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Global perturbations to the Early Jurassic environment (∼201 to
∼174 Ma), notably during the Triassic–Jurassic transition and Toar-
cian Oceanic Anoxic Event, are well studied and largely associated
with volcanogenic greenhouse gas emissions released by large
igneous provinces. The long-term secular evolution, timing, and
pacing of changes in the Early Jurassic carbon cycle that provide
context for these events are thus far poorly understood due to a
lack of continuous high-resolution δ13C data. Here we present a
δ13CTOC record for the uppermost Rhaetian (Triassic) to Pliensba-
chian (Lower Jurassic), derived from a calcareous mudstone suc-
cession of the exceptionally expanded Llanbedr (Mochras Farm)
borehole, Cardigan Bay Basin, Wales, United Kingdom. Combined
with existing δ13CTOC data from the Toarcian, the compilation covers
the entire Lower Jurassic. The dataset reproduces large-amplitude
δ13CTOC excursions (>3‰) recognized elsewhere, at the Sinemurian–
Pliensbachian transition and in the lower Toarcian serpentinum
zone, as well as several previously identified medium-amplitude
(∼0.5 to 2‰) shifts in the Hettangian to Pliensbachian interval. In
addition, multiple hitherto undiscovered isotope shifts of compara-
ble amplitude and stratigraphic extent are recorded, demonstrating
that those similar features described earlier from stratigraphically
more limited sections are nonunique in a long-term context. These
shifts are identified as long-eccentricity (∼405-ky) orbital cycles. Or-
bital tuning of the δ13CTOC record provides the basis for an astro-
chronological duration estimate for the Pliensbachian and Sinemurian,
giving implications for the duration of the Hettangian Stage. Overall
the chemostratigraphy illustrates particular sensitivity of the marine
carbon cycle to long-eccentricity orbital forcing.
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Prominent carbon-isotope excursions (CIEs) are identified
globally in strata from the Triassic–Jurassic boundary (∼201

Ma) and the Toarcian Oceanic Anoxic Event (T-OAE; ∼183
Ma), both of which are expressed in the δ13C values derived from
various marine and terrestrial organic and inorganic materials (1–
3). These isotopic events express changes in the δ13C composition
of the combined global exogenic carbon pool and are linked to the
elevated release of isotopically light volcanic, and/or thermogenic,
and/or biogenic carbon into the global ocean–atmosphere system
(resulting in negative CIEs, e.g., refs. 4 and 5) and global increase
in organic-carbon sequestration in marine and/or terrestrial envi-
ronments (resulting in positive CIEs, e.g., refs. 6 and 7). Bracketed
by these globally recognized distinct large-amplitude δ13C events
(up to 7‰ in marine and terrestrial δ13CTOC records), numerous δ13C
shifts of somewhat lesser magnitude have been identified in the
Hettangian to Pliensbachian interval. Stratigraphically expanded
shifts were recorded at the Sinemurian–Pliensbachian boundary
(8–14) and the upper Pliensbachian margaritatus and spinatum
zones (10, 15, 16). Furthermore, multiple stratigraphically less
extended short-term δ13C shifts of ∼0.5 to 2‰ magnitude have
been recognized throughout the Hettangian (17–19), in the
Sinemurian (17, 20–24), and Pliensbachian (10, 11, 16, 22, 25–28),

where they are recorded as individual shifts or series of shifts
within stratigraphically limited sections. Some of these short-term
δ13C excursions have been shown to represent changes in the
supraregional to global carbon cycle, marked by synchronous
changes in δ13C in marine and terrestrial organic and inorganic
substrates and recorded on a wide geographic extent (e.g., refs. 10,
16, 23, and 24). However, due to the previous lack of a continuous
dataset capturing and contextualizing all isotopic shifts in a single
record, there is no holistic understanding of the global nature,
causal mechanisms, and the chronology and pacing of these CIEs.
Therefore, these δ13C shifts have largely been interpreted as stand-
alone events, linked to a release of 12C from as-yet-undefined
sources, reduced organic productivity (leaving more 12C in the
ocean–atmosphere system) and/or 13C-depleted carbon seques-
tration and orbitally forced environmental change affecting the
carbon cycle on the scale of Milankovitch cyclicity (17, 20, 24, 25).
Evidence for the latter is so far limited to the Hettangian to early
Sinemurian and the early Toarcian, where high-resolution isotope
records provide the basis for cyclostratigraphic analysis (17–19,
29–31).
The data illustrated herein provide a continuous and bio-

stratigraphically well-defined δ13CTOC record from uppermost
Rhaetian (Triassic) to Pliensbachian (Lower Jurassic) strata,
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with a resolution high enough to examine CIEs of varying
magnitudes and temporal extent in their stratigraphic context,
thereby enabling a distinction between orbital, tectonic, ocean-
ographic, or volcanic forcing mechanisms of the carbon cycle
over this time interval.

Geological Setting
The Llanbedr (Mochras Farm) borehole (hereafter referred to
as Mochras) cored the Lower Jurassic of the Cardigan Bay Basin
(Wales, United Kingdom), an extensional structure related to
the breakup of Pangaea (32). In the Early Jurassic, the basin was
located at a midpaleolatitude in the Laurasian Seaway on the
northwest fringes of the European shelf (Fig. 1 and refs. 33 and
34). The uppermost Pliensbachian and lower Toarcian strata are
regarded as having been deposited in an unrestricted, open-
marine setting (35).
The recovered sedimentary succession at Mochras comprises

32.05 m of continental Upper Triassic (Rhaetian) deposits
(1,938.83 to 1,906.78 m below surface, mbs), ∼1,305 m of Lower
Jurassic Hettangian to Toarcian marine strata (1,906.78 to
601.83 mbs), and is unconformably overlain by Paleogene–Neo-
gene sandstones and glaciogenic sediments (601.83 to 0 mbs, ref.
36). Ammonite biostratigraphy of the core was defined to a zonal
and even subzonal level, and all ammonite zones of the Lower
Jurassic have been identified with the exception of the lowermost
Hettangian tilmanni zone (37, 38). Due to the lack of the base-
Jurassic biostratigraphic marker Psiloceras spelae, the Triassic–
Jurassic boundary in the Mochras borehole is placed at a litho-
logical change from calcitic dolostone to calcareous mudstone at
∼1,906.78 mbs (36, 38). About 1.7 m of biostratigraphically un-
defined strata lying between the base Jurassic and the base of the
planorbis zone are referred to as “pre-planorbis beds,” likely
equivalent to the basal Jurassic tilmanni zone (38).
The relative thinness of the pre-planorbis beds suggests a base-

Jurassic hiatus at the sharp lithological change at ∼1,906.78 mbs.
A calcite-veined interval in the mid-Sinemurian oxynotum zone
may be marked by a fault which, if present at all, cuts out less
than one ammonite subzone (36). A small hiatus may also be
present at the level of intraformational conglomerate at 627.38
mbs (36) within the upper Toarcian pseudoradiosa zone, and a
further unconformity is present at the top of the Lower Jurassic (at
601.85 mbs), where sediments of the uppermost Toarcian aalensis

zone are overlain by Paleogene strata (7, 36). In all other respects,
the Lower Jurassic succession appears to be stratigraphically
complete. However, core preservation below ∼1,290 mbs is largely
limited to reserve collection samples, each of which aggregate
∼1.4 m intervals of broken core, with consequential reduction
of stratigraphic resolution (see Materials and Methods and SI
Appendix).
The Jurassic succession at Mochras is markedly expanded,

with relatively uniform lithology compared to coeval strata
elsewhere (38, 39). The strata primarily comprise calcareous
mudstone, with varying silt and clay content, alternating with
strongly bioturbated calcareous siltstone and silty limestone (36).
Average Rock-Eval thermal maturation parameter (Tmax =∼430 °C)
and vitrinite reflectance (Ro = 0.38 to 0.63) from previous
studies indicate the presence of immature to early mature sedi-
mentary organic matter (7, 22, 40). δ13C data from total organic
carbon (δ13CTOC) and carbonates (δ13Ccarb) generated in pre-
vious studies suggest that the Mochras sedimentary archive re-
cords the long-term pattern of global carbon-cycle change (7, 14,
22, 41, 42).

Results
The high-resolution δ13CTOC and Rock-Eval data from Mochras
presented here for the uppermost Rhaetian to Pliensbachian are
combined with published data for the Toarcian derived from the
same core (ref. 7 and Fig. 2). The compiled δ13CTOC record il-
lustrates significant long- and short-term fluctuations in δ13CTOC
through the Lower Jurassic of the Mochras core. At a longer
time scale, the record shows a long-term ∼5‰ positive shift in
δ13CTOC from the lowermost Hettangian to upper Sinemurian.
The Sinemurian–Pliensbachian boundary is characterized by a
symmetrically shaped ∼5‰ negative long-term trend and sub-
sequent “recovery” (upper oxynotum to upper ibex zones, ∼1,360
to ∼1,060 mbs), reaching the lowest values in the lower jamesoni
zone. The mid-Pliensbachian interval presents a stable plateau in
δ13CTOC, followed by the upper margaritatus zone (subnodosus
and gibbosus subzones) where δ13CTOC values rise gradually and
culminate in an abrupt ∼2‰ positive excursion in the upper
margaritatus zone (∼930 to ∼926 mbs). The margaritatus–spinatum
zone boundary is marked by a sharp ∼4‰ drop in organic carbon-
isotope ratios, followed by a gradual positive shift throughout the
spinatum zone. The Toarcian record comprises a lower Toarcian
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Fig. 1. Early Jurassic paleogeography showing the location of the Mochras borehole (red star) within the northern Eurasian Seaway (red rectangle).
Reprinted from ref. 39. Copyright (2019) with permission from Elsevier.
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overarching positive CIE interrupted by the large negative CIE
associated with the T-OAE, as described in previous studies (7,
14, 22, 41). All larger-scale trends in the δ13CTOC data are
reproduced in δ13Cwood presented for the upper Sinemurian to
Toarcian, although the latter dataset shows a larger degree of
variability (Fig. 2).
At a decameter scale, the δ13CTOC record is characterized by

consecutive alternating positive and negative shifts of ∼0.5 to 2‰
magnitude, superimposed on the observed long-term isotopic trends.
These fluctuations in δ13CTOC, hereafter referred to as medium-
amplitude shifts, are particularly well-defined in the Hettangian
to uppermost Sinemurian (between 1,906.78 and 1,340 mbs) and

the mid-Pliensbachian ibex to lower margaritatus zones (between
1,120 and 980 mbs). The individual shifts appear larger in mag-
nitude and more stratigraphically extensive in the Hettangian
and Sinemurian compared with those in the Pliensbachian.
Superimposed on these medium-amplitude shifts, fluctuations in
δ13CTOC of up to 2‰ on a meter to centimeter scale occur, with
larger magnitudes in the upper Sinemurian and Pliensbachian
likely being an artifact of differing sample resolution.
The calcium carbonate (CaCO3) content of the Mochras strata

is highly variable (∼0.6 to 95%; Fig. 2). The long-term shifts in
CaCO3 appear to negatively correlate with the broad δ13CTOC

trends, with the exception of the upper Pliensbachian and lower
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Toarcian successions. On a decameter scale, the CaCO3 shows a
clear fluctuation in the Hettangian and Sinemurian interval, but
the pattern does not correspond to the medium-scale shifts in
δ13CTOC. The relatively higher variability in CaCO3 on a meter to
decameter scale over the Sinemurian–Pliensbachian transition
and the upper Pliensbachian interval is associated with the
higher data resolution obtained in these intervals.
The total organic carbon (TOC) content and hydrogen index

(HI) values are generally low throughout the Hettangian to
Pliensbachian of the Mochras core (Fig. 2). TOC and HI values
in the Hettangian and most of the Sinemurian (∼1.5 wt % and
∼80 mg HC/g TOC on average, respectively) notably increase in
the upper Sinemurian to lower Pliensbachian (2.6 wt %, up to
380 mg HC/g TOC, respectively) and are moderately elevated
through the Pliensbachian (∼1.4 wt % and ∼170 mg HC/g TOC
on average, respectively).
The increase in both TOC and HI accompanies the down-

going limb of the Sinemurian–Pliensbachian negative CIE, and
some stratigraphic intervals with distinctly enhanced TOC and
HI values also occur in the Hettangian and Sinemurian, co-
inciding with minimum values in δ13CTOC (for example in the
angulata, bucklandi, and lower raricostatum zones). Similarly, the
lowermost Jurassic sediments of the pre-planorbis beds and plan-
orbis zone are also marked by distinctly elevated TOC and HI
values (of 3.2 wt % and up to 660 mg HC/g TOC, respectively),
coinciding with negative δ13CTOC values of −28‰ (Fig. 2).
Overall, there is no clear correlation between TOC and δ13CTOC
(SI Appendix, Fig. S5).
Throughout the Toarcian, TOC values fluctuate between 0.5

and 1.5 wt %, with HI values of ∼100 mg HC/g TOC (7). Slightly
higher TOC and HI values are recorded in the bifrons and
variabilis zones, and elevated TOC and HI values (up to 2.5 wt %
up to 339 mg HC/g TOC, respectively) are associated with the
negative CIE interval in the serpentinum zone (7).
Predominant components of sedimentary organic matter

identified by maceral analysis are liptinites, most of which are
represented by liptodetrinite (up to 96.7 vol %; SI Appendix, Fig.
S7), a product of aerobic and mechanic degradation of liptinitic
macerals (43). Markedly smaller but variable amounts of less-
degraded liptinite macerals are algal in origin (alginite). Bituminite,
also known as amorphous organic matter (AOM), which origi-
nates from anaerobic decomposition of algae and faunal plank-
ton under anoxic conditions (44, 45), is primarily present in
Pliensbachian samples (up to 24 vol %). Terrestrial organic matter
comprising coal clasts, vitrinite, inertinite, sporinite, and cutinite
accounts for variable relative amounts (3.3 to 58.8 vol %) of the
total organic matter. Notably, the Pliensbachian samples contain
a larger relative amount of terrestrially derived organic matter and
bituminite compared to the Hettangian and Sinemurian samples.
This stratigraphic trend is also reflected in the comparatively high
abundance of macrofossil wood in the Pliensbachian and Toarcian
part of the core, contrasting with very rare occurrences in the
Hettangian and Sinemurian.

Discussion
Source and Preservation of Bulk Organic Matter in the Mochras Core.
The formation of liptodetrinite, the predominant organic com-
ponent in the bulk organic matter assemblage, is associated with
physical disintegration of liptinite macerals in the water column
and is indicative of extensive water-column circulation and high
oxygen availability (45). The precursors of liptodetrinite can be
of marine-aquatic origin or derive from terrestrial liptinites, such
as sporinite and cutinite (46). The highly degraded shape of
liptodetrinite macerals observed in Mochras (SI Appendix, Fig.
S6) suggests fragile marine organic matter such as algae as pri-
mary precursor. The marine origin of the degraded particles is
further supported by its fluorescence. The fluorescence of terrestrial
organic matter should decrease with greater biodegradation (47)

but in the studied samples appears higher compared to intact ter-
restrial liptinite. The HI values recorded in Mochras are likely
highly compromised as a result of aerobic bacterial degradation of
initially hydrogen-rich marine organic matter and are therefore not
indicative for the primary source of the organic matter.
Comparably larger relative amounts of bituminite (AOM) in

the upper Pliensbachian strata indicate more anaerobic bottom-
water conditions, resulting in preservation of lipid and hydrogen-
rich organic matter. An increase in AOM and foraminifera
organic inner wall linings was previously reported from Mochras,
concomitant with the increase in TOC in the raricostatum to davoei
zones (22). The elevated TOC andHI values around the Sinemurian–
Pliensbachian transition were interpreted to result from both the
increase in organic flux to the seafloor and low-oxygen bottom
waters (22). Elevated TOC and HI values manifested on a smaller
(decameter) scale and stratigraphically coincident with negative
CIEs (well-expressed, for example, in the angulata, bucklandi, and
lower obtusum zones) may similarly be linked to enhanced pre-
servation of organic matter as a response to redox conditions.

The Lower Jurassic δ13CTOC Record in the Mochras Core. The large-
magnitude CIEs (>3‰) recorded in the Mochras core are the
same as isotope events that have been previously recorded
elsewhere, such as the early Toarcian negative CIE, punctuat-
ing an overarching positive excursion, in the tenuicostatum–

serpentinum zones (7, 14, 22, 41) and the Sinemurian–Pliensbachian
boundary negative CIE, both of which have been interpreted as
due to increased release of isotopically light carbon into the
ocean–atmosphere system (4, 5, 39). Markedly well-expressed in
the Mochras δ13CTOC record is an upper Pliensbachian (upper-
most margaritatus zone) negative CIE, revealing a sharp ∼4‰
downward shift following the upper margaritatus positive CIE.
Both these CIEs have been recognized in multiple European
basins (10, 15, 25, 48), as well as in the North American realm
(16). The positive margaritatus zone CIE has been linked to
widespread deposition of isotopically light organic matter during
high sea levels and warm climates (6, 25, 49), with no apparent
temporal link to large-scale volcanism (16). Subsequent cooling,
associated sea-level fall, and restored water-column mixing have
been suggested to have released accumulated light carbon
through sediment reworking and oxidative and heterotrophic
remobilization, causing the negative CIE in the uppermost
margaritatus zone (8, 10, 26, 50, 51). Similarly, the influx (up-
welling/recycling) of 12C-rich deep waters associated with a cli-
matic cooling trend has been suggested as an alternative driving
mechanism for the Sinemurian–Pliensbachian boundary negative
CIE (11).
The clear parallelism between fossil plant matter and bulk

organic δ13C records demonstrates, however, that the ocean–
atmosphere and biosphere carbon reservoirs were simulta-
neously affected and the shifts in δ13CTOC can thus not solely be
explained with oceanographic changes such as redox-related
preservation or upwelling of 12C-enriched deep waters. Despite
possible circulation-related redox changes throughout the strata,
notably around the Sinemurian–Pliensbachian transition and the
upper Pliensbachian (22, 26, 48), the δ13Cwood record presented
here signifies that Mochras appears to record the global δ13C
evolution.
The most dominant feature illustrated by the Mochras record

is, however, the periodic appearance of medium-amplitude (∼0.5
to 2‰) fluctuations on a decameter scale throughout the in-
terval studied, superimposed on the longer-term isotopic shifts
discussed above. The medium-amplitude δ13CTOC fluctuations
appear in a sequence of excursions that are comparable in mag-
nitude and stratigraphic extent. They are expressed throughout the
section but appear larger in magnitude in the Hettangian and
Sinemurian stratigraphic interval, the deposition of which was
associated with more oxygenated bottom waters.
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A comparison of the Sinemurian and Pliensbachian δ13CTOC
record of the Sancerre-Couy core (Paris Basin, France; ref. 15),
and the Hettangian to lower Sinemurian record from St Audries
Bay/East Quantoxhead/Kilve (Bristol Channel Basin, England,
United Kingdom; refs. 4 and 17–19), which together represent
the hitherto longest high-resolution δ13CTOC record of the Lower
Jurassic, demonstrates that numerous medium-amplitude δ13CTOC
shifts recorded in Mochras have previously been merged into what
appears as stratigraphically more expanded shifts, or were missed
entirely (Fig. 3). The dominant expression of the medium-
amplitude CIEs in Mochras likely results from the comparatively
high sedimentation rate as well as the high data resolution com-
pared to the Sancerre-Couy record.
Several medium-amplitude CIEs observed in Mochras have

previously also been identified in other δ13C records covering
shorter stratigraphic intervals from geographically widespread sec-
tions, and obtained from different carbon substrates, demonstrating

that these shifts do not represent a local phenomenon restricted to
the Cardigan Bay Basin. In the Sinemurian, for example, a positive
CIE in the turneri zone is also recorded in δ13CTOC on the Dorset
coast of the United Kingdom (20) and in western North America
(23). A negative CIE in the obtusum–oxynotum zones is also
present in previously published δ13C records of bulk organic
matter, belemnites, and terrestrially derived palynomorphs from
Lincolnshire, United Kingdom, and the δ13CTOC records from
Robin Hood’s Bay, United Kingdom and Sancerre-Couy, France
(15, 21, 24, 42). Although biostratigraphically less well constrained,
a similar pattern in δ13CTOC has been observed in records from
Italy and Morocco (12, 52). Likewise, multiple likely coeval
medium-amplitude shifts in δ13C within the Pliensbachian ibex
and davoei zones are recorded on a supraregional scale, in-
cluding the European and African Tethyan margin (9–11, 14, 15,
25, 27, 28, 48, 50, 53). Exceptionally well-expressed are multiple
consecutive shifts recorded in δ13Ccarb derived from belemnites
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Fig. 3. δ13CTOC record of the Hettangian to Pliensbachian of the Mochras core, upper Hettangian to Pliensbachian of the Sancerre-Couy core, Paris Basin (15)
and the composite Hettangian to lower Sinemurian record from the Bristol Channel Basin (4, 17–19). Key for identified ammonite subzones in Mochras given
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from Dorset, United Kingdom, throughout the Pliensbachian
jamesoni, ibex, and lower davoei zones (11). Furthermore, multiple
shifts in δ13CTOC are recorded in the upper Pliensbachian kunae
and carlottense zones of eastern Oregon in the United States,
correlative to the mid-margaritatus to spinatum zones of the
northwestern European realm (16).
These CIEs have thus far been discussed as single or episodic

events, but as aggregated here in a continuous record and viewed
collectively in the overall stratigraphic context they appear as
elements in a regular series. Based on the occurrence, in multiple
carbon substrates and in various sedimentary basins, it seems
apparent that most, if not all, of the medium-amplitude CIEs
recorded in the Mochras core reflect changes in the δ13C com-
position of an at least supraregional marine dissolved inorganic
carbon pool.

Pacing of Early Jurassic Carbon-Cycle Fluctuations. The δ13CTOC
data presented here point to a common and strongly repetitive,
supraregionally to globally acting driving force pacing the observed
fluctuations in δ13CTOC and concomitant shifts in δ13Ccarb. The most
plausible driving mechanism acting continuously over an extended
time interval is orbital forcing. Compared to shorter Milankovitch
periodicities, the long-eccentricity (405-ky) orbital signal can be well
expressed in δ13C records due to the long residence time of carbon
in the ocean–atmosphere system and the associated “memory effect”
of carbon in the oceans (54, 55).
Spectral analysis of the Mochras δ13CTOC dataset identified

dominant spectral peaks, which are changing to slightly higher
frequencies up-sequence (SI Appendix, Figs. S2 and S3). Average
spectral misfit (ASM) testing of these dominant spectral peaks
and orbital target frequencies signifies orbital influence as the
likely driving mechanism behind the dominant spectral compo-
nents. The periodicities corresponding to the long-eccentricity
(405-ky) cycles visually match the observed medium-amplitude
CIEs (SI Appendix, Fig. S2) and are in a similar stratigraphic
range compared to dominant spectral peaks identified in ele-
mental calcium concentrations and gamma-ray logs identified in
the upper Sinemurian to Pliensbachian strata of the same core,
which also have been interpreted to represent 405-ky cycles
(39, 56).
Thus far, it has not been resolved how eccentricity forcing

impacts the carbon cycle and the δ13C signature. Orbital eccen-
tricity forcing modulates the precessional amplitude of Earth’s
insolation, leading to cyclic changes in seasonal contrasts, with
eccentricity maxima marked by high seasonal contrasts and short
but intense “monsoon-like” wet intervals followed by prolonged
dry periods, whereas eccentricity minima are characterized by
more uniform precipitation patterns (57–59). High precipitation
and weathering rates during the high-eccentricity wet season is
associated with increased continental runoff and fluvial freshwater
inputs, as well as increased nutrient and terrestrial organic and
inorganic carbon transfer into the oceans, resulting in productivity
blooms, a stratified water column, and bottom-water anoxia (58).
During the dry season, oxidation of terrestrial organic matter is
favored on land, restored water-column mixing oxidizes marine
organic matter, and regional carbonate production increases.
More stable conditions during eccentricity minima lead to a con-
stant input of freshwater, nutrients, and carbon, resulting in con-
stant productivity rates, persistent watermass stratification, and
continuous accumulation of organic-rich deposits in the ocean, as
well as increased net production of terrestrial biomass and its
storage in stable tropical soils, wetlands, and peats (58, 60, 61).
These eccentricity-paced variations in the accumulation and
remineralization of marine and terrestrial organic carbon, and the
ratio between burial flux of organic carbon and the accumulation
rate of inorganic (carbonate) carbon, impact the oceanic carbon
pool and are sufficient to drive δ13C fluctuations (58, 60–63).

The negative shifts in δ13CTOC in Mochras may thus reflect
enhanced preservation of isotopically light organic matter in
response to orbitally paced redox conditions in the water column
and/or bottom waters and sediments. The more distinct expres-
sion and larger magnitude of δ13CTOC shifts in the Hettangian to
upper Sinemurian strata may be linked to the more oxygenated
bottom-water conditions that were likely more susceptible to the
orbitally paced redox changes.
Increased drawdown of 12C-enriched organic matter is, how-

ever, generally associated with positive shifts in δ13C. Conversely,
in Mochras, increased TOC values correspond to negative iso-
tope shifts instead (for example, in the angulata and bucklandi
zones), but overall no correlation between TOC and δ13CTOC is
apparent. Other Lower Jurassic geochemical records show that
medium-amplitude shifts are preceded by, rather than concom-
itant with, increased TOC intervals (11, 26). This offset may
suggest that the accumulation of organic matter took place
elsewhere, outside the Cardigan Bay Basin. Furthermore, the
long-eccentricity (405-ky) cycles in δ13CTOC appear independent
of the overall climatic background, as demonstrated by the iso-
tope shifts expressed during the late Pliensbachian, which rep-
resents a climatically cold interval (8, 51, 64) and may be less
conducive for the development of high seasonal contrasts.

Early Jurassic Astronomical Time Scale. Due to the stability of the
orbital long-eccentricity cycle over the past 215 My (65), orbital
tuning of datasets encoding this astronomical metronome can
provide reliable time constraints. The 405-ky tuned δ13CTOC
record from Mochras shows dominant spectral peaks corre-
sponding to amplitude modulation, short eccentricity, and
obliquity Milankovitch cycles (Fig. 4). A floating time scale
based on the tuned dataset implies a duration of 8.8 My for the
Pliensbachian (Fig. 4), which is closely comparable to the
cyclostratigraphic duration estimate obtained from elemental
calcium concentrations from the same core (8.7 My; ref. 39).
The tuned δ13CTOC record of the preceding stage provides a
direct cyclostratigraphic duration estimate for the Sinemurian
and its constituent ammonite zones (Fig. 4). If all cycles were
identified correctly, the stage duration of ∼6.6 My defined
herein is shorter compared with the previous estimate of 7.6
My, which is based on the assumed linear decrease in 87Sr/86Sr
of belemnite rostra extracted from the Belemnite Marls, Dorset,
United Kingdom (66).
Some uncertainty regarding cycle allocation associated with a

comparably weak spectral peak in the original and tuned dataset
appears in the upper Sinemurian oxynotum zone (Fig. 4 and SI
Appendix, Fig. S2). In this stratigraphic interval, the potential
stratigraphic break associated with the possible occurrence of a
fault and/or the transition between available sample types and
data resolution (transition between samples taken from pre-
served core slabs and reserve bags) may have led to imprecise
cycle allocation. Assuming a relatively uniform sedimentation
rate, and considering that the fault, if present, cuts out less than
one ammonite subzone, it appears most likely that, if at all, not
more than one cycle may be missing in this stratigraphic interval.
Controversial astronomical duration estimates are currently

debated for the Hettangian Stage, ranging between 1.7/1.9 My
and 4.1 My (17–19, 67, 68). The shorter estimates are derived
from multiple astrochronological studies (17–19), with duration
estimates from the Hartford Basin, United States, and the bio-
stratigraphically well-constrained St Audries Bay succession,
Somerset, United Kingdom, being effectively indistinguishable
and supported by correlation to the geomagnetic polarity time
scale, as well as radioisotopic ages for the Triassic–Jurassic
boundary and earliest Sinemurian from the Pucará Basin, Peru
(18, 67, 69–71). The longer estimate of 4.1 My is based on
cyclostratigraphic interpretation of spliced magnetic-susceptibility
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records from multiple UK locations, the individual sections of
which suggest durations of 2.9 to 3.2 My (68).
It is possible that the spliced records contain unrecognized

stratigraphic overlaps or wrongly identified lithological cycles
and thus overestimate the duration of the Hettangian Stage.
Equally, however, the individual sections studied for astrochrono-
logical constraints may be stratigraphically incomplete and there-
fore underestimate the time involved in their deposition (68). An
additional complication is the possibility that the radioisotopically
dated volcanic ashes from the lower Sinemurian in the Pucará Basin
in Peru are reworked or correlated inaccurately to the European
base-Sinemurian stratotype (68). Temporal constraints on the
Hettangian–Sinemurian boundary are thus not entirely resolved.
Although the Hettangian δ13CTOC record in Mochras shows

consistent medium-amplitude fluctuations similar to the overlying
strata, which can be interpreted to represent long-eccentricity
forcing, tuning of the Hettangian δ13CTOC record in Mochras
cannot in itself resolve the duration of the Hettangian Stage as the

strata are most likely stratigraphically incomplete at the Triassic–
Jurassic boundary.
Biostratigraphically calibrated temporal constraints on the

Triassic–Jurassic boundary (201.36 ± 0.17 Ma, recalculated from
refs. 70 and 72) are supported by absolute age constraints on the
preceding end-Triassic extinction event (73) and the Newark–
Hartford astrochronology and geomagnetic polarity time scale
(69). The Pliensbachian–Toarcian boundary projected age of
183.7 ± 0.5 Ma (74) is supported by biostratigraphically con-
strained U-Pb ages from the lower Toarcian (ref. 75, corrected in
refs. 76 and 77) and upper Pliensbachian (16, 78). Based on these
absolute ages bracketing the studied time interval, the combined
Hettangian, Sinemurian, and Pliensbachian Stages cover some
17.7 ± 0.5 My. According to the cyclostratigraphic duration es-
timates for the Sinemurian and Pliensbachian (∼6.6 and 8.8 My,
respectively) given here, the Hettangian Stage is constrained to a
duration of ∼2.3 ± 0.5 My. Despite uncertainties, this time scale
strongly supports the nonspliced cyclostratigraphic duration
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estimates for the Hettangian Stage from individual UK sections
(17–19, 68).

Conclusions
The Mochras δ13CTOC data from the uppermost Rhaetian to
Pliensbachian interval, combined with available data from the
Toarcian from the same core, provides a continuous, biostrati-
graphically well-defined, high-resolution chemostratigraphic record
for the Lower Jurassic. Beside large-scale CIEs (>3‰) known from
isotopic records elsewhere, CIEs of generally smaller magnitude
(0.5 to 2‰) occur throughout the Hettangian to Pliensbachian
interval. These medium-amplitude CIEs, including shifts that have
previously been recorded in stratigraphically shorter intervals, appear
less singular in the context of a continuous record. Spectral and ASM
analysis of the data reveals that these medium-amplitude CIEs are
paced by long-eccentricity (405-ky) cycles, exemplifying the impact of
orbital forcing on the ocean–atmosphere carbon reservoir. Orbital
tuning of the isotope record provides a duration estimate of 8.8 My
for the Pliensbachian and offers an estimate for the Sinemurian
Stage (6.6 My). Combined with published biostratigraphically
defined radioisotopic age constraints for the Triassic–Jurassic and
Pliensbachian–Toarcian boundaries, the data presented herein
suggest a duration for the Hettangian Stage of ∼2.3 ± 0.5 My.

Materials and Methods
Preserved core slabs, bagged core fragments known as the “reserve collec-
tion,” and registered specimens of the Mochras drill core are housed at the
British Geological Survey National Geological Repository at Keyworth,
United Kingdom. For this study, bulk rock samples between 1,290 and 863.3

mbs were collected from well-preserved core slabs at a 30-cm to 60-cm
resolution. Bulk-rock samples below the ∼1,290 mbs level were largely
sampled from reserve collections, each of which aggregate ∼1.4 m intervals
of broken core. A single sample was taken from each bag and referred to
the depth of the midpoint of the sampled interval (reserve bag samples
marked as white squares in Fig. 2). Macroscopic fossil plant material was
extracted from reserve bags only. The sample resolution, ammonite and
foraminiferal biostratigraphy, and a lithological log of the Mochras drill core
are shown in SI Appendix, Fig. S1.

Detailed information on laboratory procedures for bulk (total) organic
carbon-isotope (δ13CTOC) analyses (1323 samples), fossil plant matter carbon-
isotope (δ13Cwood) analysis (95 samples), Rock-Eval pyrolysis (667 samples),
organic petrography (14 samples from the Hettangian, Sinemurian, and
upper Pliensbachian), and spectral, ASM, and time-series analysis are also
given in SI Appendix.

Data Availability Statement. All data discussed in the paper will be made
available in the SI Appendix and Dataset S1.
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