.487
442	А	0.999	8.941 ± 1.219
535	S	0.989	8.860 ± 1.472
667	S	1.000	8.946 ± 1.202
698	М	0.988	8.853 ± 1.490
747	L	0.991	8.878 ± 1.421
788	С	0.990	8.865 ± 1.459
845	V	1.000	8.947 ± 1.200

<u>Supplementary Table S6F</u>. Bayes Empirical Bayes analysis of *P. papua TLR5* sites under positive selection with posterior probability >0.90. Sites obtained from *codeml* M8a.

<u>Supplementary Table S7</u>. Physiochemical distances between amino acid variants at positively selected sites in TLR4 and TLR5, as given by several authors, detailed in the lower table. Red colors indicate a greater physiochemical distance, while green colors indicate a lower physiochemical distance. *Epstein's distance has an element of directionality, so both directions are given: Epstein_1 = variant_1 \rightarrow variant_2; Epstein_2 = variant_2 \rightarrow variant_1.

TLR	nt_site	aa_site	variant_1	variant_2	Grantham [1]	Sneath [2]	Epstein_1 [3]	Epstein_2 [3]	Miyata [4]	Urbina [5]
TLR4	35	12	V	А	64	12	0.4	0.41	1.85	3.125
TLR4	706	236	V	Ι	29	7	0.03	0.05	0.85	0.873
TLR4	1977	659	А	Т	58	20	0.41	0.4	0.9	1.795
TLR5	29	10	С	Y	194	34	0.25	0.13	2.38	3.591
TLR5	854	285	Т	М	81	25	0.8	0.8	1.86	2.404
TLR5	1325	442	А	V	64	12	0.41	0.4	1.85	3.125
TLR5	1604	535	S	Т	58	12	0.03	0.03	0.89	1.697
TLR5	2000	667	F	S	155	25	0.81	0.81	3.45	4.544
TLR5	2094	698	Ι	М	10	22	0.05	0.03	0.29	1.565
TLR5	2239	747	V	L	32	9	0.05	0.03	0.91	0.831
TLR5	2362	788	S	С	112	13	0.6	0.6	2.84	2.758
TLR5	2533	845	V	Ι	29	7	0.05	0.03	0.85	0.873

Number	Criteria	Range	Reference
[1]	composition, polarity, molecular volume	5(low)-215(high)	Grantham (1974)
[2]	134 categories of activity and structure	5(low)-45(high)	Sneath (1966)
[3]*	polarity, size	0(low)-1.02(high)	Epstein (1967)
[4]	volume, polarity	0.06(low)-5.13(high)	Miyata (1979)
[5]	volume, bulkiness, polarity, isoelectric point, hydrophobicity, surface area accessible to water, fraction of accessible area lost when protein folds	1.031(low)-7.08(high)	Urbina, et al. (2006)

<u>Supplementary Table S8</u>. Positions of Gentoo penguin positively selected sites with respect to sites of known function in other vertebrates. The position and name of the corresponding chicken amino acid is given for each Gentoo TLR position, as chicken TLRs are typically the best-studied and best-annotated TLRs. "other_literature" denotes a study in which the described sites have also been found to be positively selected in a particular taxon (references are given below). "function" denotes the potential for change in function, due to proximity to sites of known function. "N/A" indicates that the Gentoo TLR5 open reading frame begins upstream of other known TLRs, so no functional information is known.

TLR	nt_site	aa_site	variant_1	variant_2	chicken_posn	chicken_aa	other_literature	function
TLR4	35	12	V	А	6	А	Velová, et al. 2018	No
TLR4	706	236	V	Ι	230	Ι	No	No
TLR4	1977	659	А	Т	653	А	No	No
TLR5	29	10	С	Y	N/A	N/A	N/A	N/A
TLR5	854	285	Т	М	267	М	No	Adjacent to two residues in flagellin-binding interface B (266,268) Yoon, et al. 2012; Song, et al. 2017
TLR5	1325	442	А	V	424	А	Velová, et al. 2018; Grueber, et al. 2014	No
TLR5	1604	535	S	Т	517	S	No	No
TLR5	2000	667	F	S	649	S	No	No
TLR5	2094	698	Ι	М	680	L	Velová, et al. 2018	No
TLR5	2239	747	V	L	729	L	No	No
TLR5	2362	788	S	С	770	С	No	No
TLR5	2533	845	V	Ι	827	Ι	No	No

<u>Supplementary Figure S2</u>. Positions of positively selected sites in Gentoo penguin TLR4 and TLR5 ectodomains. Positively selected sites from PAML analysis (highlighted in red) are superimposed on homologous sites from the crystal structure of mouse TLR4 ectodomain (PDB: 2Z64) and a homology model of human TLR5 ectodomain (PDB: 3J0A). Further positively selected sites in the signal peptide of TLR4 (12V/A) and TLR5 (10C/Y), as well as TMD/TIR domain sites (TLR4: 659A/T; TLR5: 667F/S, 698I/M, 747V/L, 788S/C, 845V/I) were omitted because the residues are not included in the available model structure, or were of low confidence. Relative positions of these residues are depicted schematically in main text Figure 6. Site 285T/M is located within interface-B of the flagellin binding site (Yoon, et al. 2012; Song, et al. 2017), which is highlighted in yellow. No other positively selected sites were found to be proximal to sites of known function in other vertebrates.

TLR5

<u>Supplementary Table S9</u>. In silico prediction of change of function of positively selected sites using the homology-based methods SIFT (Ng and Henikoff 2003) and PolyPhen-2 (Adzhubei, et al. 2013). Both SIFT and PolyPhen-2 are directional, so the scores for each variant $1 \rightarrow$ variant 2 and variant $2 \rightarrow$ variant 1 are given. Red colours indicate the change is likely to be of high consequence, while green colours indicate milder consequences.

					SIFT				Polyphen2					
TLR	nt_site	aa_site	variant_1	variant_2	v1-	→v2	v2-	→v1		v1→v2			v2→v1	
					score	MSC	score	MSC	score	sensitivity	specificity	score	sensitivity	specificity
TLR4	35	12	V	А	0.15	3.34	0.58	3.38	N/A	N/A	N/A	0.997	0.410	0.980
TLR4	706	236	V	Ι	1.00	3.20	0.18	3.21	0.001	0.990	0.150	0.049	0.940	0.830
TLR4	1977	659	А	Т	0.20	3.04	0.25	3.05	0.810	0.840	0.930	0.000	1.000	0.000
TLR5	29	10	С	Y	0.00	4.32	0.00	4.32	0.004	0.970	0.590	N/A	N/A	N/A
TLR5	854	285	Т	Μ	0.43	3.36	0.10	3.36	0.000	1.000	0.000	0.990	0.720	0.970
TLR5	1325	442	А	V	0.51	3.55	0.72	3.36	0.165	0.920	0.870	0.000	1.000	0.000
TLR5	1604	535	S	Т	0.38	3.36	0.82	3.36	0.253	0.910	0.880	0.000	1.000	0.000
TLR5	2000	667	F	S	0.34	3.36	0.01	3.36	0.000	1.000	0.000	0.998	0.270	0.990
TLR5	2094	698	Ι	Μ	0.06	3.36	0.45	3.36	0.009	0.960	0.770	0.005	0.970	0.740
TLR5	2239	747	V	L	1.00	3.36	0.00	3.36	0.000	1.000	0.000	0.000	1.000	0.000
TLR5	2362	788	S	С	1.00	3.36	0.00	3.36	0.000	1.000	0.000	0.992	0.700	0.970
TLR5	2533	845	V	Ι	0.45	3.36	1.00	3.36	0.024	0.950	0.810	0.000	1.000	0.000

GENTOOPEN1	636	DRYCVYPPAFAGVPLSSLTFDGCNEDELQQTLRFSVFLFTFITLLTFLMAVVIFTRCRGICFVWYKTITKKMIDSHPQ
GENTOOPEN2		DRYCVYPPAFAGVPLSSLTFDGCNEDELQQTLRFSVFLFTSITLLTFLMAVVIFTRCRGICFVWYKTITKKMIDSHPQ
CHICKEN		DRYCVYPPALAGVPVSFLTYDDCDEDELQOTLRFSVPVFLSVTLLMFLMSTIIFTRCRGICFVWYKTITKTLIGSHPP
CEYLONJUNG		DRYCWYPPALAGVPVSFLTYDDCDEDELOOTLRFSVFVFISVTLLMFLMSTIIFTRCRGICFVWYKTITKTLIGSHPP
DOMESTICGO		DRY CWYPPTLAGEPLSFILTYN - CNEDELODTUBESWEIFTS I TLYMFLMAAI I FTRCRGTCFWYYKTI TKKMI DSHPP
GREYPARTRI		DRY CWHPPALAGWPWSLLTYDDCDEDELOOT DRESWEIFI SYTLLTELMSAWWFTRCRGTCFWWYKTI TKTLLGSHPP
COMMONSHEL.		DEV CWY PEMLAGEPTISELTED COEDELOOTLEES WE LETSTON WELMAN IL FTECHCICEWY KTITKOLIDENPE
MALTARD		DRYCHYRDMI ACERI CELTHD COEDFI O ALPESURIETSTULIMELMAUTIETBCRCTCEUWYVTTWOITDRHDD
ROCKRICKON		DEVOLVEDADA CUDI SPITYDDODDDI OOMI DESUPERSUMI I MEI DAVI I FEBORAT CEUNVET DEVI I DEVO
INDIANDERE		
INDIANFEAF		
BAND-IAILE		
ZEBRAFINCH		DRYCVIPPAPEGVPLSHIINDGCDEDELGOTLRPSIDVFFSVILLLPLVAVIIFTRCRGICPIWYRTITKREIDNOPR
COLLAREDFL		DMY CVYPTAFAGVPTSLETYDDCDBDETOOTLRFSLETISSVICLMFDVAVIIFTRCRGTCSIWYRTITRREIDNGPR
PEREGRINEF		drycayppafagoplssltydgcnedelqqtlrfsvpiftsitdlallmavtiytrcrgicfvwyktitkkiidsypq
SAKERFALCO		DRYCAYPPAFAGOPLSSLTYDGCNEDELQQTLRFSVPIFTSITULALLMAVTIYTRCRGICFVWYRTITKKIIDSYPQ
WHITE - THRO		DRYCVYPPAFARVPLSSLLYDGCEEDELQQSLRLSVFIFTSVTLVMFQMAVILFTRCRGICFVWYKTVTRTLIDSHQQ
CARMINEBEE		DRYCVYPPEFACVPLSALIYDGCNBDDLOETURFSVFIFSSVTLLMFLMAIIVFTRCRGICFVWVKTITRKMIDSHPR
EMPERORPEN		DRYCVYPPAFAGVPLSSLIFDGCNEDELQQTLRLSVFLFTSITULTFLMAVIIFTRCRGICFVWYKTITKKMIDSHPQ
ADELIEPENG		DRYCVYPPAFAGVPLSSLTFDGCNEDELQQTLRFSVFLFTSITLLTFLMAVVIFTRCRGICFVWYKTITKKMIDSHPQ
CRESTEDIBI		DRYCAYPPAFAGVPLSSLTYDGCDEDELQQTLRFSVPVFTSITLLMFLMAVIIFTRCRGICFVWYKTITKKMIGRHSQ
DALMATIANP		DRYCVYPPAFAGVPLSSLTYDDCDEDELQQTLRFSVFVFTSITLLMFLMAVIIFTRCRGICFVWYKTITKKIIDSHPQ
GREATCORMO		DRYCVYPPAFAGVPLSALTYECCNEDELQQTLRFSLFIFTSITLMFLMAVIIFTRCRGICFVWYKTITKKIIGSHSQ
COMMONCUCK		DRYCVYPPAFAGVPLSSLIYDDCDEEELQQALSFSVFIFTSVTLLMFLMAVVIFTRCRGICFVWYKTITKKMIDSHPQ
NORTHERNFU		DRYCIYPPAFAGVPLSFLTYDGCNEDELOOTLRFSVFIFTFVTLLLFLMAVIICTRCRGICFVWYKTITKKLIDSHPO
LITTLEEGRE		DRY CVY PPAFAGVPLSSLIYDGCDEDELOOOL RFSVPVFTSITLLIFLMAVIIFTRCRGICFVWY KTITKKIIDSHPH
COMMONOSTR		DRY CVY FPAFAGVSLSSLLYD GCDEDELOOSLRFSVFIFTSVTLAMFLMAVIIFTRCRGICFVWY KTVTRTLIDSHOO
RED-LEGGED		DRSCVVPPAFAGILUSSUMYDGONEDELÖÖTLEFSVFIFTA I TULMFLMA-VIFTECEGTCEVWYKI I TKKKIDSEPÖ
RED-THROAT		DRYCWYPPAFAGWPLSSLTYDCCSEDELÔOTLRFSWFWFTSVTLLMFLMAVIIFTRCRGICFWLYKTIIKKMIDSHPÔ
BAR-TAILED		DRY CWNPPEFAGIPLSSLTYDGCNEDELQOALRFSLFWFTSVTLLMFLMAAIIFTECRGICFWWYKTIIKKMIDSRPO
KILLDEER		DRY CWYPPEFAGWPLSSLTYDGCGEDELOOTLRFSWFIFTSWF
DOWNYWOODP		DRY CWY PPEFAGWPLSSLIVDDCDEDELOETLES VPHPTS VTHTLELMAVILIETEC RGTCEWWYKTVTKNLTDSOPO
WHITE - TAIL	10	DRY CWY PPAFAGYPLSSLTYDGCSEDELOOTLEFS VPIFTSTTULMFLMAVILFTRCRGTCFWYKTITKKMTDSHPO
ORISTROCOM		DRYCHYBRAFAGURI SSIA PDCCSPDFIOTE PFSWPIFTS WTILLMFIMAYWIFTBCPGTCFWWYKTI KKWTDSHDO
CUCKOOROLL		DRY CWY PPAFAGWPI, SSLLHDCCDEDELOOTWRF SWFIFTS WTULMELMA VILLETRCRGTCFWWYKS I TKKLLDCHPO
BARNOWI.		DRY CWY PRAFACYLL SSLT YD CONFIELD TO THE RESULTETST THE MELMAY HTT FTPC PGT CEWWYK TI TKKWI GSHDO
DED OPPETE		
KED-CREDIE		DEVCUY PRAFACUELSSIT VCCCSEDELOVIL DESUBUETSTILL MELMAVILETE
VELIAW_THE		
MACOUFFN/C		
NACQUEEN S		
CUNDIERDN		
SUNSITIERN		
CHUCK-WILL		DRYCVYPPALAGVPLLSJTYDGGDBDELOOTLRPSVFVPTATTBLAMFLMAVIIFTRCRGICFVWYRTITKKMIDSHPO
BROWNROATE		DRYCVIPPAFAGVPLSALTYDGCDBDELOOMLRFSVFIFTSVTLVMFDMAVIIFTRCRGICHAWYKTITRKVIDSHPR
SPECKLEDMO		DRYCVYPPALAGVPLASITYDGCDBDELQETLRPSVPIPTSVTDLVFLIAVIIFTRCRGICFVWYRNITRKITGGHSQ
WHITE-THRO		DRYCVYFPAFARVPLSSLLYDGCEEDELQOSLRLSVFIFTSVTLVMFOMAVIIFTRCRGICFVWYRTVTRTLIDSHOO
WHITE-TAIL		DRYCVYPPAFAGVPLSSLTYDGCSEDELQOTLRFSVFIFTSITDLMFLMAVIIFTRCRGICFVWYKTITKKMTDSHPQ
EASTAFRICA		DRYCVYPPAFAGVOLSSVIYDGCYEDELOOTLRFSVFIFISITDLMVLIAAIVFTRCRGICFVWYKTIIKKIIDSHPO
BALDEAGLE		DRYCVYPPAFEGVPLSSLTYDGGIEDELOOTLRFSVFIFTSVTHLIFLMAVIIFTRCRGICFVWYKTITKKMIDSHPO
GOLDENEAGL		DRYCVYPPAFAGVPLSSLTYDGCNBDBLQQTLRFSVFIFTSITDLMFLMAVILFTRCRGLCFVLYKTITKKMIDSHPQ
SWANGOOSE		DRYCVYPPTLAGEPLSFLTYN-CNEDELQQTLRFSVFIFTSITLVMFLMAAIIFTRCRGICFVWYKTITKKMIDSHPP
TIBETANGRO		DRYCVYPPAFEGLPLSYLTYDDCDEDELQQTLRCSLFIFFLVIDLVFMVAAIIFTRCRGICFVWYKTIAKRLIDNQRR
COMMONSTAR		DRYCVHPPAFEGVPLSYLTYDDCDEDELQQALRFSLFIISLVIALAFLVAAIIFTRCRGTCFIWYKTITKRLIDNQPQ
RUFF		dty gyv pefaglið ssu í vögge eðen leels f Svevet svtil veltav í vergrgi gevykti trkk í í gshþó
GREATTIT		drycywyfafeglipisymtyddcdedeligotlrcSififfsvillilflvaaiiffrcrgicfvwyktitkrlidnorr
JAPANESEQU		DRYCVYPPALAGVPVSLUTYDDCDEDELQQTLRFSLPIFITVTLLMFQMSAIIUTRCRGICFVCYKTITKTLIGSHPP
AMERICANCR		DRYCVYPPAFEGVPLSHLTYDGCDEDELQETLRFSLFIFFSVTLLMFLVAVIIFTRCRGICFIWYKTITKRVIGSQPR
BLUE-CROWN		DRYCAYPPEFAGVPLSYLEYDGCDEDELQEALRFSLFIFFSVTFLMFLVSAIIFTRCRGICFIWYKTVTKKIIATHPQ
GOLDEN-COL		DRYCAYPPEFAGVPLSYLEYDGCDEDELQQALRFSLFIFFSVTFLMFLVSAIIFTRCRGICFIWYKTITKKIIASHPO
TURKEY		DRYCVYPPALAGVPVSLUTYDDCDEDELOOTLRFSVFIFISVTLLMFLMSAIIFTRCRGICEVWYKTITKTLIGSHPP
HOODEDCROW		DRY CVY PPAFEGVPLSHUTYDGCDEDELQETLRFSLFIFFSVTLLMFLVAVIIFTRCRGLCFIMYKTITKRVIDSOPR
BENGALESEF		DRY CVY PPAFAGIPLSHT I YDGCDEDELOOTLRPSLPIFFSVILLVPLVAVI I FTRCRGICFIMYKTTKRLIDNÔPR
BLUETIT		DRY CVY PPAF GGLPLSYLTYDDCDKDELÕÕTLRCSLPIFS SVTLLVPLVAAT IFTRCRGICFIWYKTIAKRLIDNÕRR

<u>Supplementary Figure S3</u>. Alignment of the transmembrane region and surrounding sequence of available avian TLR5 amino acid sequences. The conserved serine residue is highlighted in pink and any variant amino acids are highlighted in red.

<u>Supplementary Table S10</u>. Diversity statistics of Gentoo penguin (*Pygoscelis papua*) vs. avian Toll-like receptors from published studies. Chicken diversity data was drawn directly from Świderská, et al. (2018), while grey partridge study sequences were obtained from GenBank along with supplementary frequency data for analysis in DnaSP 6.12.10 as in main text methods to obtain comparable diversity measures.

Gene	Species	Length (bp)	k	$H_d \pm SD$	$\pi \pm \mathrm{SD}$	UPV	Α
	•						
TLR4	Gentoo penguin	2550	1.550	0.478 ± 0.035	0.00061 ± 0.00005	9	21
	Domestic chicken	2532	6.540	0.947 ± 0.010	0.00258 ± 0.00005	24	70
	Grey partridge	2529	3.063	0.863 ± 0.063	0.00121 ± 0.00018	5	10
TLR5	Gentoo penguin	2643	3.919	0.781 ± 0.022	0.00148 ± 0.00006	32	46
	Domestic chicken	2586	2.866	0.854 ± 0.013	0.00111 ± 0.00004	10	22
	Grey partridge	2589-2592	1.053	0.747 ± 0.076	0.00041 ± 0.00008	4	6
TLR7	Gentoo penguin	3126	0.327	0.296 ± 0.034	0.00010 ± 0.00001	8	10
	Domestic chicken	3180	3.363	0.849 ± 0.017	0.00106 ± 0.00005	13	26
	Grey partridge	3141	1.753	0.532 ± 0.100	0.00056 ± 0.00013	3	3

k = average number of nucleotide differences between alleles; Hd = haplotype diversity; SD: standard deviation; π : nucleotide diversity (average number of nucleotide differences per site between two sequences); UPV: number of unique protein variants; A: number of alleles.

Notes: To compare diversity levels in our study population with those of other species, we sought datasets that sequenced *TLR4*, *TLR5*, and *TLR7* in birds. Because diversity measures can be biased by gene length and whether sequenced fragments are under selection, we restricted our comparison only to studies that sequenced the full length of these genes: a study in 110 domestic chickens (*Gallus gallus domesticus*, Świderská, et al. 2018) and a study of 10 European grey partridges (*Perdix perdix*, Vinkler, et al. 2015). The difference in gene length among these species is minimal enough to allow comparison (*TLR4*: <0.01%, *TLR5*: 2.15%, *TLR7*: 1.69%). However, sampling strategy differs significantly between studies, and also affects diversity measures (i.e. chicken study sampled few individuals from 25 distinct farmed breeds, partridge study sampled a small geographic subset of the species, while Gentoo penguin study had varying numbers of samples from multiple wild populations). Given the differences in sampling strategy, only relative statements comparing TLRs within a species/study are appropriate, and care should be given to drawing conclusions from interspecific comparisons.

Sampling Site Name Region Latitude Longitude Sample size mtDNA TLR4 TLR5 TLR7 7 7 **Crozet Island (CR)** Crozet Is. 46.4298 S 50.4046 E 7 7 **Marion Island (MAR)** Prince Edward Is. 46.8872 S 37.8671 E 8 8 8 8 7 **Courbet Peninsula (COU)** Kerguelen Is. 49.2811 S 70.5410 E 2 7 7 Pointe du Morne (MO) Kerguelen Is. 49.3805 S 70.4423 E 20 15 20 18 Falkland/Malvinas Cow Bay (CB) 51.4343 S 57.8506 W 19 17 16 18 Is. Falkland/Malvinas 52.3380 S 59.3633 W 7 7 7 **Bull Roads (BR)** 7 Is. **Bird Island (BI)** South Georgia 54.0094 S 38.0631 W 13 17 18 12 Martillo Island (MT) Tierra del Fuego 54.9083 S 67.3833 W 5 5 5 4 Signy Island (SIG) South Orkney Is. 60.6747 S 5 5 5 45.6278 W 5 **Copacabana** (Admiralty 21 22 21 Bay), King George Island South Shetland Is. 62.1792 S 58.4472 W 21 (COP) Stranger Point, King South Shetland Is. 62.2375 S 58.5939 W 6 5 5 5 George Island (SP) **Bernardo O'Higgins Base** Western Antarctic 63.3207 S 57.8987 W 0 6 6 6 **(BO)** Peninsula Gabriel González Videla Western Antarctic 64.8238 S 7 62.8581 W 0 7 7 Base (GGV) Peninsula Western Antarctic 64.8270 S Jougla Point (JP) 63.4932 W 24 24 24 23 Peninsula 138 148 Total 155 152

Supplementary Table S11. Sampling sites, location details, and number of samples obtained from Gentoo

penguins for immunogenetic analysis.

Gene	Description ¹ and (Primer Names)	Primer Sequences	Ta (°C)	Product Size	Polymerase / reaction volume /
	5 4		~~	1101	PCR program
TLR4	Exon 1 (PengTLR4_Ex1_F2 +	F: CTCACTCCAGGTCCTTGAGTG	55	419 bp	Qiagen Taq PCR
					Master Mix Kit (12
	PengILK4_EXI_K2_long)	R: ACTGCAGTACCCTCAGAGGT			μL)
					40 cycles:
					94° C / 0.45
					55° C / 0:45
					72° C / 1:00
					72° C / 10:00
TLR4	Exon 2	F: TGCTGCTTTCCTGACAGTGT	55	358 bp	Qiagen Taq PCR
	(PengTLR4_Ex2_F2 + (PengTLR4_Ex2_R1)				Master Mix Kit (12
		R: AGCCAAGACCAACAGACACC			μL)
					94° C / 3:00
					40 cycles:
					94° C / 0:45
					55° C / 0:45
					72° C / 1:00
TI RA	Evon 3 (Start)	E. AAGGGACAGTGTTGCATGCA	55	945 hn	72 C / 10.00
1121(4	(PengTLR4_Ex3_Start_F + PengTLR4_Ex3_Start_R2)	1. Adduacadioinocatoca	55	945 Op	Master Mix Kit (12
		R: CACTCAAATCTACAACCTCCAGG			μL)
					94° C / 3:00
					40 cycles:
					94° C / 0:45
					55° C / 1:00
					72° C / 1:00
					72° C / 10:00
TLR4	Exon 3 (Middle) (PengTLR4_Ex3_Mid_F1 + PengTLR4_Ex3_MidR2)	F: GGCAACGTCTCTAGTATTCGGT	55	932 bp	Qiagen Taq PCR
					Master Mix Kit (12
		R: TGCAGGTGTGTGGGCATATCA			μL) 94° C / 3·00
					40 cvcles:
					94° C / 0:45
					55° C / 1:00
					72° C / 1:00
					72° C / 10:00
TLR4	Exon 3 (End) ² (PengTLR4_Ex3_Mid_F1 + PengTLR4_Ex3_EndR2 or PengTLR4_Ex3_EndR)	F: GGCAACGTCTCTAGTATTCGGT	50	1563 bp or 1671 bp	Qiagen Taq PCR
					Master Mix Kit (12
		R: TGCCTTCTAGCAGGACTCCT			μL)
		or			94° C / 3:00
		R [.] ACTTCTGAGCACCAGCCATC			40 cycles:

<u>Supplementary Table S12</u>. List of primers used for PCR amplification and sequencing of Gentoo penguin TLR genes, along with reaction conditions.

					94° C / 0:45 50° C / 1:00 72° C / 2:00 72° C / 10:00
TLR5 TLR5 (TLR5_full_ TLR5_10	TLR5 (A) (TLR5_full_new_F + TLR5_1000_R)	F: AGTGTGACATTAGTCTTTTGTTCTACA	64	1021 bp	NEB Phusion Hot Start Flex DNA Polymerase (25 μL)
		R: AGCCAAATCCCGAACCCATT			98° C / 3:00 40 cycles: 98° C / 0:30 64° C / 0:30 72° C / 1:00 72° C / 10:00
<i>TLR5</i> (Gento +	TLR5 (B) (Gentoo_TLR5_sequencing_2_F	F: ACCTTAGTGACAACGGCTGG	68	1948 bp	NEB Phusion Hot Start Flex DNA
	+ Gentoo_TLR5_full_R)	R: GTGTTCATTCCTGCCATGGC			Polymerase (25 μL) 98° C / 3:00 40 cycles: 98° C / 0:30 68° C / 0:30 72° C / 2:00 72° C / 10:00
TLR5	TLR5 (C) (Gentoo_TLR5_sequencing_3_F + Gentoo_TLR5_full_R)	F: TCCCCTGAGCCTGAAGTCTT	69	962 bp	NEB Phusion Hot Start Flex DNA Polymerase (25 µL)
		R: GTGTTCATTCCTGCCATGGC			98° C / 3:00 40 cycles: 98° C / 0:30 69° C / 0:30 72° C / 1:00 72° C / 10:00
TLR7	TLR7 Coding Exon (A) (TLR7_StartF_212 + TLR7_AR_882)	F: AGCCAGTGTGAGAGACAGGA	62	670 bp	NEB Phusion Hot Start Flex DNA
		R: ACGGTAGTAACAGTTCTGTC			Polymerase (25 μL) 98° C / 3:00 40 cycles: 98° C / 0:30 62° C / 0:30 72° C / 0:30 72° C / 10:00
TLR7	TLR7 Coding Exon (B) (TLR7_BF_832 + TLR7_BR_1733)	F: GAGCTAGGAAACATAGAAAT	55 901 bp	901 bp	NEB Phusion Hot Start Flex DNA
		R: TCATCATACCTGAAATAATG			Polymerase (25 μL) 98° C / 3:00 40 cycles: 98° C / 0:30

					55° C / 0:30
					72° C / 0:45
					72° C / 10:00
TLR7 ³	TLR7 Coding Exon (C)	F: AAATCTAACAGTGTTGGATC	50	1229 bp	NEB Phusion Hot
	(TLR7_midF_1512 + TLR7_midR_2741)				Start Flex DNA
					Polymerase (25 µL)
		R: GTCACTTGAGTCTGATTGAT			98° C / 3:00
					40 cycles:
					98° C / 0:30
					50° C / 0:30
					72° C / 0:30
					72° C / 10:00
TLR7	TLR7 Coding Exon (D)	F: AATTAAGAAATCTAGCTTCC	54	984 bp	NEB Phusion Hot
	(TLR7_DF_2613 + TLR7_End_DR_3597)				Start Flex DNA
					Polymerase (25 µL)
		K: TITAGGGTACAATATCACAA			98° C / 3:00
					40 cycles:
					98° C / 0:30
					54° C / 0:45
					72° C / 0:30
					72° C / 10:00

¹ Longer exons are broken up into fragments due to the practical limitations of Sanger sequencing. Fragments are listed sequentially in the table, with sufficient overlaps to allow for sequence assembly. The descriptors Start/Middle/End or A/B/C/D also reflect this ordering of fragments of the gene.

 2 Certain samples yielded cleaner PCR amplicons and sequencing results with either of these two Reverse primers, so both are listed. PCRs were conducted under the same conditions for both combinations.

³ This fragment was GC-rich and required Phusion GC buffer (NEB) rather than HF buffer for successful PCR amplification. The presence of a secondary structure here required repeat bi-directional sequencing for most samples.

Supplementary Information References

Adzhubei I, Jordan DM, Sunyaev SR. 2013. Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics 76(1)7.20.1-7.20.41.

Baylis AMM, Crofts S, Wolfaardt AC. 2013. Population trends of Gentoo Penguins Pygoscelis papua breeding at the Falkland Islands. Marine Ornithology 41: 1–5.

Carvajal-Rodriguez A, de Uña-Alvarez J. 2011. Assessing Significance in High-Throughput Experiments by Sequential Goodness of Fit and q-Value Estimation. PLoS One 6:e24700.

Crawford RJM, Dyer BM, Upfold L, Makhado AB. 2014. Congruent, decreasing trends of Gentoo Penguins and Crozet Shags at sub-Antarctic Marion Island suggest food limitation through common environmental forcing. African Journal of Marine Science 36: 225–231.

Epstein CJ. 1967. Non-randomness of ammo-acid changes in the evolution of homologous proteins. Nature 215(5099):355-359.

Ghys MI, Raya Rey A, Schiavini A. 2008. Population trend and breeding biology of Gentoo penguin in Martillo Island, Tierra Del Fuego, Argentina. Waterbirds 31(4):625-631.

Grantham R. 1974. Amino acid difference formula to help explain protein evolution, Science. 185(4154):862-864

Grueber CE, Wallis GP, Jamieson IG. 2014. Episodic Positive Selection in the Evolution of Avian Toll-Like Receptor Innate Immunity Genes. Plos One 9.

Jouventin, P. 1994. Les populations d'oiseaux marins des T.A.A.F.: résumé de 20 années de recherche. Alauda 62: 44-47.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

Lescroel A, Bost CA. 2006. Recent decrease in Gentoo Penguin populations at Iles Kerguelen. Antarctic Science 18: 171-174.

Lynch HL. 2013. The Gentoo Penguin (Pygoscelis papua). In: García Borboroglu PG, Boersma PD. (ed.), Biology and Conservation of the World's penguins, University of Washington Press, Seattle U.S.A. Miyata T. 1979. Two types of amino acid substitution in protein evolution. Journal of Molecular Evolution. 12(3):219-236

Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research 31(13):3812-3814

Sneath PHA. 1966. Relations between chemical structure and biological activity in peptides. Journal of Theoretical Biology. 12(2):157-195

Song WS, Jeon YJ, Namgung B, Hong M, Yoon SI. 2017. A conserved TLR5 binding and activation hot spot on flagellin. Scientific Reports 7: 40878

Świderská Z, Smidova A, Buchtova L, Bryjova A, Fabianova A, Munclinger P, Vinkler M. 2018. Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds. Scientific Reports 8.

Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526.

Trathan PN, Daunt FHJ, Murphy EJ. 1996. South Georgia: An Ecological Atlas. British Antarctic Survey, Cambridge, UK.

Urbina D, Tang B, Higgs PG. 2006. The response of amino acid frequencies to directional mutation pressure in mitochondrial genome sequences is related to the physical properties of the amino acids and to the structure of the genetic code. Journal of Molecular Evolution 62(3):340-361.

Velová H, Gutowska-Ding MW, Burt DW, Vinkler M. 2018. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Molecular Biology and Evolution 35:2170-2184.

Vinkler, M., Bainová, H., Bryjová, A. Tomášek, O, Albrecht, T, Bryja, J. 2015. Characterisation of Tolllike receptors 4, 5 and 7 and their genetic variation in the grey partridge. Genetica 143(1):101-112. Weimerskirch H, Zotier R, Jouventin P. 1988. The avifauna of the Kerguelen islands. Emu 89: 15-29. Weir BS, Cockerham CC. 1984. Estimating F-Statistics for the Analysis of Population Structure. Evolution 38:1358-1370.

Yang ZH. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586-1591. Yang ZH. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13:555-556.

Yang ZH, Wong WSW, Nielsen R. 2005. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107-1118.

Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. 2012. Structural basis of TLR5-flagellin recognition and signaling. Science 335(6070):859-864.